![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > itg2le | Structured version Visualization version GIF version |
Description: If one function dominates another, then the integral of the larger is also larger. (Contributed by Mario Carneiro, 28-Jun-2014.) |
Ref | Expression |
---|---|
itg2le | ⊢ ((𝐹:ℝ⟶(0[,]+∞) ∧ 𝐺:ℝ⟶(0[,]+∞) ∧ 𝐹 ∘r ≤ 𝐺) → (∫2‘𝐹) ≤ (∫2‘𝐺)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | reex 11231 | . . . . . . . . . 10 ⊢ ℝ ∈ V | |
2 | 1 | a1i 11 | . . . . . . . . 9 ⊢ (((𝐹:ℝ⟶(0[,]+∞) ∧ 𝐺:ℝ⟶(0[,]+∞)) ∧ ℎ ∈ dom ∫1) → ℝ ∈ V) |
3 | i1ff 25649 | . . . . . . . . . . 11 ⊢ (ℎ ∈ dom ∫1 → ℎ:ℝ⟶ℝ) | |
4 | 3 | adantl 480 | . . . . . . . . . 10 ⊢ (((𝐹:ℝ⟶(0[,]+∞) ∧ 𝐺:ℝ⟶(0[,]+∞)) ∧ ℎ ∈ dom ∫1) → ℎ:ℝ⟶ℝ) |
5 | ressxr 11290 | . . . . . . . . . 10 ⊢ ℝ ⊆ ℝ* | |
6 | fss 6739 | . . . . . . . . . 10 ⊢ ((ℎ:ℝ⟶ℝ ∧ ℝ ⊆ ℝ*) → ℎ:ℝ⟶ℝ*) | |
7 | 4, 5, 6 | sylancl 584 | . . . . . . . . 9 ⊢ (((𝐹:ℝ⟶(0[,]+∞) ∧ 𝐺:ℝ⟶(0[,]+∞)) ∧ ℎ ∈ dom ∫1) → ℎ:ℝ⟶ℝ*) |
8 | simpll 765 | . . . . . . . . . 10 ⊢ (((𝐹:ℝ⟶(0[,]+∞) ∧ 𝐺:ℝ⟶(0[,]+∞)) ∧ ℎ ∈ dom ∫1) → 𝐹:ℝ⟶(0[,]+∞)) | |
9 | iccssxr 13442 | . . . . . . . . . 10 ⊢ (0[,]+∞) ⊆ ℝ* | |
10 | fss 6739 | . . . . . . . . . 10 ⊢ ((𝐹:ℝ⟶(0[,]+∞) ∧ (0[,]+∞) ⊆ ℝ*) → 𝐹:ℝ⟶ℝ*) | |
11 | 8, 9, 10 | sylancl 584 | . . . . . . . . 9 ⊢ (((𝐹:ℝ⟶(0[,]+∞) ∧ 𝐺:ℝ⟶(0[,]+∞)) ∧ ℎ ∈ dom ∫1) → 𝐹:ℝ⟶ℝ*) |
12 | simplr 767 | . . . . . . . . . 10 ⊢ (((𝐹:ℝ⟶(0[,]+∞) ∧ 𝐺:ℝ⟶(0[,]+∞)) ∧ ℎ ∈ dom ∫1) → 𝐺:ℝ⟶(0[,]+∞)) | |
13 | fss 6739 | . . . . . . . . . 10 ⊢ ((𝐺:ℝ⟶(0[,]+∞) ∧ (0[,]+∞) ⊆ ℝ*) → 𝐺:ℝ⟶ℝ*) | |
14 | 12, 9, 13 | sylancl 584 | . . . . . . . . 9 ⊢ (((𝐹:ℝ⟶(0[,]+∞) ∧ 𝐺:ℝ⟶(0[,]+∞)) ∧ ℎ ∈ dom ∫1) → 𝐺:ℝ⟶ℝ*) |
15 | xrletr 13172 | . . . . . . . . . 10 ⊢ ((𝑥 ∈ ℝ* ∧ 𝑦 ∈ ℝ* ∧ 𝑧 ∈ ℝ*) → ((𝑥 ≤ 𝑦 ∧ 𝑦 ≤ 𝑧) → 𝑥 ≤ 𝑧)) | |
