MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  caofidlcan Structured version   Visualization version   GIF version

Theorem caofidlcan 7651
Description: Transfer a cancellation/identity law to the function operation. (Contributed by SN, 16-Oct-2025.)
Hypotheses
Ref Expression
caofref.1 (𝜑𝐴𝑉)
caofref.2 (𝜑𝐹:𝐴𝑆)
caofcom.3 (𝜑𝐺:𝐴𝑆)
caofidlcan.4 ((𝜑 ∧ (𝑥𝑆𝑦𝑆)) → ((𝑥𝑅𝑦) = 𝑦𝑥 = 0 ))
Assertion
Ref Expression
caofidlcan (𝜑 → ((𝐹f 𝑅𝐺) = 𝐺𝐹 = (𝐴 × { 0 })))
Distinct variable groups:   𝑥,𝑦,𝐹   𝑥,𝐺,𝑦   𝜑,𝑥,𝑦   𝑥,𝑅,𝑦   𝑥,𝑆,𝑦   𝑥, 0 ,𝑦
Allowed substitution hints:   𝐴(𝑥,𝑦)   𝑉(𝑥,𝑦)

Proof of Theorem caofidlcan
Dummy variable 𝑤 is distinct from all other variables.
StepHypRef Expression
1 caofref.2 . . . . . . 7 (𝜑𝐹:𝐴𝑆)
21ffvelcdmda 7018 . . . . . 6 ((𝜑𝑤𝐴) → (𝐹𝑤) ∈ 𝑆)
3 caofcom.3 . . . . . . 7 (𝜑𝐺:𝐴𝑆)
43ffvelcdmda 7018 . . . . . 6 ((𝜑𝑤𝐴) → (𝐺𝑤) ∈ 𝑆)
52, 4jca 511 . . . . 5 ((𝜑𝑤𝐴) → ((𝐹𝑤) ∈ 𝑆 ∧ (𝐺𝑤) ∈ 𝑆))
6 caofidlcan.4 . . . . . . 7 ((𝜑 ∧ (𝑥𝑆𝑦𝑆)) → ((𝑥𝑅𝑦) = 𝑦𝑥 = 0 ))
76ralrimivva 3172 . . . . . 6 (𝜑 → ∀𝑥𝑆𝑦𝑆 ((𝑥𝑅𝑦) = 𝑦𝑥 = 0 ))
8 oveq1 7356 . . . . . . . . 9 (𝑥 = (𝐹𝑤) → (𝑥𝑅𝑦) = ((𝐹𝑤)𝑅𝑦))
98eqeq1d 2731 . . . . . . . 8 (𝑥 = (𝐹𝑤) → ((𝑥𝑅𝑦) = 𝑦 ↔ ((𝐹𝑤)𝑅𝑦) = 𝑦))
10 eqeq1 2733 . . . . . . . 8 (𝑥 = (𝐹𝑤) → (𝑥 = 0 ↔ (𝐹𝑤) = 0 ))
119, 10bibi12d 345 . . . . . . 7 (𝑥 = (𝐹𝑤) → (((𝑥𝑅𝑦) = 𝑦𝑥 = 0 ) ↔ (((𝐹𝑤)𝑅𝑦) = 𝑦 ↔ (𝐹𝑤) = 0 )))
12 oveq2 7357 . . . . . . . . 9 (𝑦 = (𝐺𝑤) → ((𝐹𝑤)𝑅𝑦) = ((𝐹𝑤)𝑅(𝐺𝑤)))
13 id 22 . . . . . . . . 9 (𝑦 = (𝐺𝑤) → 𝑦 = (𝐺𝑤))
1412, 13eqeq12d 2745 . . . . . . . 8 (𝑦 = (𝐺𝑤) → (((𝐹𝑤)𝑅𝑦) = 𝑦 ↔ ((𝐹𝑤)𝑅(𝐺𝑤)) = (𝐺𝑤)))
1514bibi1d 343 . . . . . . 7 (𝑦 = (𝐺𝑤) → ((((𝐹𝑤)𝑅𝑦) = 𝑦 ↔ (𝐹𝑤) = 0 ) ↔ (((𝐹𝑤)𝑅(𝐺𝑤)) = (𝐺𝑤) ↔ (𝐹𝑤) = 0 )))
1611, 15rspc2v 3588 . . . . . 6 (((𝐹𝑤) ∈ 𝑆 ∧ (𝐺𝑤) ∈ 𝑆) → (∀𝑥𝑆𝑦𝑆 ((𝑥𝑅𝑦) = 𝑦𝑥 = 0 ) → (((𝐹𝑤)𝑅(𝐺𝑤)) = (𝐺𝑤) ↔ (𝐹𝑤) = 0 )))
177, 16mpan9 506 . . . . 5 ((𝜑 ∧ ((𝐹𝑤) ∈ 𝑆 ∧ (𝐺𝑤) ∈ 𝑆)) → (((𝐹𝑤)𝑅(𝐺𝑤)) = (𝐺𝑤) ↔ (𝐹𝑤) = 0 ))
185, 17syldan 591 . . . 4 ((𝜑𝑤𝐴) → (((𝐹𝑤)𝑅(𝐺𝑤)) = (𝐺𝑤) ↔ (𝐹𝑤) = 0 ))
1918ralbidva 3150 . . 3 (𝜑 → (∀𝑤𝐴 ((𝐹𝑤)𝑅(𝐺𝑤)) = (𝐺𝑤) ↔ ∀𝑤𝐴 (𝐹𝑤) = 0 ))
