| Step | Hyp | Ref
| Expression |
| 1 | | caofref.2 |
. . . . . . 7
⊢ (𝜑 → 𝐹:𝐴⟶𝑆) |
| 2 | 1 | ffvelcdmda 7104 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑤 ∈ 𝐴) → (𝐹‘𝑤) ∈ 𝑆) |
| 3 | | caofcom.3 |
. . . . . . 7
⊢ (𝜑 → 𝐺:𝐴⟶𝑆) |
| 4 | 3 | ffvelcdmda 7104 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑤 ∈ 𝐴) → (𝐺‘𝑤) ∈ 𝑆) |
| 5 | 2, 4 | jca 511 |
. . . . 5
⊢ ((𝜑 ∧ 𝑤 ∈ 𝐴) → ((𝐹‘𝑤) ∈ 𝑆 ∧ (𝐺‘𝑤) ∈ 𝑆)) |
| 6 | | caofidlcan.4 |
. . . . . . 7
⊢ ((𝜑 ∧ (𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆)) → ((𝑥𝑅𝑦) = 𝑦 ↔ 𝑥 = 0 )) |
| 7 | 6 | ralrimivva 3202 |
. . . . . 6
⊢ (𝜑 → ∀𝑥 ∈ 𝑆 ∀𝑦 ∈ 𝑆 ((𝑥𝑅𝑦) = 𝑦 ↔ 𝑥 = 0 )) |
| 8 | | oveq1 7438 |
. . . . . . . . 9
⊢ (𝑥 = (𝐹‘𝑤) → (𝑥𝑅𝑦) = ((𝐹‘𝑤)𝑅𝑦)) |
| 9 | 8 | eqeq1d 2739 |
. . . . . . . 8
⊢ (𝑥 = (𝐹‘𝑤) → ((𝑥𝑅𝑦) = 𝑦 ↔ ((𝐹‘𝑤)𝑅𝑦) = 𝑦)) |
| 10 | | eqeq1 2741 |
. . . . . . . 8
⊢ (𝑥 = (𝐹‘𝑤) → (𝑥 = 0 ↔ (𝐹‘𝑤) = 0 )) |
| 11 | 9, 10 | bibi12d 345 |
. . . . . . 7
⊢ (𝑥 = (𝐹‘𝑤) → (((𝑥𝑅𝑦) = 𝑦 ↔ 𝑥 = 0 ) ↔ (((𝐹‘𝑤)𝑅𝑦) = 𝑦 ↔ (𝐹‘𝑤) = 0 ))) |
| 12 | | oveq2 7439 |
. . . . . . . . 9
⊢ (𝑦 = (𝐺‘𝑤) → ((𝐹‘𝑤)𝑅𝑦) = ((𝐹‘𝑤)𝑅(𝐺‘𝑤))) |
| 13 | | id 22 |
. . . . . . . . 9
⊢ (𝑦 = (𝐺‘𝑤) → 𝑦 = (𝐺‘𝑤)) |
| 14 | 12, 13 | eqeq12d 2753 |
. . . . . . . 8
⊢ (𝑦 = (𝐺‘𝑤) → (((𝐹‘𝑤)𝑅𝑦) = 𝑦 ↔ ((𝐹‘𝑤)𝑅(𝐺‘𝑤)) = (𝐺‘𝑤))) |
| 15 | 14 | bibi1d 343 |
. . . . . . 7
⊢ (𝑦 = (𝐺‘𝑤) → ((((𝐹‘𝑤)𝑅𝑦) = 𝑦 ↔ (𝐹‘𝑤) = 0 ) ↔ (((𝐹‘𝑤)𝑅(𝐺‘𝑤)) = (𝐺‘𝑤) ↔ (𝐹‘𝑤) = 0 ))) |
| 16 | 11, 15 | rspc2v 3633 |
. . . . . 6
⊢ (((𝐹‘𝑤) ∈ 𝑆 ∧ (𝐺‘𝑤) ∈ 𝑆) → (∀𝑥 ∈ 𝑆 ∀𝑦 ∈ 𝑆 ((𝑥𝑅𝑦) = 𝑦 ↔ 𝑥 = 0 ) → (((𝐹‘𝑤)𝑅(𝐺‘𝑤)) = (𝐺‘𝑤) ↔ (𝐹‘𝑤) = 0 ))) |
| 17 | 7, 16 | mpan9 506 |
. . . . 5
⊢ ((𝜑 ∧ ((𝐹‘𝑤) ∈ 𝑆 ∧ (𝐺‘𝑤) ∈ 𝑆)) → (((𝐹‘𝑤)𝑅(𝐺‘𝑤)) = (𝐺‘𝑤) ↔ (𝐹‘𝑤) = 0 )) |
