Step | Hyp | Ref
| Expression |
1 | | caoftrn.5 |
. . . . . 6
⊢ ((𝜑 ∧ (𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆 ∧ 𝑧 ∈ 𝑆)) → ((𝑥𝑅𝑦 ∧ 𝑦𝑇𝑧) → 𝑥𝑈𝑧)) |
2 | 1 | ralrimivvva 3115 |
. . . . 5
⊢ (𝜑 → ∀𝑥 ∈ 𝑆 ∀𝑦 ∈ 𝑆 ∀𝑧 ∈ 𝑆 ((𝑥𝑅𝑦 ∧ 𝑦𝑇𝑧) → 𝑥𝑈𝑧)) |
3 | 2 | adantr 480 |
. . . 4
⊢ ((𝜑 ∧ 𝑤 ∈ 𝐴) → ∀𝑥 ∈ 𝑆 ∀𝑦 ∈ 𝑆 ∀𝑧 ∈ 𝑆 ((𝑥𝑅𝑦 ∧ 𝑦𝑇𝑧) → 𝑥𝑈𝑧)) |
4 | | caofref.2 |
. . . . . 6
⊢ (𝜑 → 𝐹:𝐴⟶𝑆) |
5 | 4 | ffvelrnda 6943 |
. . . . 5
⊢ ((𝜑 ∧ 𝑤 ∈ 𝐴) → (𝐹‘𝑤) ∈ 𝑆) |
6 | | caofcom.3 |
. . . . . 6
⊢ (𝜑 → 𝐺:𝐴⟶𝑆) |
7 | 6 | ffvelrnda 6943 |
. . . . 5
⊢ ((𝜑 ∧ 𝑤 ∈ 𝐴) → (𝐺‘𝑤) ∈ 𝑆) |
8 | | caofass.4 |
. . . . . 6
⊢ (𝜑 → 𝐻:𝐴⟶𝑆) |
9 | 8 | ffvelrnda 6943 |
. . . . 5
⊢ ((𝜑 ∧ 𝑤 ∈ 𝐴) → (𝐻‘𝑤) ∈ 𝑆) |
10 | | breq1 5073 |
. . . . . . . 8
⊢ (𝑥 = (𝐹‘𝑤) → (𝑥𝑅𝑦 ↔ (𝐹‘𝑤)𝑅𝑦)) |
11 | 10 | anbi1d 629 |
. . . . . . 7
⊢ (𝑥 = (𝐹‘𝑤) → ((𝑥𝑅𝑦 ∧ 𝑦𝑇𝑧) ↔ ((𝐹‘𝑤)𝑅𝑦 ∧ 𝑦𝑇𝑧))) |
12 | | breq1 5073 |
. . . . . . 7
⊢ (𝑥 = (𝐹‘𝑤) → (𝑥𝑈𝑧 ↔ (𝐹‘𝑤)𝑈𝑧)) |
13 | 11, 12 | imbi12d 344 |
. . . . . 6
⊢ (𝑥 = (𝐹‘𝑤) → (((𝑥𝑅𝑦 ∧ 𝑦𝑇𝑧) → 𝑥𝑈𝑧) ↔ (((𝐹‘𝑤)𝑅𝑦 ∧ 𝑦𝑇𝑧) → (𝐹‘𝑤)𝑈𝑧))) |
14 | | breq2 5074 |
. . . . . . . 8
⊢ (𝑦 = (𝐺‘𝑤) → ((𝐹‘𝑤)𝑅𝑦 ↔ (𝐹‘𝑤)𝑅(𝐺‘𝑤))) |
15 | | breq1 5073 |
. . . . . . . 8
⊢ (𝑦 = (𝐺‘𝑤) → (𝑦𝑇𝑧 ↔ (𝐺‘𝑤)𝑇𝑧)) |