20 ovexd 7384 . . . . 5 ((𝜑𝑤𝐴) → ((𝐹𝑤)𝑅(𝐺𝑤)) ∈ V)
2120ralrimiva 3121 . . . 4 (𝜑 → ∀𝑤𝐴 ((𝐹𝑤)𝑅(𝐺𝑤)) ∈ V)
22 mpteqb 6949 . . . 4 (∀𝑤𝐴 ((𝐹𝑤)𝑅(𝐺𝑤)) ∈ V → ((𝑤𝐴 ↦ ((𝐹𝑤)𝑅(𝐺𝑤))) = (𝑤𝐴 ↦ (𝐺𝑤)) ↔ ∀𝑤𝐴 ((𝐹𝑤)𝑅(𝐺𝑤)) = (𝐺𝑤)))
2321, 22syl 17 . . 3 (𝜑 → ((𝑤𝐴 ↦ ((𝐹𝑤)𝑅(𝐺𝑤))) = (𝑤𝐴 ↦ (𝐺𝑤)) ↔ ∀𝑤𝐴 ((𝐹𝑤)𝑅(𝐺𝑤)) = (𝐺𝑤)))
242ralrimiva 3121 . . . 4 (𝜑 → ∀𝑤𝐴 (𝐹𝑤) ∈ 𝑆)
25 mpteqb 6949 . . . 4 (∀𝑤𝐴 (𝐹𝑤) ∈ 𝑆 → ((𝑤𝐴 ↦ (𝐹𝑤)) = (𝑤𝐴0 ) ↔ ∀𝑤𝐴 (𝐹𝑤) = 0 ))
2624, 25syl 17 . . 3 (𝜑 → ((𝑤𝐴 ↦ (𝐹𝑤)) = (𝑤𝐴0 ) ↔ ∀𝑤𝐴 (𝐹𝑤) = 0 ))
2719, 23, 263bitr4d 311 . 2 (𝜑 → ((𝑤𝐴 ↦ ((𝐹𝑤)𝑅(𝐺𝑤))) = (𝑤𝐴 ↦ (𝐺𝑤)) ↔ (𝑤𝐴 ↦ (𝐹𝑤)) = (𝑤𝐴0 )))
28 caofref.1 . . . 4 (𝜑𝐴𝑉)
291feqmptd 6891 . . . 4 (𝜑𝐹 = (𝑤𝐴 ↦ (𝐹𝑤)))
303feqmptd 6891 . . . 4 (𝜑𝐺 = (𝑤𝐴 ↦ (𝐺𝑤)))
3128, 2, 4, 29, 30offval2 7633 . . 3 (𝜑 → (𝐹f 𝑅𝐺) = (𝑤𝐴 ↦ ((𝐹𝑤)𝑅(𝐺𝑤))))
3231, 30eqeq12d 2745 . 2 (𝜑 → ((𝐹f 𝑅𝐺) = 𝐺 ↔ (𝑤𝐴 ↦ ((𝐹𝑤)𝑅(𝐺𝑤))) = (𝑤𝐴 ↦ (𝐺𝑤))))
33 fconstmpt 5681 . . . 4 (𝐴 × { 0 }) = (𝑤𝐴0 )
3433a1i 11 . . 3 (𝜑 → (𝐴 × { 0 }) = (𝑤𝐴0 ))
3529, 34eqeq12d 2745 . 2 (𝜑 → (𝐹 = (𝐴 × { 0 }) ↔ (𝑤𝐴 ↦ (𝐹𝑤)) = (𝑤𝐴0 )))
3627, 32, 353bitr4d 311 1 (𝜑 → ((𝐹f 𝑅𝐺) = 𝐺𝐹 = (𝐴 × { 0 })))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wcel 2109  wral 3044  Vcvv 3436  {csn 4577  cmpt 5173   × cxp 5617  wf 6478  cfv 6482  (class class class)co 7349  f cof 7611
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5218  ax-sep 5235  ax-nul 5245  ax-pr 5371
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-reu 3344  df-rab 3395  df-v 3438  df-sbc 3743  df-csb 3852  df-dif 3906  df-un 3908  df-in 3910  df-ss 3920  df-nul 4285  df-if 4477  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4859  df-iun 4943  df-br 5093  df-opab 5155  df-mpt 5174  df-id 5514  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-iota 6438  df-fun 6484  df-fn 6485  df-f 6486  df-f1 6487  df-fo 6488  df-f1o 6489  df-fv 6490  df-ov 7352  df-oprab 7353  df-mpo 7354  df-of 7613
This theorem is referenced by:  psdmvr  22054
  Copyright terms: Public domain W3C validator