16 | 15 | adantl 480 | . . . . . . . . 9 ⊢ ((((𝐹:ℝ⟶(0[,]+∞) ∧ 𝐺:ℝ⟶(0[,]+∞)) ∧ ℎ ∈ dom ∫1) ∧ (𝑥 ∈ ℝ* ∧ 𝑦 ∈ ℝ* ∧ 𝑧 ∈ ℝ*)) → ((𝑥 ≤ 𝑦 ∧ 𝑦 ≤ 𝑧) → 𝑥 ≤ 𝑧)) |
17 | 2, 7, 11, 14, 16 | caoftrn 7724 | . . . . . . . 8 ⊢ (((𝐹:ℝ⟶(0[,]+∞) ∧ 𝐺:ℝ⟶(0[,]+∞)) ∧ ℎ ∈ dom ∫1) → ((ℎ ∘r ≤ 𝐹 ∧ 𝐹 ∘r ≤ 𝐺) → ℎ ∘r ≤ 𝐺)) |
18 | simplr 767 | . . . . . . . . . 10 ⊢ (((𝐹:ℝ⟶(0[,]+∞) ∧ 𝐺:ℝ⟶(0[,]+∞)) ∧ (ℎ ∈ dom ∫1 ∧ ℎ ∘r ≤ 𝐺)) → 𝐺:ℝ⟶(0[,]+∞)) | |
19 | simprl 769 | . . . . . . . . . 10 ⊢ (((𝐹:ℝ⟶(0[,]+∞) ∧ 𝐺:ℝ⟶(0[,]+∞)) ∧ (ℎ ∈ dom ∫1 ∧ ℎ ∘r ≤ 𝐺)) → ℎ ∈ dom ∫1) | |
20 | simprr 771 | . . . . . . . . . 10 ⊢ (((𝐹:ℝ⟶(0[,]+∞) ∧ 𝐺:ℝ⟶(0[,]+∞)) ∧ (ℎ ∈ dom ∫1 ∧ ℎ ∘r ≤ 𝐺)) → ℎ ∘r ≤ 𝐺) | |
21 | itg2ub 25707 | . . . . . . . . . 10 ⊢ ((𝐺:ℝ⟶(0[,]+∞) ∧ ℎ ∈ dom ∫1 ∧ ℎ ∘r ≤ 𝐺) → (∫1‘ℎ) ≤ (∫2‘𝐺)) | |
22 | 18, 19, 20, 21 | syl3anc 1368 | . . . . . . . . 9 ⊢ (((𝐹:ℝ⟶(0[,]+∞) ∧ 𝐺:ℝ⟶(0[,]+∞)) ∧ (ℎ ∈ dom ∫1 ∧ ℎ ∘r ≤ 𝐺)) → (∫1‘ℎ) ≤ (∫2‘𝐺)) |
23 | 22 | expr 455 | . . . . . . . 8 ⊢ (((𝐹:ℝ⟶(0[,]+∞) ∧ 𝐺:ℝ⟶(0[,]+∞)) ∧ ℎ ∈ dom ∫1) → (ℎ ∘r ≤ 𝐺 → (∫1‘ℎ) ≤ (∫2‘𝐺))) |
24 | 17, 23 | syld 47 | . . . . . . 7 ⊢ (((𝐹:ℝ⟶(0[,]+∞) ∧ 𝐺:ℝ⟶(0[,]+∞)) ∧ ℎ ∈ dom ∫1) → ((ℎ ∘r ≤ 𝐹 ∧ 𝐹 ∘r ≤ 𝐺) → (∫1‘ℎ) ≤ (∫2‘𝐺))) |
25 | 24 | ancomsd 464 | . . . . . 6 ⊢ (((𝐹:ℝ⟶(0[,]+∞) ∧ 𝐺:ℝ⟶(0[,]+∞)) ∧ ℎ ∈ dom ∫1) → ((𝐹 ∘r ≤ 𝐺 ∧ ℎ ∘r ≤ 𝐹) → (∫1‘ℎ) ≤ (∫2‘𝐺))) |
26 | 25 | exp4b 429 | . . . . 5 ⊢ ((𝐹:ℝ⟶(0[,]+∞) ∧ 𝐺:ℝ⟶(0[,]+∞)) → (ℎ ∈ dom ∫1 → (𝐹 ∘r ≤ 𝐺 → (ℎ ∘r ≤ 𝐹 → (∫1‘ℎ) ≤ (∫2‘𝐺))))) |
27 | 26 | com23 86 | . . . 4 ⊢ ((𝐹:ℝ⟶(0[,]+∞) ∧ 𝐺:ℝ⟶(0[,]+∞)) → (𝐹 ∘r ≤ 𝐺 → (ℎ ∈ dom ∫1 → (ℎ ∘r ≤ 𝐹 → (∫1‘ℎ) ≤ (∫2‘𝐺))))) |
28 | 27 | 3impia 1114 | . . 3 ⊢ ((𝐹:ℝ⟶(0[,]+∞) ∧ 𝐺:ℝ⟶(0[,]+∞) ∧ 𝐹 ∘r ≤ 𝐺) → (ℎ ∈ dom ∫1 → (ℎ ∘r ≤ 𝐹 → (∫1‘ℎ) ≤ (∫2‘𝐺)))) |
29 | 28 | ralrimiv 3134 | . 2 ⊢ ((𝐹:ℝ⟶(0[,]+∞) ∧ 𝐺:ℝ⟶(0[,]+∞) ∧ 𝐹 ∘r ≤ 𝐺) → ∀ℎ ∈ dom ∫1(ℎ ∘r ≤ 𝐹 → (∫1‘ℎ) ≤ (∫2‘𝐺))) |