16 | 14, 15 | anbi12d 630 |
. . . . . . 7
⊢ (𝑦 = (𝐺‘𝑤) → (((𝐹‘𝑤)𝑅𝑦 ∧ 𝑦𝑇𝑧) ↔ ((𝐹‘𝑤)𝑅(𝐺‘𝑤) ∧ (𝐺‘𝑤)𝑇𝑧))) |
17 | 16 | imbi1d 341 |
. . . . . 6
⊢ (𝑦 = (𝐺‘𝑤) → ((((𝐹‘𝑤)𝑅𝑦 ∧ 𝑦𝑇𝑧) → (𝐹‘𝑤)𝑈𝑧) ↔ (((𝐹‘𝑤)𝑅(𝐺‘𝑤) ∧ (𝐺‘𝑤)𝑇𝑧) → (𝐹‘𝑤)𝑈𝑧))) |
18 | | breq2 5074 |
. . . . . . . 8
⊢ (𝑧 = (𝐻‘𝑤) → ((𝐺‘𝑤)𝑇𝑧 ↔ (𝐺‘𝑤)𝑇(𝐻‘𝑤))) |
19 | 18 | anbi2d 628 |
. . . . . . 7
⊢ (𝑧 = (𝐻‘𝑤) → (((𝐹‘𝑤)𝑅(𝐺‘𝑤) ∧ (𝐺‘𝑤)𝑇𝑧) ↔ ((𝐹‘𝑤)𝑅(𝐺‘𝑤) ∧ (𝐺‘𝑤)𝑇(𝐻‘𝑤)))) |
20 | | breq2 5074 |
. . . . . . 7
⊢ (𝑧 = (𝐻‘𝑤) → ((𝐹‘𝑤)𝑈𝑧 ↔ (𝐹‘𝑤)𝑈(𝐻‘𝑤))) |
21 | 19, 20 | imbi12d 344 |
. . . . . 6
⊢ (𝑧 = (𝐻‘𝑤) → ((((𝐹‘𝑤)𝑅(𝐺‘𝑤) ∧ (𝐺‘𝑤)𝑇𝑧) → (𝐹‘𝑤)𝑈𝑧) ↔ (((𝐹‘𝑤)𝑅(𝐺‘𝑤) ∧ (𝐺‘𝑤)𝑇(𝐻‘𝑤)) → (𝐹‘𝑤)𝑈(𝐻‘𝑤)))) |
22 | 13, 17, 21 | rspc3v 3565 |
. . . . 5
⊢ (((𝐹‘𝑤) ∈ 𝑆 ∧ (𝐺‘𝑤) ∈ 𝑆 ∧ (𝐻‘𝑤) ∈ 𝑆) → (∀𝑥 ∈ 𝑆 ∀𝑦 ∈ 𝑆 ∀𝑧 ∈ 𝑆 ((𝑥𝑅𝑦 ∧ 𝑦𝑇𝑧) → 𝑥𝑈𝑧) → (((𝐹‘𝑤)𝑅(𝐺‘𝑤) ∧ (𝐺‘𝑤)𝑇(𝐻‘𝑤)) → (𝐹‘𝑤)𝑈(𝐻‘𝑤)))) |
23 | 5, 7, 9, 22 | syl3anc 1369 |
. . . 4
⊢ ((𝜑 ∧ 𝑤 ∈ 𝐴) → (∀𝑥 ∈ 𝑆 ∀𝑦 ∈ 𝑆 ∀𝑧 ∈ 𝑆 ((𝑥𝑅𝑦 ∧ 𝑦𝑇𝑧) → 𝑥𝑈𝑧) → (((𝐹‘𝑤)𝑅(𝐺‘𝑤) ∧ (𝐺‘𝑤)𝑇(𝐻‘𝑤)) → (𝐹‘𝑤)𝑈(𝐻‘𝑤)))) |
24 | 3, 23 | mpd 15 |
. . 3
⊢ ((𝜑 ∧ 𝑤 ∈ 𝐴) → (((𝐹‘𝑤)𝑅(𝐺‘𝑤) ∧ (𝐺‘𝑤)𝑇(𝐻‘𝑤)) → (𝐹‘𝑤)𝑈(𝐻‘𝑤))) |
25 | 24 | ralimdva 3102 |
. 2
⊢ (𝜑 → (∀𝑤 ∈ 𝐴 ((𝐹‘𝑤)𝑅(𝐺‘𝑤) ∧ (𝐺‘𝑤)𝑇(𝐻‘𝑤)) → ∀𝑤 ∈ 𝐴 (𝐹‘𝑤)𝑈(𝐻‘𝑤))) |
