MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  caofidlcan Structured version   Visualization version   GIF version

Theorem caofidlcan 7735
Description: Transfer a cancellation/identity law to the function operation. (Contributed by SN, 16-Oct-2025.)
Hypotheses
Ref Expression
caofref.1 (𝜑𝐴𝑉)
caofref.2 (𝜑𝐹:𝐴𝑆)
caofcom.3 (𝜑𝐺:𝐴𝑆)
caofidlcan.4 ((𝜑 ∧ (𝑥𝑆𝑦𝑆)) → ((𝑥𝑅𝑦) = 𝑦𝑥 = 0 ))
Assertion
Ref Expression
caofidlcan (𝜑 → ((𝐹f 𝑅𝐺) = 𝐺𝐹 = (𝐴 × { 0 })))
Distinct variable groups:   𝑥,𝑦,𝐹   𝑥,𝐺,𝑦   𝜑,𝑥,𝑦   𝑥,𝑅,𝑦   𝑥,𝑆,𝑦   𝑥, 0 ,𝑦
Allowed substitution hints:   𝐴(𝑥,𝑦)   𝑉(𝑥,𝑦)

Proof of Theorem caofidlcan
Dummy variable 𝑤 is distinct from all other variables.
StepHypRef Expression
1 caofref.2 . . . . . . 7 (𝜑𝐹:𝐴𝑆)
21ffvelcdmda 7104 . . . . . 6 ((𝜑𝑤𝐴) → (𝐹𝑤) ∈ 𝑆)
3 caofcom.3 . . . . . . 7 (𝜑𝐺:𝐴𝑆)
43ffvelcdmda 7104 . . . . . 6 ((𝜑𝑤𝐴) → (𝐺𝑤) ∈ 𝑆)
52, 4jca 511 . . . . 5 ((𝜑𝑤𝐴) → ((𝐹𝑤) ∈ 𝑆 ∧ (𝐺𝑤) ∈ 𝑆))
6 caofidlcan.4 . . . . . . 7 ((𝜑 ∧ (𝑥𝑆𝑦𝑆)) → ((𝑥𝑅𝑦) = 𝑦𝑥 = 0 ))
76ralrimivva 3202 . . . . . 6 (𝜑 → ∀𝑥𝑆𝑦𝑆 ((𝑥𝑅𝑦) = 𝑦𝑥 = 0 ))
8 oveq1 7438 . . . . . . . . 9 (𝑥 = (𝐹𝑤) → (𝑥𝑅𝑦) = ((𝐹𝑤)𝑅𝑦))
98eqeq1d 2739 . . . . . . . 8 (𝑥 = (𝐹𝑤) → ((𝑥𝑅𝑦) = 𝑦 ↔ ((𝐹𝑤)𝑅𝑦) = 𝑦))
10 eqeq1 2741 . . . . . . . 8 (𝑥 = (𝐹𝑤) → (𝑥 = 0 ↔ (𝐹𝑤) = 0 ))
119, 10bibi12d 345 . . . . . . 7 (𝑥 = (𝐹𝑤) → (((𝑥𝑅𝑦) = 𝑦𝑥 = 0 ) ↔ (((𝐹𝑤)𝑅𝑦) = 𝑦 ↔ (𝐹𝑤) = 0 )))
12 oveq2 7439 . . . . . . . . 9 (𝑦 = (𝐺𝑤) → ((𝐹𝑤)𝑅𝑦) = ((𝐹𝑤)𝑅(𝐺𝑤)))
13 id 22 . . . . . . . . 9 (𝑦 = (𝐺𝑤) → 𝑦 = (𝐺𝑤))
1412, 13eqeq12d 2753 . . . . . . . 8 (𝑦 = (𝐺𝑤) → (((𝐹𝑤)𝑅𝑦) = 𝑦 ↔ ((𝐹𝑤)𝑅(𝐺𝑤)) = (𝐺𝑤)))
1514bibi1d 343 . . . . . . 7 (𝑦 = (𝐺𝑤) → ((((𝐹𝑤)𝑅𝑦) = 𝑦 ↔ (𝐹𝑤) = 0 ) ↔ (((𝐹𝑤)𝑅(𝐺𝑤)) = (𝐺𝑤) ↔ (𝐹𝑤) = 0 )))
1611, 15rspc2v 3633 . . . . . 6 (((𝐹𝑤) ∈ 𝑆 ∧ (𝐺𝑤) ∈ 𝑆) → (∀𝑥𝑆𝑦𝑆 ((𝑥𝑅𝑦) = 𝑦𝑥 = 0 ) → (((𝐹𝑤)𝑅(𝐺𝑤)) = (𝐺𝑤) ↔ (𝐹𝑤) = 0 )))
177, 16mpan9 506 . . . . 5 ((𝜑 ∧ ((𝐹𝑤) ∈ 𝑆 ∧ (𝐺𝑤) ∈ 𝑆)) → (((𝐹𝑤)𝑅(𝐺𝑤)) = (𝐺𝑤) ↔ (𝐹𝑤) = 0 ))
185, 17syldan 591 . . . 4 ((𝜑𝑤𝐴) → (((𝐹𝑤)𝑅(𝐺𝑤)) = (𝐺𝑤) ↔ (𝐹𝑤) = 0 ))
1918ralbidva 3176 . . 3 (𝜑 → (∀𝑤𝐴 ((𝐹𝑤)𝑅(𝐺𝑤)) = (𝐺𝑤) ↔ ∀𝑤𝐴 (𝐹𝑤) = 0 ))
20 ovexd 7466 . . . . 5 ((𝜑𝑤𝐴) → ((𝐹𝑤)𝑅(𝐺𝑤)) ∈ V)
