| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > itg2le | Structured version Visualization version GIF version | ||
| Description: If one function dominates another, then the integral of the larger is also larger. (Contributed by Mario Carneiro, 28-Jun-2014.) |
| Ref | Expression |
|---|---|
| itg2le | ⊢ ((𝐹:ℝ⟶(0[,]+∞) ∧ 𝐺:ℝ⟶(0[,]+∞) ∧ 𝐹 ∘r ≤ 𝐺) → (∫2‘𝐹) ≤ (∫2‘𝐺)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | reex 11166 | . . . . . . . . . 10 ⊢ ℝ ∈ V | |
| 2 | 1 | a1i 11 | . . . . . . . . 9 ⊢ (((𝐹:ℝ⟶(0[,]+∞) ∧ 𝐺:ℝ⟶(0[,]+∞)) ∧ ℎ ∈ dom ∫1) → ℝ ∈ V) |
| 3 | i1ff 25584 | . . . . . . . . . . 11 ⊢ (ℎ ∈ dom ∫1 → ℎ:ℝ⟶ℝ) | |
| 4 | 3 | adantl 481 | . . . . . . . . . 10 ⊢ (((𝐹:ℝ⟶(0[,]+∞) ∧ 𝐺:ℝ⟶(0[,]+∞)) ∧ ℎ ∈ dom ∫1) → ℎ:ℝ⟶ℝ) |
| 5 | ressxr 11225 | . . . . . . . . . 10 ⊢ ℝ ⊆ ℝ* | |
| 6 | fss 6707 | . . . . . . . . . 10 ⊢ ((ℎ:ℝ⟶ℝ ∧ ℝ ⊆ ℝ*) → ℎ:ℝ⟶ℝ*) | |
| 7 | 4, 5, 6 | sylancl 586 | . . . . . . . . 9 ⊢ (((𝐹:ℝ⟶(0[,]+∞) ∧ 𝐺:ℝ⟶(0[,]+∞)) ∧ ℎ ∈ dom ∫1) → ℎ:ℝ⟶ℝ*) |
| 8 | simpll 766 | . . . . . . . . . 10 ⊢ (((𝐹:ℝ⟶(0[,]+∞) ∧ 𝐺:ℝ⟶(0[,]+∞)) ∧ ℎ ∈ dom ∫1) → 𝐹:ℝ⟶(0[,]+∞)) | |
| 9 | iccssxr 13398 | . . . . . . . . . 10 ⊢ (0[,]+∞) ⊆ ℝ* | |
| 10 | fss 6707 | . . . . . . . . . 10 ⊢ ((𝐹:ℝ⟶(0[,]+∞) ∧ (0[,]+∞) ⊆ ℝ*) → 𝐹:ℝ⟶ℝ*) | |
| 11 | 8, 9, 10 | sylancl 586 | . . . . . . . . 9 ⊢ (((𝐹:ℝ⟶(0[,]+∞) ∧ 𝐺:ℝ⟶(0[,]+∞)) ∧ ℎ ∈ dom ∫1) → 𝐹:ℝ⟶ℝ*) |