26 | 4 | ffnd 6585 |
. . . . 5
⊢ (𝜑 → 𝐹 Fn 𝐴) |
27 | 6 | ffnd 6585 |
. . . . 5
⊢ (𝜑 → 𝐺 Fn 𝐴) |
28 | | caofref.1 |
. . . . 5
⊢ (𝜑 → 𝐴 ∈ 𝑉) |
29 | | inidm 4149 |
. . . . 5
⊢ (𝐴 ∩ 𝐴) = 𝐴 |
30 | | eqidd 2739 |
. . . . 5
⊢ ((𝜑 ∧ 𝑤 ∈ 𝐴) → (𝐹‘𝑤) = (𝐹‘𝑤)) |
31 | | eqidd 2739 |
. . . . 5
⊢ ((𝜑 ∧ 𝑤 ∈ 𝐴) → (𝐺‘𝑤) = (𝐺‘𝑤)) |
32 | 26, 27, 28, 28, 29, 30, 31 | ofrfval 7521 |
. . . 4
⊢ (𝜑 → (𝐹 ∘r 𝑅𝐺 ↔ ∀𝑤 ∈ 𝐴 (𝐹‘𝑤)𝑅(𝐺‘𝑤))) |
33 | 8 | ffnd 6585 |
. . . . 5
⊢ (𝜑 → 𝐻 Fn 𝐴) |
34 | | eqidd 2739 |
. . . . 5
⊢ ((𝜑 ∧ 𝑤 ∈ 𝐴) → (𝐻‘𝑤) = (𝐻‘𝑤)) |
35 | 27, 33, 28, 28, 29, 31, 34 | ofrfval 7521 |
. . . 4
⊢ (𝜑 → (𝐺 ∘r 𝑇𝐻 ↔ ∀𝑤 ∈ 𝐴 (𝐺‘𝑤)𝑇(𝐻‘𝑤))) |
36 | 32, 35 | anbi12d 630 |
. . 3
⊢ (𝜑 → ((𝐹 ∘r 𝑅𝐺 ∧ 𝐺 ∘r 𝑇𝐻) ↔ (∀𝑤 ∈ 𝐴 (𝐹‘𝑤)𝑅(𝐺‘𝑤) ∧ ∀𝑤 ∈ 𝐴 (𝐺‘𝑤)𝑇(𝐻‘𝑤)))) |
37 | | r19.26 3094 |
. . 3
⊢
(∀𝑤 ∈
𝐴 ((𝐹‘𝑤)𝑅(𝐺‘𝑤) ∧ (𝐺‘𝑤)𝑇(𝐻‘𝑤)) ↔ (∀𝑤 ∈ 𝐴 (𝐹‘𝑤)𝑅(𝐺‘𝑤) ∧ ∀𝑤 ∈ 𝐴 (𝐺‘𝑤)𝑇(𝐻‘𝑤))) |
38 | 36, 37 | bitr4di 288 |
. 2
⊢ (𝜑 → ((𝐹 ∘r 𝑅𝐺 ∧ 𝐺 ∘r 𝑇𝐻) ↔ ∀𝑤 ∈ 𝐴 ((𝐹‘𝑤)𝑅(𝐺‘𝑤) ∧ (𝐺‘𝑤)𝑇(𝐻‘𝑤)))) |
39 | 26, 33, 28, 28, 29, 30, 34 | ofrfval 7521 |
. 2
⊢ (𝜑 → (𝐹 ∘r 𝑈𝐻 ↔ ∀𝑤 ∈ 𝐴 (𝐹‘𝑤)𝑈(𝐻‘𝑤))) |
40 | 25, 38, 39 | 3imtr4d 293 |
1
⊢ (𝜑 → ((𝐹 ∘r 𝑅𝐺 ∧ 𝐺 ∘r 𝑇𝐻) → 𝐹 ∘r 𝑈𝐻)) |