30 | simp1 1133 | . . 3 ⊢ ((𝐹:ℝ⟶(0[,]+∞) ∧ 𝐺:ℝ⟶(0[,]+∞) ∧ 𝐹 ∘r ≤ 𝐺) → 𝐹:ℝ⟶(0[,]+∞)) | |
31 | itg2cl 25706 | . . . 4 ⊢ (𝐺:ℝ⟶(0[,]+∞) → (∫2‘𝐺) ∈ ℝ*) | |
32 | 31 | 3ad2ant2 1131 | . . 3 ⊢ ((𝐹:ℝ⟶(0[,]+∞) ∧ 𝐺:ℝ⟶(0[,]+∞) ∧ 𝐹 ∘r ≤ 𝐺) → (∫2‘𝐺) ∈ ℝ*) |
33 | itg2leub 25708 | . . 3 ⊢ ((𝐹:ℝ⟶(0[,]+∞) ∧ (∫2‘𝐺) ∈ ℝ*) → ((∫2‘𝐹) ≤ (∫2‘𝐺) ↔ ∀ℎ ∈ dom ∫1(ℎ ∘r ≤ 𝐹 → (∫1‘ℎ) ≤ (∫2‘𝐺)))) | |
34 | 30, 32, 33 | syl2anc 582 | . 2 ⊢ ((𝐹:ℝ⟶(0[,]+∞) ∧ 𝐺:ℝ⟶(0[,]+∞) ∧ 𝐹 ∘r ≤ 𝐺) → ((∫2‘𝐹) ≤ (∫2‘𝐺) ↔ ∀ℎ ∈ dom ∫1(ℎ ∘r ≤ 𝐹 → (∫1‘ℎ) ≤ (∫2‘𝐺)))) |
35 | 29, 34 | mpbird 256 | 1 ⊢ ((𝐹:ℝ⟶(0[,]+∞) ∧ 𝐺:ℝ⟶(0[,]+∞) ∧ 𝐹 ∘r ≤ 𝐺) → (∫2‘𝐹) ≤ (∫2‘𝐺)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 394 ∧ w3a 1084 ∈ wcel 2098 ∀wral 3050 Vcvv 3461 ⊆ wss 3944 class class class wbr 5149 dom cdm 5678 ⟶wf 6545 ‘cfv 6549 (class class class)co 7419 ∘r cofr 7684 ℝcr 11139 0cc0 11140 +∞cpnf 11277 ℝ*cxr 11279 ≤ cle 11281 [,]cicc 13362 ∫1citg1 25588 ∫2citg2 25589 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2166 ax-ext 2696 ax-rep 5286 ax-sep 5300 ax-nul 5307 ax-pow 5365 ax-pr 5429 ax-un 7741 ax-inf2 9666 ax-cnex 11196 ax-resscn 11197 ax-1cn 11198 ax-icn 11199 ax-addcl 11200 ax-addrcl 11201 ax-mulcl 11202 ax-mulrcl 11203 ax-mulcom 11204 ax-addass 11205 ax-mulass 11206 ax-distr 11207 ax-i2m1 11208 ax-1ne0 11209 ax-1rid 11210 ax-rnegex 11211 ax-rrecex 11212 ax-cnre 11213 ax-pre-lttri 11214 ax-pre-lttrn 11215 ax-pre-ltadd 11216 ax-pre-mulgt0 11217 ax-pre-sup 11218 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3or 1085 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2528 df-eu 2557 df-clab 2703 df-cleq 2717 df-clel 2802 df-nfc 2877 df-ne 2930 df-nel 3036 df-ral 3051 df-rex 3060 df-rmo 3363 df-reu 3364 df-rab 3419 df-v 3463 df-sbc 3774 df-csb 3890 df-dif 3947 df-un 3949 df-in 3951 df-ss 3961 df-pss 