| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > caofid0r | Structured version Visualization version GIF version | ||
| Description: Transfer a right identity law to the function operation. (Contributed by NM, 21-Oct-2014.) |
| Ref | Expression |
|---|---|
| caofref.1 | ⊢ (𝜑 → 𝐴 ∈ 𝑉) |
| caofref.2 | ⊢ (𝜑 → 𝐹:𝐴⟶𝑆) |
| caofid0.3 | ⊢ (𝜑 → 𝐵 ∈ 𝑊) |
| caofid0r.5 | ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑆) → (𝑥𝑅𝐵) = 𝑥) |
| Ref | Expression |
|---|---|
| caofid0r | ⊢ (𝜑 → (𝐹 ∘f 𝑅(𝐴 × {𝐵})) = 𝐹) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | caofref.1 | . 2 ⊢ (𝜑 → 𝐴 ∈ 𝑉) | |
| 2 | caofref.2 | . . 3 ⊢ (𝜑 → 𝐹:𝐴⟶𝑆) | |
| 3 | 2 | ffnd 6712 | . 2 ⊢ (𝜑 → 𝐹 Fn 𝐴) |
| 4 | caofid0.3 | . . 3 ⊢ (𝜑 → 𝐵 ∈ 𝑊) | |
| 5 | fnconstg 6771 | . . 3 ⊢ (𝐵 ∈ 𝑊 → (𝐴 × {𝐵}) Fn 𝐴) | |
| 6 | 4, 5 | syl 17 | . 2 ⊢ (𝜑 → (𝐴 × {𝐵}) Fn 𝐴) |
| 7 | eqidd 2737 | . 2 ⊢ ((𝜑 ∧ 𝑤 ∈ 𝐴) → (𝐹‘𝑤) = (𝐹‘𝑤)) | |
| 8 | fvconst2g 7199 | . . 3 ⊢ ((𝐵 ∈ 𝑊 ∧ 𝑤 ∈ 𝐴) → ((𝐴 × {𝐵})‘𝑤) = 𝐵) | |
| 9 | 4, 8 | sylan 580 | . 2 ⊢ ((𝜑 ∧ 𝑤 ∈ 𝐴) → ((𝐴 × {𝐵})‘𝑤) = 𝐵) |
| 10 | caofid0r.5 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑆) → (𝑥𝑅𝐵) = 𝑥) | |
| 11 | 10 | ralrimiva 3133 | . . 3 ⊢ (𝜑 → ∀𝑥 ∈ 𝑆 (𝑥𝑅𝐵) = 𝑥) |
| 12 | 2 | ffvelcdmda 7079 | . . 3 ⊢ ((𝜑 ∧ 𝑤 ∈ 𝐴) → (𝐹‘𝑤) ∈ 𝑆) |
| 13 | oveq1 7417 | . . . . 5 ⊢ (𝑥 = (𝐹‘𝑤) → (𝑥𝑅𝐵) = ((𝐹‘𝑤)𝑅𝐵)) | |
| 14 | id 22 | . . . . 5 ⊢ (𝑥 = (𝐹‘𝑤) → 𝑥 = (𝐹‘𝑤)) | |
| 15 | 13, 14 | eqeq12d 2752 | . . . 4 ⊢ (𝑥 = (𝐹‘𝑤) → ((𝑥𝑅𝐵) = 𝑥 ↔ ((𝐹‘𝑤)𝑅𝐵) = (𝐹‘𝑤))) |
| 16 | 15 | rspccva 3605 | . . 3 ⊢ ((∀𝑥 ∈ 𝑆 (𝑥𝑅𝐵) = 𝑥 ∧ (𝐹‘𝑤) ∈ 𝑆) → ((𝐹‘𝑤)𝑅𝐵) = (𝐹‘𝑤)) |
| 17 | 11, 12, 16 | syl2an2r 685 | . 2 ⊢ ((𝜑 ∧ 𝑤 ∈ 𝐴) → ((𝐹‘𝑤)𝑅𝐵) = (𝐹‘𝑤)) |
| 18 | 1, 3, 6, 3, 7, 9, 17 | offveq 7702 | 1 ⊢ (𝜑 → (𝐹 ∘f 𝑅(𝐴 × {𝐵})) = 𝐹) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ∀wral 3052 {csn 4606 × cxp 5657 Fn wfn 6531 ⟶wf 6532 ‘cfv 6536 (class class class)co 7410 ∘f cof 7674 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2708 ax-rep 5254 ax-sep 5271 ax-nul 5281 ax-pr 5407 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2728 df-clel 2810 df-nfc 2886 df-ne 2934 df-ral 3053 df-rex 3062 df-reu 3365 df-rab 3421 df-v 3466 df-sbc 3771 df-csb 3880 df-dif 3934 df-un 3936 df-in 3938 df-ss 3948 df-nul 4314 df-if 4506 df-sn 4607 df-pr 4609 df-op 4613 df-uni 4889 df-iun 4974 df-br 5125 df-opab 5187 df-mpt 5207 df-id 5553 df-xp 5665 df-rel 5666 df-cnv 5667 df-co 5668 df-dm 5669 df-rn 5670 df-res 5671 df-ima 5672 df-iota 6489 df-fun 6538 df-fn 6539 df-f 6540 df-f1 6541 df-fo 6542 df-f1o 6543 df-fv 6544 df-ov 7413 df-oprab 7414 df-mpo 7415 df-of 7676 |
| This theorem is referenced by: mndvrid 18783 psrlidm 21927 psdmul 22109 lfl1sc 39107 |
| Copyright terms: Public domain | W3C validator |