Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > caofid0r | Structured version Visualization version GIF version |
Description: Transfer a right identity law to the function operation. (Contributed by NM, 21-Oct-2014.) |
Ref | Expression |
---|---|
caofref.1 | ⊢ (𝜑 → 𝐴 ∈ 𝑉) |
caofref.2 | ⊢ (𝜑 → 𝐹:𝐴⟶𝑆) |
caofid0.3 | ⊢ (𝜑 → 𝐵 ∈ 𝑊) |
caofid0r.5 | ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑆) → (𝑥𝑅𝐵) = 𝑥) |
Ref | Expression |
---|---|
caofid0r | ⊢ (𝜑 → (𝐹 ∘f 𝑅(𝐴 × {𝐵})) = 𝐹) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | caofref.1 | . 2 ⊢ (𝜑 → 𝐴 ∈ 𝑉) | |
2 | caofref.2 | . . 3 ⊢ (𝜑 → 𝐹:𝐴⟶𝑆) | |
3 | 2 | ffnd 6585 | . 2 ⊢ (𝜑 → 𝐹 Fn 𝐴) |
4 | caofid0.3 | . . 3 ⊢ (𝜑 → 𝐵 ∈ 𝑊) | |
5 | fnconstg 6646 | . . 3 ⊢ (𝐵 ∈ 𝑊 → (𝐴 × {𝐵}) Fn 𝐴) | |
6 | 4, 5 | syl 17 | . 2 ⊢ (𝜑 → (𝐴 × {𝐵}) Fn 𝐴) |
7 | eqidd 2739 | . 2 ⊢ ((𝜑 ∧ 𝑤 ∈ 𝐴) → (𝐹‘𝑤) = (𝐹‘𝑤)) | |
8 | fvconst2g 7059 | . . 3 ⊢ ((𝐵 ∈ 𝑊 ∧ 𝑤 ∈ 𝐴) → ((𝐴 × {𝐵})‘𝑤) = 𝐵) | |
9 | 4, 8 | sylan 579 | . 2 ⊢ ((𝜑 ∧ 𝑤 ∈ 𝐴) → ((𝐴 × {𝐵})‘𝑤) = 𝐵) |
10 | caofid0r.5 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑆) → (𝑥𝑅𝐵) = 𝑥) | |
11 | 10 | ralrimiva 3107 | . . 3 ⊢ (𝜑 → ∀𝑥 ∈ 𝑆 (𝑥𝑅𝐵) = 𝑥) |
12 | 2 | ffvelrnda 6943 | . . 3 ⊢ ((𝜑 ∧ 𝑤 ∈ 𝐴) → (𝐹‘𝑤) ∈ 𝑆) |
13 | oveq1 7262 | . . . . 5 ⊢ (𝑥 = (𝐹‘𝑤) → (𝑥𝑅𝐵) = ((𝐹‘𝑤)𝑅𝐵)) | |
14 | id 22 | . . . . 5 ⊢ (𝑥 = (𝐹‘𝑤) → 𝑥 = (𝐹‘𝑤)) | |
15 | 13, 14 | eqeq12d 2754 | . . . 4 ⊢ (𝑥 = (𝐹‘𝑤) → ((𝑥𝑅𝐵) = 𝑥 ↔ ((𝐹‘𝑤)𝑅𝐵) = (𝐹‘𝑤))) |
16 | 15 | rspccva 3551 | . . 3 ⊢ ((∀𝑥 ∈ 𝑆 (𝑥𝑅𝐵) = 𝑥 ∧ (𝐹‘𝑤) ∈ 𝑆) → ((𝐹‘𝑤)𝑅𝐵) = (𝐹‘𝑤)) |
17 | 11, 12, 16 | syl2an2r 681 | . 2 ⊢ ((𝜑 ∧ 𝑤 ∈ 𝐴) → ((𝐹‘𝑤)𝑅𝐵) = (𝐹‘𝑤)) |
18 | 1, 3, 6, 3, 7, 9, 17 | offveq 7535 | 1 ⊢ (𝜑 → (𝐹 ∘f 𝑅(𝐴 × {𝐵})) = 𝐹) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1539 ∈ wcel 2108 ∀wral 3063 {csn 4558 × cxp 5578 Fn wfn 6413 ⟶wf 6414 ‘cfv 6418 (class class class)co 7255 ∘f cof 7509 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-rep 5205 ax-sep 5218 ax-nul 5225 ax-pr 5347 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-ral 3068 df-rex 3069 df-reu 3070 df-rab 3072 df-v 3424 df-sbc 3712 df-csb 3829 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-nul 4254 df-if 4457 df-sn 4559 df-pr 4561 df-op 4565 df-uni 4837 df-iun 4923 df-br 5071 df-opab 5133 df-mpt 5154 df-id 5480 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-iota 6376 df-fun 6420 df-fn 6421 df-f 6422 df-f1 6423 df-fo 6424 df-f1o 6425 df-fv 6426 df-ov 7258 df-oprab 7259 df-mpo 7260 df-of 7511 |
This theorem is referenced by: psrlidm 21082 mndvrid 21453 lfl1sc 37025 |
Copyright terms: Public domain | W3C validator |