| 12 | simplr 768 | . . . . . . . . . 10 ⊢ (((𝐹:ℝ⟶(0[,]+∞) ∧ 𝐺:ℝ⟶(0[,]+∞)) ∧ ℎ ∈ dom ∫1) → 𝐺:ℝ⟶(0[,]+∞)) | |
| 13 | fss 6707 | . . . . . . . . . 10 ⊢ ((𝐺:ℝ⟶(0[,]+∞) ∧ (0[,]+∞) ⊆ ℝ*) → 𝐺:ℝ⟶ℝ*) | |
| 14 | 12, 9, 13 | sylancl 586 | . . . . . . . . 9 ⊢ (((𝐹:ℝ⟶(0[,]+∞) ∧ 𝐺:ℝ⟶(0[,]+∞)) ∧ ℎ ∈ dom ∫1) → 𝐺:ℝ⟶ℝ*) |
| 15 | xrletr 13125 | . . . . . . . . . 10 ⊢ ((𝑥 ∈ ℝ* ∧ 𝑦 ∈ ℝ* ∧ 𝑧 ∈ ℝ*) → ((𝑥 ≤ 𝑦 ∧ 𝑦 ≤ 𝑧) → 𝑥 ≤ 𝑧)) | |
| 16 | 15 | adantl 481 | . . . . . . . . 9 ⊢ ((((𝐹:ℝ⟶(0[,]+∞) ∧ 𝐺:ℝ⟶(0[,]+∞)) ∧ ℎ ∈ dom ∫1) ∧ (𝑥 ∈ ℝ* ∧ 𝑦 ∈ ℝ* ∧ 𝑧 ∈ ℝ*)) → ((𝑥 ≤ 𝑦 ∧ 𝑦 ≤ 𝑧) → 𝑥 ≤ 𝑧)) |
| 17 | 2, 7, 11, 14, 16 | caoftrn 7697 | . . . . . . . 8 ⊢ (((𝐹:ℝ⟶(0[,]+∞) ∧ 𝐺:ℝ⟶(0[,]+∞)) ∧ ℎ ∈ dom ∫1) → ((ℎ ∘r ≤ 𝐹 ∧ 𝐹 ∘r ≤ 𝐺) → ℎ ∘r ≤ 𝐺)) |
| 18 | simplr 768 | . . . . . . . . . 10 ⊢ (((𝐹:ℝ⟶(0[,]+∞) ∧ 𝐺:ℝ⟶(0[,]+∞)) ∧ (ℎ ∈ dom ∫1 ∧ ℎ ∘r ≤ 𝐺)) → 𝐺:ℝ⟶(0[,]+∞)) | |
| 19 | simprl 770 | . . . . . . . . . 10 ⊢ (((𝐹:ℝ⟶(0[,]+∞) ∧ 𝐺:ℝ⟶(0[,]+∞)) ∧ (ℎ ∈ dom ∫1 ∧ ℎ ∘r ≤ 𝐺)) → ℎ ∈ dom ∫1) | |
| 20 | simprr 772 | . . . . . . . . . 10 ⊢ (((𝐹:ℝ⟶(0[,]+∞) ∧ 𝐺:ℝ⟶(0[,]+∞)) ∧ (ℎ ∈ dom ∫1 ∧ ℎ ∘r ≤ 𝐺)) → ℎ ∘r ≤ 𝐺) | |
| 21 | itg2ub 25641 | . . . . . . . . . 10 ⊢ ((𝐺:ℝ⟶(0[,]+∞) ∧ ℎ ∈ dom ∫1 ∧ ℎ ∘r ≤ 𝐺) → (∫1‘ℎ) ≤ (∫2‘𝐺)) | |
| 22 | 18, 19, 20, 21 | syl3anc 1373 | . . . . . . . . 9 ⊢ (((𝐹:ℝ⟶(0[,]+∞) ∧ 𝐺:ℝ⟶(0[,]+∞)) ∧ (ℎ ∈ dom ∫1 ∧ ℎ ∘r ≤ 𝐺)) → (∫1‘ℎ) ≤ (∫2‘𝐺)) |
