MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  caofidlcan Structured version   Visualization version   GIF version

Theorem caofidlcan 7707
Description: Transfer a cancellation/identity law to the function operation. (Contributed by SN, 16-Oct-2025.)
Hypotheses
Ref Expression
caofref.1 (𝜑𝐴𝑉)
caofref.2 (𝜑𝐹:𝐴𝑆)
caofcom.3 (𝜑𝐺:𝐴𝑆)
caofidlcan.4 ((𝜑 ∧ (𝑥𝑆𝑦𝑆)) → ((𝑥𝑅𝑦) = 𝑦𝑥 = 0 ))
Assertion
Ref Expression
caofidlcan (𝜑 → ((𝐹f 𝑅𝐺) = 𝐺𝐹 = (𝐴 × { 0 })))
Distinct variable groups:   𝑥,𝑦,𝐹   𝑥,𝐺,𝑦   𝜑,𝑥,𝑦   𝑥,𝑅,𝑦   𝑥,𝑆,𝑦   𝑥, 0 ,𝑦
Allowed substitution hints:   𝐴(𝑥,𝑦)   𝑉(𝑥,𝑦)

Proof of Theorem caofidlcan
Dummy variable 𝑤 is distinct from all other variables.
StepHypRef Expression
1 caofref.2 . . . . . . 7 (𝜑𝐹:𝐴𝑆)
21ffvelcdmda 7073 . . . . . 6 ((𝜑𝑤𝐴) → (𝐹𝑤) ∈ 𝑆)
3 caofcom.3 . . . . . . 7 (𝜑𝐺:𝐴𝑆)
43ffvelcdmda 7073 . . . . . 6 ((𝜑𝑤𝐴) → (𝐺𝑤) ∈ 𝑆)
52, 4jca 511 . . . . 5 ((𝜑𝑤𝐴) → ((𝐹𝑤) ∈ 𝑆 ∧ (𝐺𝑤) ∈ 𝑆))
6 caofidlcan.4 . . . . . . 7 ((𝜑 ∧ (𝑥𝑆𝑦𝑆)) → ((𝑥𝑅𝑦) = 𝑦𝑥 = 0 ))
76ralrimivva 3187 . . . . . 6 (𝜑 → ∀𝑥𝑆𝑦𝑆 ((𝑥𝑅𝑦) = 𝑦𝑥 = 0 ))
8 oveq1 7410 . . . . . . . . 9 (𝑥 = (𝐹𝑤) → (𝑥𝑅𝑦) = ((𝐹𝑤)𝑅𝑦))
98eqeq1d 2737 . . . . . . . 8 (𝑥 = (𝐹𝑤) → ((𝑥𝑅𝑦) = 𝑦 ↔ ((𝐹𝑤)𝑅𝑦) = 𝑦))
10 eqeq1 2739 . . . . . . . 8 (𝑥 = (𝐹𝑤) → (𝑥 = 0 ↔ (𝐹𝑤) = 0 ))
119, 10bibi12d 345 . . . . . . 7 (𝑥 = (𝐹𝑤) → (((𝑥𝑅𝑦) = 𝑦𝑥 = 0 ) ↔ (((𝐹𝑤)𝑅𝑦) = 𝑦 ↔ (𝐹𝑤) = 0 )))
12 oveq2 7411 . . . . . . . . 9 (𝑦 = (𝐺𝑤) → ((𝐹𝑤)𝑅𝑦) = ((𝐹𝑤)𝑅(𝐺𝑤)))
13 id 22 . . . . . . . . 9 (𝑦 = (𝐺𝑤) → 𝑦 = (𝐺𝑤))
1412, 13eqeq12d 2751 . . . . . . . 8 (𝑦 = (𝐺𝑤) → (((𝐹𝑤)𝑅𝑦) = 𝑦 ↔ ((𝐹𝑤)𝑅(𝐺𝑤)) = (𝐺𝑤)))
1514bibi1d 343 . . . . . . 7 (𝑦 = (𝐺𝑤) → ((((𝐹𝑤)𝑅𝑦) = 𝑦 ↔ (𝐹𝑤) = 0 ) ↔ (((𝐹𝑤)𝑅(𝐺𝑤)) = (𝐺𝑤) ↔ (𝐹𝑤) = 0 )))
1611, 15rspc2v 3612 . . . . . 6 (((𝐹𝑤) ∈ 𝑆 ∧ (𝐺𝑤) ∈ 𝑆) → (∀𝑥𝑆𝑦𝑆 ((𝑥𝑅𝑦) = 𝑦𝑥 = 0 ) → (((𝐹𝑤)𝑅(𝐺𝑤)) = (𝐺𝑤) ↔ (𝐹𝑤) = 0 )))
177, 16mpan9 506 . . . . 5 ((𝜑 ∧ ((𝐹𝑤) ∈ 𝑆 ∧ (𝐺𝑤) ∈ 𝑆)) → (((𝐹𝑤)𝑅(𝐺𝑤)) = (𝐺𝑤) ↔ (𝐹𝑤) = 0 ))
185, 17syldan 591 . . . 4 ((𝜑𝑤𝐴) → (((𝐹𝑤)𝑅(𝐺𝑤)) = (𝐺𝑤) ↔ (𝐹𝑤) = 0 ))
1918ralbidva 3161 . . 3 (𝜑 → (∀𝑤𝐴 ((𝐹𝑤)𝑅(𝐺𝑤)) = (𝐺𝑤) ↔ ∀𝑤𝐴 (𝐹𝑤) = 0 ))
20 ovexd 7438 . . . . 5 ((𝜑𝑤𝐴) → ((𝐹𝑤)𝑅(𝐺𝑤)) ∈ V)