3964 df-nul 4323 df-if 4531 df-pw 4606 df-sn 4631 df-pr 4633 df-op 4637 df-uni 4910 df-int 4951 df-iun 4999 df-br 5150 df-opab 5212 df-mpt 5233 df-tr 5267 df-id 5576 df-eprel 5582 df-po 5590 df-so 5591 df-fr 5633 df-se 5634 df-we 5635 df-xp 5684 df-rel 5685 df-cnv 5686 df-co 5687 df-dm 5688 df-rn 5689 df-res 5690 df-ima 5691 df-pred 6307 df-ord 6374 df-on 6375 df-lim 6376 df-suc 6377 df-iota 6501 df-fun 6551 df-fn 6552 df-f 6553 df-f1 6554 df-fo 6555 df-f1o 6556 df-fv 6557 df-isom 6558 df-riota 7375 df-ov 7422 df-oprab 7423 df-mpo 7424 df-of 7685 df-ofr 7686 df-om 7872 df-1st 7994 df-2nd 7995 df-frecs 8287 df-wrecs 8318 df-recs 8392 df-rdg 8431 df-1o 8487 df-2o 8488 df-er 8725 df-map 8847 df-pm 8848 df-en 8965 df-dom 8966 df-sdom 8967 df-fin 8968 df-sup 9467 df-inf 9468 df-oi 9535 df-dju 9926 df-card 9964 df-pnf 11282 df-mnf 11283 df-xr 11284 df-ltxr 11285 df-le 11286 df-sub 11478 df-neg 11479 df-div 11904 df-nn 12246 df-2 12308 df-3 12309 df-n0 12506 df-z 12592 df-uz 12856 df-q 12966 df-rp 13010 df-xadd 13128 df-ioo 13363 df-ico 13365 df-icc 13366 df-fz 13520 df-fzo 13663 df-fl 13793 df-seq 14003 df-exp 14063 df-hash 14326 df-cj 15082 df-re 15083 df-im 15084 df-sqrt 15218 df-abs 15219 df-clim 15468 df-sum 15669 df-xmet 21289 df-met 21290 df-ovol 25437 df-vol 25438 df-mbf 25592 df-itg1 25593 df-itg2 25594 |
This theorem is referenced by: itg2const2 25715 itg2monolem1 25724 itg2mono 25727 itg2gt0 25734 itg2cnlem2 25736 iblss 25778 itgle 25783 ibladdlem 25793 iblabs 25802 iblabsr 25803 iblmulc2 25804 bddmulibl 25812 bddiblnc 25815 itg2gt0cn 37279 ibladdnclem 37280 iblabsnc 37288 iblmulc2nc 37289 ftc1anclem4 37300 ftc1anclem6 37302 ftc1anclem7 37303 ftc1anclem8 37304 ftc1anc 37305 |
Copyright terms: Public domain | W3C validator |