| Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > lfl0sc | Structured version Visualization version GIF version | ||
| Description: The (right vector space) scalar product of a functional with zero is the zero functional. Note that the first occurrence of (𝑉 × { 0 }) represents the zero scalar, and the second is the zero functional. (Contributed by NM, 7-Oct-2014.) |
| Ref | Expression |
|---|---|
| lfl0sc.v | ⊢ 𝑉 = (Base‘𝑊) |
| lfl0sc.d | ⊢ 𝐷 = (Scalar‘𝑊) |
| lfl0sc.f | ⊢ 𝐹 = (LFnl‘𝑊) |
| lfl0sc.k | ⊢ 𝐾 = (Base‘𝐷) |
| lfl0sc.t | ⊢ · = (.r‘𝐷) |
| lfl0sc.o | ⊢ 0 = (0g‘𝐷) |
| lfl0sc.w | ⊢ (𝜑 → 𝑊 ∈ LMod) |
| lfl0sc.g | ⊢ (𝜑 → 𝐺 ∈ 𝐹) |
| Ref | Expression |
|---|---|
| lfl0sc | ⊢ (𝜑 → (𝐺 ∘f · (𝑉 × { 0 })) = (𝑉 × { 0 })) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | lfl0sc.v | . . . 4 ⊢ 𝑉 = (Base‘𝑊) | |
| 2 | 1 | fvexi 6895 | . . 3 ⊢ 𝑉 ∈ V |
| 3 | 2 | a1i 11 | . 2 ⊢ (𝜑 → 𝑉 ∈ V) |
| 4 | lfl0sc.w | . . 3 ⊢ (𝜑 → 𝑊 ∈ LMod) | |
| 5 | lfl0sc.g | . . 3 ⊢ (𝜑 → 𝐺 ∈ 𝐹) | |
| 6 | lfl0sc.d | . . . 4 ⊢ 𝐷 = (Scalar‘𝑊) | |
| 7 | lfl0sc.k | . . . 4 ⊢ 𝐾 = (Base‘𝐷) | |
| 8 | lfl0sc.f | . . . 4 ⊢ 𝐹 = (LFnl‘𝑊) | |
| 9 | 6, 7, 1, 8 | lflf 39086 | . . 3 ⊢ ((𝑊 ∈ LMod ∧ 𝐺 ∈ 𝐹) → 𝐺:𝑉⟶𝐾) |
| 10 | 4, 5, 9 | syl2anc 584 | . 2 ⊢ (𝜑 → 𝐺:𝑉⟶𝐾) |
| 11 | 6 | lmodring 20830 | . . . 4 ⊢ (𝑊 ∈ LMod → 𝐷 ∈ Ring) |
| 12 | 4, 11 | syl 17 | . . 3 ⊢ (𝜑 → 𝐷 ∈ Ring) |
| 13 | lfl0sc.o | . . . 4 ⊢ 0 = (0g‘𝐷) | |
| 14 | 7, 13 | ring0cl 20232 | . . 3 ⊢ (𝐷 ∈ Ring → 0 ∈ 𝐾) |
| 15 | 12, 14 | syl 17 | . 2 ⊢ (𝜑 → 0 ∈ 𝐾) |
| 16 | lfl0sc.t | . . . 4 ⊢ · = (.r‘𝐷) | |
| 17 | 7, 16, 13 | ringrz 20259 | . . 3 ⊢ ((𝐷 ∈ Ring ∧ 𝑘 ∈ 𝐾) → (𝑘 · 0 ) = 0 ) |
| 18 | 12, 17 | sylan 580 | . 2 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐾) → (𝑘 · 0 ) = 0 ) |
| 19 | 3, 10, 15, 15, 18 | caofid1 7711 | 1 ⊢ (𝜑 → (𝐺 ∘f · (𝑉 × { 0 })) = (𝑉 × { 0 })) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2109 Vcvv 3464 {csn 4606 × cxp 5657 ⟶wf 6532 ‘cfv 6536 (class class class)co 7410 ∘f cof 7674 Basecbs 17233 .rcmulr 17277 Scalarcsca 17279 0gc0g 17458 Ringcrg 20198 LModclmod 20822 LFnlclfn 39080 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2708 ax-rep 5254 ax-sep 5271 ax-nul 5281 ax-pow 5340 ax-pr 5407 ax-un 7734 ax-cnex 11190 ax-resscn 11191 ax-1cn 11192 ax-icn 11193 ax-addcl 11194 ax-addrcl 11195 ax-mulcl 11196 ax-mulrcl 11197 ax-mulcom 11198 ax-addass 11199 ax-mulass 11200 ax-distr 11201 ax-i2m1 11202 ax-1ne0 11203 ax-1rid 11204 ax-rnegex 11205 ax-rrecex 11206 ax-cnre 11207 ax-pre-lttri 11208 ax-pre-lttrn 11209 ax-pre-ltadd 11210 ax-pre-mulgt0 11211 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2728 df-clel 2810 df-nfc 2886 df-ne 2934 df-nel 3038 df-ral 3053 df-rex 3062 df-rmo 3364 df-reu 3365 df-rab 3421 df-v 3466 df-sbc 3771 df-csb 3880 df-dif 3934 df-un 3936 df-in 3938 df-ss 3948 df-pss 3951 df-nul 4314 df-if 4506 df-pw 4582 df-sn 4607 df-pr 4609 df-op 4613 df-uni 4889 df-iun 4974 df-br 5125 df-opab 5187 df-mpt 5207 df-tr 5235 df-id 5553 df-eprel 5558 df-po 5566 df-so 5567 df-fr 5611 df-we 5613 df-xp 5665 df-rel 5666 df-cnv 5667 df-co 5668 df-dm 5669 df-rn 5670 df-res 5671 df-ima 5672 df-pred 6295 df-ord 6360 df-on 6361 df-lim 6362 df-suc 6363 df-iota 6489 df-fun 6538 df-fn 6539 df-f 6540 df-f1 6541 df-fo 6542 df-f1o 6543 df-fv 6544 df-riota 7367 df-ov 7413 df-oprab 7414 df-mpo 7415 df-of 7676 df-om 7867 df-2nd 7994 df-frecs 8285 df-wrecs 8316 df-recs 8390 df-rdg 8429 df-er 8724 df-map 8847 df-en 8965 df-dom 8966 df-sdom 8967 df-pnf 11276 df-mnf 11277 df-xr 11278 df-ltxr 11279 df-le 11280 df-sub 11473 df-neg 11474 df-nn 12246 df-2 12308 df-sets 17188 df-slot 17206 df-ndx 17218 df-base 17234 df-plusg 17289 df-0g 17460 df-mgm 18623 df-sgrp 18702 df-mnd 18718 df-grp 18924 df-minusg 18925 df-cmn 19768 df-abl 19769 df-mgp 20106 df-rng 20118 df-ur 20147 df-ring 20200 df-lmod 20824 df-lfl 39081 |
| This theorem is referenced by: lkrscss 39121 lfl1dim 39144 lfl1dim2N 39145 |
| Copyright terms: Public domain | W3C validator |