| 18 | 5, 17 | syldan 591 |
. . . 4
⊢ ((𝜑 ∧ 𝑤 ∈ 𝐴) → (((𝐹‘𝑤)𝑅(𝐺‘𝑤)) = (𝐺‘𝑤) ↔ (𝐹‘𝑤) = 0 )) |
| 19 | 18 | ralbidva 3176 |
. . 3
⊢ (𝜑 → (∀𝑤 ∈ 𝐴 ((𝐹‘𝑤)𝑅(𝐺‘𝑤)) = (𝐺‘𝑤) ↔ ∀𝑤 ∈ 𝐴 (𝐹‘𝑤) = 0 )) |
| 20 | | ovexd 7466 |
. . . . 5
⊢ ((𝜑 ∧ 𝑤 ∈ 𝐴) → ((𝐹‘𝑤)𝑅(𝐺‘𝑤)) ∈ V) |
| 21 | 20 | ralrimiva 3146 |
. . . 4
⊢ (𝜑 → ∀𝑤 ∈ 𝐴 ((𝐹‘𝑤)𝑅(𝐺‘𝑤)) ∈ V) |
| 22 | | mpteqb 7035 |
. . . 4
⊢
(∀𝑤 ∈
𝐴 ((𝐹‘𝑤)𝑅(𝐺‘𝑤)) ∈ V → ((𝑤 ∈ 𝐴 ↦ ((𝐹‘𝑤)𝑅(𝐺‘𝑤))) = (𝑤 ∈ 𝐴 ↦ (𝐺‘𝑤)) ↔ ∀𝑤 ∈ 𝐴 ((𝐹‘𝑤)𝑅(𝐺‘𝑤)) = (𝐺‘𝑤))) |
| 23 | 21, 22 | syl 17 |
. . 3
⊢ (𝜑 → ((𝑤 ∈ 𝐴 ↦ ((𝐹‘𝑤)𝑅(𝐺‘𝑤))) = (𝑤 ∈ 𝐴 ↦ (𝐺‘𝑤)) ↔ ∀𝑤 ∈ 𝐴 ((𝐹‘𝑤)𝑅(𝐺‘𝑤)) = (𝐺‘𝑤))) |
| 24 | 2 | ralrimiva 3146 |
. . . 4
⊢ (𝜑 → ∀𝑤 ∈ 𝐴 (𝐹‘𝑤) ∈ 𝑆) |
| 25 | | mpteqb 7035 |
. . . 4
⊢
(∀𝑤 ∈
𝐴 (𝐹‘𝑤) ∈ 𝑆 → ((𝑤 ∈ 𝐴 ↦ (𝐹‘𝑤)) = (𝑤 ∈ 𝐴 ↦ 0 ) ↔ ∀𝑤 ∈ 𝐴 (𝐹‘𝑤) = 0 )) |
| 26 | 24, 25 | syl 17 |
. . 3
⊢ (𝜑 → ((𝑤 ∈ 𝐴 ↦ (𝐹‘𝑤)) = (𝑤 ∈ 𝐴 ↦ 0 ) ↔ ∀𝑤 ∈ 𝐴 (𝐹‘𝑤) = 0 )) |
| 27 | 19, 23, 26 | 3bitr4d 311 |
. 2
⊢ (𝜑 → ((𝑤 ∈ 𝐴 ↦ ((𝐹‘𝑤)𝑅(𝐺‘𝑤))) = (𝑤 ∈ 𝐴 ↦ (𝐺‘𝑤)) ↔ (𝑤 ∈ 𝐴 ↦ (𝐹‘𝑤)) = (𝑤 ∈ 𝐴 ↦ 0 ))) |
| 28 | | caofref.1 |
. . . 4
⊢ (𝜑 → 𝐴 ∈ 𝑉) |
| 29 | 1 | feqmptd 6977 |
. . . 4
⊢ (𝜑 → 𝐹 = (𝑤 ∈ 𝐴 ↦ (𝐹‘𝑤))) |
| 30 | 3 | feqmptd 6977 |
. . . 4
⊢ (𝜑 → 𝐺 = (𝑤 ∈ 𝐴 ↦ (𝐺‘𝑤))) |
| 31 | 28, 2, 4, 29, 30 | offval2 7717 |
. . 3
⊢ (𝜑 → (𝐹 ∘f 𝑅𝐺) = (𝑤 ∈ 𝐴 ↦ ((𝐹‘𝑤)𝑅(𝐺‘𝑤)))) |
| 32 | 31, 30 | eqeq12d 2753 |
. 2
⊢ (𝜑 → ((𝐹 ∘f 𝑅𝐺) = 𝐺 ↔ (𝑤 ∈ 𝐴 ↦ ((𝐹‘𝑤)𝑅(𝐺‘𝑤))) = (𝑤 ∈ 𝐴 ↦ (𝐺‘𝑤)))) |
| 33 | | fconstmpt 5747 |
. . . 4
⊢ (𝐴 × { 0 }) = (𝑤 ∈ 𝐴 ↦ 0 ) |
| 34 | 33 | a1i 11 |
. . 3
⊢ (𝜑 → (𝐴 × { 0 }) = (𝑤 ∈ 𝐴 ↦ 0 )) |
| 35 | 29, 34 | eqeq12d 2753 |
. 2
⊢ (𝜑 → (𝐹 = (𝐴 × { 0 }) ↔ (𝑤 ∈ 𝐴 ↦ (𝐹‘𝑤)) = (𝑤 ∈ 𝐴 ↦ 0 ))) |
| 36 | 27, 32, 35 | 3bitr4d 311 |
1
⊢ (𝜑 → ((𝐹 ∘f 𝑅𝐺) = 𝐺 ↔ 𝐹 = (𝐴 × { 0 }))) |