MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  caofid0r Structured version   Visualization version   GIF version

Theorem caofid0r 7701
Description: Transfer a right identity law to the function operation. (Contributed by NM, 21-Oct-2014.)
Hypotheses
Ref Expression
caofref.1 (𝜑𝐴𝑉)
caofref.2 (𝜑𝐹:𝐴𝑆)
caofid0.3 (𝜑𝐵𝑊)
caofid0r.5 ((𝜑𝑥𝑆) → (𝑥𝑅𝐵) = 𝑥)
Assertion
Ref Expression
caofid0r (𝜑 → (𝐹f 𝑅(𝐴 × {𝐵})) = 𝐹)
Distinct variable groups:   𝑥,𝐵   𝑥,𝐹   𝜑,𝑥   𝑥,𝑅   𝑥,𝑆
Allowed substitution hints:   𝐴(𝑥)   𝑉(𝑥)   𝑊(𝑥)

Proof of Theorem caofid0r
Dummy variable 𝑤 is distinct from all other variables.
StepHypRef Expression
1 caofref.1 . 2 (𝜑𝐴𝑉)
2 caofref.2 . . 3 (𝜑𝐹:𝐴𝑆)
32ffnd 6718 . 2 (𝜑𝐹 Fn 𝐴)
4 caofid0.3 . . 3 (𝜑𝐵𝑊)
5 fnconstg 6779 . . 3 (𝐵𝑊 → (𝐴 × {𝐵}) Fn 𝐴)
64, 5syl 17 . 2 (𝜑 → (𝐴 × {𝐵}) Fn 𝐴)
7 eqidd 2733 . 2 ((𝜑𝑤𝐴) → (𝐹𝑤) = (𝐹𝑤))
8 fvconst2g 7202 . . 3 ((𝐵𝑊𝑤𝐴) → ((𝐴 × {𝐵})‘𝑤) = 𝐵)
94, 8sylan 580 . 2 ((𝜑𝑤𝐴) → ((𝐴 × {𝐵})‘𝑤) = 𝐵)
10 caofid0r.5 . . . 4 ((𝜑𝑥𝑆) → (𝑥𝑅𝐵) = 𝑥)
1110ralrimiva 3146 . . 3 (𝜑 → ∀𝑥𝑆 (𝑥𝑅𝐵) = 𝑥)
122ffvelcdmda 7086 . . 3 ((𝜑𝑤𝐴) → (𝐹𝑤) ∈ 𝑆)
13 oveq1 7415 . . . . 5 (𝑥 = (𝐹𝑤) → (𝑥𝑅𝐵) = ((𝐹𝑤)𝑅𝐵))
14 id 22 . . . . 5 (𝑥 = (𝐹𝑤) → 𝑥 = (𝐹𝑤))
1513, 14eqeq12d 2748 . . . 4 (𝑥 = (𝐹𝑤) → ((𝑥𝑅𝐵) = 𝑥 ↔ ((𝐹𝑤)𝑅𝐵) = (𝐹𝑤)))
1615rspccva 3611 . . 3 ((∀𝑥𝑆 (𝑥𝑅𝐵) = 𝑥 ∧ (𝐹𝑤) ∈ 𝑆) → ((𝐹𝑤)𝑅𝐵) = (𝐹𝑤))
1711, 12, 16syl2an2r 683 . 2 ((𝜑𝑤𝐴) → ((𝐹𝑤)𝑅𝐵) = (𝐹𝑤))
181, 3, 6, 3, 7, 9, 17offveq 7693 1 (𝜑 → (𝐹f 𝑅(𝐴 × {𝐵})) = 𝐹)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396   = wceq 1541  wcel 2106  wral 3061  {csn 4628   × cxp 5674   Fn wfn 6538  wf 6539  cfv 6543  (class class class)co 7408  f cof 7667
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2703  ax-rep 5285  ax-sep 5299  ax-nul 5306  ax-pr 5427
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2534  df-eu 2563  df-clab 2710  df-cleq 2724  df-clel 2810  df-nfc 2885  df-ne 2941  df-ral 3062  df-rex 3071  df-reu 3377  df-rab 3433  df-v 3476  df-sbc 3778  df-csb 3894  df-dif 3951  df-un 3953  df-in 3955  df-ss 3965  df-nul 4323  df-if 4529  df-sn 4629  df-pr 4631  df-op 4635  df-uni 4909  df-iun 4999  df-br 5149  df-opab 5211  df-mpt 5232  df-id 5574  df-xp 5682  df-rel 5683  df-cnv 5684  df-co 5685  df-dm 5686  df-rn 5687  df-res 5688  df-ima 5689  df-iota 6495  df-fun 6545  df-fn 6546  df-f 6547  df-f1 6548  df-fo 6549  df-f1o 6550  df-fv 6551  df-ov 7411  df-oprab 7412  df-mpo 7413  df-of 7669
This theorem is referenced by:  psrlidm  21522  mndvrid  21895  lfl1sc  37949
  Copyright terms: Public domain W3C validator