2120ralrimiva 3146 . . . 4 (𝜑 → ∀𝑤𝐴 ((𝐹𝑤)𝑅(𝐺𝑤)) ∈ V)
22 mpteqb 7035 . . . 4 (∀𝑤𝐴 ((𝐹𝑤)𝑅(𝐺𝑤)) ∈ V → ((𝑤𝐴 ↦ ((𝐹𝑤)𝑅(𝐺𝑤))) = (𝑤𝐴 ↦ (𝐺𝑤)) ↔ ∀𝑤𝐴 ((𝐹𝑤)𝑅(𝐺𝑤)) = (𝐺𝑤)))
2321, 22syl 17 . . 3 (𝜑 → ((𝑤𝐴 ↦ ((𝐹𝑤)𝑅(𝐺𝑤))) = (𝑤𝐴 ↦ (𝐺𝑤)) ↔ ∀𝑤𝐴 ((𝐹𝑤)𝑅(𝐺𝑤)) = (𝐺𝑤)))
242ralrimiva 3146 . . . 4 (𝜑 → ∀𝑤𝐴 (𝐹𝑤) ∈ 𝑆)
25 mpteqb 7035 . . . 4 (∀𝑤𝐴 (𝐹𝑤) ∈ 𝑆 → ((𝑤𝐴 ↦ (𝐹𝑤)) = (𝑤𝐴0 ) ↔ ∀𝑤𝐴 (𝐹𝑤) = 0 ))
2624, 25syl 17 . . 3 (𝜑 → ((𝑤𝐴 ↦ (𝐹𝑤)) = (𝑤𝐴0 ) ↔ ∀𝑤𝐴 (𝐹𝑤) = 0 ))
2719, 23, 263bitr4d 311 . 2 (𝜑 → ((𝑤𝐴 ↦ ((𝐹𝑤)𝑅(𝐺𝑤))) = (𝑤𝐴 ↦ (𝐺𝑤)) ↔ (𝑤𝐴 ↦ (𝐹𝑤)) = (𝑤𝐴0 )))
28 caofref.1 . . . 4 (𝜑𝐴𝑉)
291feqmptd 6977 . . . 4 (𝜑𝐹 = (𝑤𝐴 ↦ (𝐹𝑤)))
303feqmptd 6977 . . . 4 (𝜑𝐺 = (𝑤𝐴 ↦ (𝐺𝑤)))
3128, 2, 4, 29, 30offval2 7717 . . 3 (𝜑 → (𝐹f 𝑅𝐺) = (𝑤𝐴 ↦ ((𝐹𝑤)𝑅(𝐺𝑤))))
3231, 30eqeq12d 2753 . 2 (𝜑 → ((𝐹f 𝑅𝐺) = 𝐺 ↔ (𝑤𝐴 ↦ ((𝐹𝑤)𝑅(𝐺𝑤))) = (𝑤𝐴 ↦ (𝐺𝑤))))
33 fconstmpt 5747 . . . 4 (𝐴 × { 0 }) = (𝑤𝐴0 )
3433a1i 11 . . 3 (𝜑 → (𝐴 × { 0 }) = (𝑤𝐴0 ))
3529, 34eqeq12d 2753 . 2 (𝜑 → (𝐹 = (𝐴 × { 0 }) ↔ (𝑤𝐴 ↦ (𝐹𝑤)) = (𝑤𝐴0 )))
3627, 32, 353bitr4d 311 1 (𝜑 → ((𝐹f 𝑅𝐺) = 𝐺𝐹 = (𝐴 × { 0 })))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wcel 2108  wral 3061  Vcvv 3480  {csn 4626  cmpt 5225   × cxp 5683  wf 6557  cfv 6561  (class class class)co 7431  f cof 7695
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2708  ax-rep 5279  ax-sep 5296  ax-nul 5306  ax-pr 5432
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3an 1089  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2892  df-ne 2941  df-ral 3062  df-rex 3071  df-reu 3381  df-rab 3437  df-v 3482  df-sbc 3789  df-csb 3900  df-dif 3954  df-un 3956  df-in 3958  df-ss 3968  df-nul 4334  df-if 4526  df-sn 4627  df-pr 4629  df-op 4633  df-uni 4908  df-iun 4993  df-br 5144  df-opab 5206  df-mpt 5226  df-id 5578  df-xp 5691  df-rel 5692  df-cnv 5693  df-co 5694  df-dm 5695  df-rn 5696  df-res 5697  df-ima 5698  df-iota 6514  df-fun 6563  df-fn 6564  df-f 6565  df-f1 6566  df-fo 6567  df-f1o 6568  df-fv 6569  df-ov 7434  df-oprab 7435  df-mpo 7436  df-of 7697
This theorem is referenced by:  psdmvr  22173
  Copyright terms: Public domain W3C validator