Mathbox for Norm Megill < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  lfl0sc Structured version   Visualization version   GIF version

Theorem lfl0sc 36336
 Description: The (right vector space) scalar product of a functional with zero is the zero functional. Note that the first occurrence of (𝑉 × { 0 }) represents the zero scalar, and the second is the zero functional. (Contributed by NM, 7-Oct-2014.)
Hypotheses
Ref Expression
lfl0sc.v 𝑉 = (Base‘𝑊)
lfl0sc.d 𝐷 = (Scalar‘𝑊)
lfl0sc.f 𝐹 = (LFnl‘𝑊)
lfl0sc.k 𝐾 = (Base‘𝐷)
lfl0sc.t · = (.r𝐷)
lfl0sc.o 0 = (0g𝐷)
lfl0sc.w (𝜑𝑊 ∈ LMod)
lfl0sc.g (𝜑𝐺𝐹)
Assertion
Ref Expression
lfl0sc (𝜑 → (𝐺f · (𝑉 × { 0 })) = (𝑉 × { 0 }))

Proof of Theorem lfl0sc
Dummy variable 𝑘 is distinct from all other variables.
StepHypRef Expression
1 lfl0sc.v . . . 4 𝑉 = (Base‘𝑊)
21fvexi 6666 . . 3 𝑉 ∈ V
32a1i 11 . 2 (𝜑𝑉 ∈ V)
4 lfl0sc.w . . 3 (𝜑𝑊 ∈ LMod)
5 lfl0sc.g . . 3 (𝜑𝐺𝐹)
6 lfl0sc.d . . . 4 𝐷 = (Scalar‘𝑊)
7 lfl0sc.k . . . 4 𝐾 = (Base‘𝐷)
8 lfl0sc.f . . . 4 𝐹 = (LFnl‘𝑊)
96, 7, 1, 8lflf 36317 . . 3 ((𝑊 ∈ LMod ∧ 𝐺𝐹) → 𝐺:𝑉𝐾)
104, 5, 9syl2anc 587 . 2 (𝜑𝐺:𝑉𝐾)
116lmodring 19633 . . . 4 (𝑊 ∈ LMod → 𝐷 ∈ Ring)
124, 11syl 17 . . 3 (𝜑𝐷 ∈ Ring)
13 lfl0sc.o . . . 4 0 = (0g𝐷)
147, 13ring0cl 19313 . . 3 (𝐷 ∈ Ring → 0𝐾)
1512, 14syl 17 . 2 (𝜑0𝐾)
16 lfl0sc.t . . . 4 · = (.r𝐷)
177, 16, 13ringrz 19332 . . 3 ((𝐷 ∈ Ring ∧ 𝑘𝐾) → (𝑘 · 0 ) = 0 )
1812, 17sylan 583 . 2 ((𝜑𝑘𝐾) → (𝑘 · 0 ) = 0 )
193, 10, 15, 15, 18caofid1 7424 1 (𝜑 → (𝐺f · (𝑉 × { 0 })) = (𝑉 × { 0 }))
 Colors of variables: wff setvar class Syntax hints:   → wi 4   = wceq 1538   ∈ wcel 2114  Vcvv 3469  {csn 4539   × cxp 5530  ⟶wf 6330  ‘cfv 6334  (class class class)co 7140   ∘f cof 7392  Basecbs 16474  .rcmulr 16557  Scalarcsca 16559  0gc0g 16704  Ringcrg 19288  LModclmod 19625  LFnlclfn 36311 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2178  ax-ext 2794  ax-rep 5166  ax-sep 5179  ax-nul 5186  ax-pow 5243  ax-pr 5307  ax-un 7446  ax-cnex 10582  ax-resscn 10583  ax-1cn 10584  ax-icn 10585  ax-addcl 10586  ax-addrcl 10587  ax-mulcl 10588  ax-mulrcl 10589  ax-mulcom 10590  ax-addass 10591  ax-mulass 10592  ax-distr 10593  ax-i2m1 10594  ax-1ne0 10595  ax-1rid 10596  ax-rnegex 10597  ax-rrecex 10598  ax-cnre 10599  ax-pre-lttri 10600  ax-pre-lttrn 10601  ax-pre-ltadd 10602  ax-pre-mulgt0 10603 This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2622  df-eu 2653  df-clab 2801  df-cleq 2815  df-clel 2894  df-nfc 2962  df-ne 3012  df-nel 3116  df-ral 3135  df-rex 3136  df-reu 3137  df-rmo 3138  df-rab 3139  df-v 3471  df-sbc 3748  df-csb 3856  df-dif 3911  df-un 3913  df-in 3915  df-ss 3925  df-pss 3927  df-nul 4266  df-if 4440  df-pw 4513  df-sn 4540  df-pr 4542  df-tp 4544  df-op 4546  df-uni 4814  df-iun 4896  df-br 5043  df-opab 5105  df-mpt 5123  df-tr 5149  df-id 5437  df-eprel 5442  df-po 5451  df-so 5452  df-fr 5491  df-we 5493  df-xp 5538  df-rel 5539  df-cnv 5540  df-co 5541  df-dm 5542  df-rn 5543  df-res 5544  df-ima 5545  df-pred 6126  df-ord 6172  df-on 6173  df-lim 6174  df-suc 6175  df-iota 6293  df-fun 6336  df-fn 6337  df-f 6338  df-f1 6339  df-fo 6340  df-f1o 6341  df-fv 6342  df-riota 7098  df-ov 7143  df-oprab 7144  df-mpo 7145  df-of 7394  df-om 7566  df-wrecs 7934  df-recs 7995  df-rdg 8033  df-er 8276  df-map 8395  df-en 8497  df-dom 8498  df-sdom 8499  df-pnf 10666  df-mnf 10667  df-xr 10668  df-ltxr 10669  df-le 10670  df-sub 10861  df-neg 10862  df-nn 11626  df-2 11688  df-ndx 16477  df-slot 16478  df-base 16480  df-sets 16481  df-plusg 16569  df-0g 16706  df-mgm 17843  df-sgrp 17892  df-mnd 17903  df-grp 18097  df-mgp 19231  df-ring 19290  df-lmod 19627  df-lfl 36312 This theorem is referenced by:  lkrscss  36352  lfl1dim  36375  lfl1dim2N  36376
 Copyright terms: Public domain W3C validator