2120ralrimiva 3132 . . . 4 (𝜑 → ∀𝑤𝐴 ((𝐹𝑤)𝑅(𝐺𝑤)) ∈ V)
22 mpteqb 7004 . . . 4 (∀𝑤𝐴 ((𝐹𝑤)𝑅(𝐺𝑤)) ∈ V → ((𝑤𝐴 ↦ ((𝐹𝑤)𝑅(𝐺𝑤))) = (𝑤𝐴 ↦ (𝐺𝑤)) ↔ ∀𝑤𝐴 ((𝐹𝑤)𝑅(𝐺𝑤)) = (𝐺𝑤)))
2321, 22syl 17 . . 3 (𝜑 → ((𝑤𝐴 ↦ ((𝐹𝑤)𝑅(𝐺𝑤))) = (𝑤𝐴 ↦ (𝐺𝑤)) ↔ ∀𝑤𝐴 ((𝐹𝑤)𝑅(𝐺𝑤)) = (𝐺𝑤)))
242ralrimiva 3132 . . . 4 (𝜑 → ∀𝑤𝐴 (𝐹𝑤) ∈ 𝑆)
25 mpteqb 7004 . . . 4 (∀𝑤𝐴 (𝐹𝑤) ∈ 𝑆 → ((𝑤𝐴 ↦ (𝐹𝑤)) = (𝑤𝐴0 ) ↔ ∀𝑤𝐴 (𝐹𝑤) = 0 ))
2624, 25syl 17 . . 3 (𝜑 → ((𝑤𝐴 ↦ (𝐹𝑤)) = (𝑤𝐴0 ) ↔ ∀𝑤𝐴 (𝐹𝑤) = 0 ))
2719, 23, 263bitr4d 311 . 2 (𝜑 → ((𝑤𝐴 ↦ ((𝐹𝑤)𝑅(𝐺𝑤))) = (𝑤𝐴 ↦ (𝐺𝑤)) ↔ (𝑤𝐴 ↦ (𝐹𝑤)) = (𝑤𝐴0 )))
28 caofref.1 . . . 4 (𝜑𝐴𝑉)
291feqmptd 6946 . . . 4 (𝜑𝐹 = (𝑤𝐴 ↦ (𝐹𝑤)))
303feqmptd 6946 . . . 4 (𝜑𝐺 = (𝑤𝐴 ↦ (𝐺𝑤)))
3128, 2, 4, 29, 30offval2 7689 . . 3 (𝜑 → (𝐹f 𝑅𝐺) = (𝑤𝐴 ↦ ((𝐹𝑤)𝑅(𝐺𝑤))))
3231, 30eqeq12d 2751 . 2 (𝜑 → ((𝐹f 𝑅𝐺) = 𝐺 ↔ (𝑤𝐴 ↦ ((𝐹𝑤)𝑅(𝐺𝑤))) = (𝑤𝐴 ↦ (𝐺𝑤))))
33 fconstmpt 5716 . . . 4 (𝐴 × { 0 }) = (𝑤𝐴0 )
3433a1i 11 . . 3 (𝜑 → (𝐴 × { 0 }) = (𝑤𝐴0 ))
3529, 34eqeq12d 2751 . 2 (𝜑 → (𝐹 = (𝐴 × { 0 }) ↔ (𝑤𝐴 ↦ (𝐹𝑤)) = (𝑤𝐴0 )))
3627, 32, 353bitr4d 311 1 (𝜑 → ((𝐹f 𝑅𝐺) = 𝐺𝐹 = (𝐴 × { 0 })))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wcel 2108  wral 3051  Vcvv 3459  {csn 4601  cmpt 5201   × cxp 5652  wf 6526  cfv 6530  (class class class)co 7403  f cof 7667
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2707  ax-rep 5249  ax-sep 5266  ax-nul 5276  ax-pr 5402
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2727  df-clel 2809  df-nfc 2885  df-ne 2933  df-ral 3052  df-rex 3061  df-reu 3360  df-rab 3416  df-v 3461  df-sbc 3766  df-csb 3875  df-dif 3929  df-un 3931  df-in 3933  df-ss 3943  df-nul 4309  df-if 4501  df-sn 4602  df-pr 4604  df-op 4608  df-uni 4884  df-iun 4969  df-br 5120  df-opab 5182  df-mpt 5202  df-id 5548  df-xp 5660  df-rel 5661  df-cnv 5662  df-co 5663  df-dm 5664  df-rn 5665  df-res 5666  df-ima 5667  df-iota 6483  df-fun 6532  df-fn 6533  df-f 6534  df-f1 6535  df-fo 6536  df-f1o 6537  df-fv 6538  df-ov 7406  df-oprab 7407  df-mpo 7408  df-of 7669
This theorem is referenced by:  psdmvr  22105
  Copyright terms: Public domain W3C validator