| 23 | 22 | expr 456 | . . . . . . . 8 ⊢ (((𝐹:ℝ⟶(0[,]+∞) ∧ 𝐺:ℝ⟶(0[,]+∞)) ∧ ℎ ∈ dom ∫1) → (ℎ ∘r ≤ 𝐺 → (∫1‘ℎ) ≤ (∫2‘𝐺))) |
| 24 | 17, 23 | syld 47 | . . . . . . 7 ⊢ (((𝐹:ℝ⟶(0[,]+∞) ∧ 𝐺:ℝ⟶(0[,]+∞)) ∧ ℎ ∈ dom ∫1) → ((ℎ ∘r ≤ 𝐹 ∧ 𝐹 ∘r ≤ 𝐺) → (∫1‘ℎ) ≤ (∫2‘𝐺))) |
| 25 | 24 | ancomsd 465 | . . . . . 6 ⊢ (((𝐹:ℝ⟶(0[,]+∞) ∧ 𝐺:ℝ⟶(0[,]+∞)) ∧ ℎ ∈ dom ∫1) → ((𝐹 ∘r ≤ 𝐺 ∧ ℎ ∘r ≤ 𝐹) → (∫1‘ℎ) ≤ (∫2‘𝐺))) |
| 26 | 25 | exp4b 430 | . . . . 5 ⊢ ((𝐹:ℝ⟶(0[,]+∞) ∧ 𝐺:ℝ⟶(0[,]+∞)) → (ℎ ∈ dom ∫1 → (𝐹 ∘r ≤ 𝐺 → (ℎ ∘r ≤ 𝐹 → (∫1‘ℎ) ≤ (∫2‘𝐺))))) |
| 27 | 26 | com23 86 | . . . 4 ⊢ ((𝐹:ℝ⟶(0[,]+∞) ∧ 𝐺:ℝ⟶(0[,]+∞)) → (𝐹 ∘r ≤ 𝐺 → (ℎ ∈ dom ∫1 → (ℎ ∘r ≤ 𝐹 → (∫1‘ℎ) ≤ (∫2‘𝐺))))) |
| 28 | 27 | 3impia 1117 | . . 3 ⊢ ((𝐹:ℝ⟶(0[,]+∞) ∧ 𝐺:ℝ⟶(0[,]+∞) ∧ 𝐹 ∘r ≤ 𝐺) → (ℎ ∈ dom ∫1 → (ℎ ∘r ≤ 𝐹 → (∫1‘ℎ) ≤ (∫2‘𝐺)))) |
| 29 | 28 | ralrimiv 3125 | . 2 ⊢ ((𝐹:ℝ⟶(0[,]+∞) ∧ 𝐺:ℝ⟶(0[,]+∞) ∧ 𝐹 ∘r ≤ 𝐺) → ∀ℎ ∈ dom ∫1(ℎ ∘r ≤ 𝐹 → (∫1‘ℎ) ≤ (∫2‘𝐺))) |
| 30 | simp1 1136 | . . 3 ⊢ ((𝐹:ℝ⟶(0[,]+∞) ∧ 𝐺:ℝ⟶(0[,]+∞) ∧ 𝐹 ∘r ≤ 𝐺) → 𝐹:ℝ⟶(0[,]+∞)) | |
| 31 | itg2cl 25640 | . . . 4 ⊢ (𝐺:ℝ⟶(0[,]+∞) → (∫2‘𝐺) ∈ ℝ*) | |
| 32 | 31 | 3ad2ant2 1134 | . . 3 ⊢ ((𝐹:ℝ⟶(0[,]+∞) ∧ 𝐺:ℝ⟶(0[,]+∞) ∧ 𝐹 ∘r ≤ 𝐺) → (∫2‘𝐺) ∈ ℝ*) |
| 33 | itg2leub 25642 | . . 3 ⊢ ((𝐹:ℝ⟶(0[,]+∞) ∧ (∫2‘𝐺) ∈ ℝ*) → ((∫2‘𝐹) ≤ (∫2‘𝐺) ↔ ∀ℎ ∈ dom ∫1(ℎ ∘r ≤ 𝐹 → (∫1‘ℎ) ≤ (∫2‘𝐺)))) | |
| 34 | 30, 32, 33 | syl2anc 584 | . 2 ⊢ ((𝐹:ℝ⟶(0[,]+∞) ∧ 𝐺:ℝ⟶(0[,]+∞) ∧ 𝐹 ∘r ≤ 𝐺) → ((∫2‘𝐹) ≤ (∫2‘𝐺) ↔ ∀ℎ ∈ dom ∫1(ℎ ∘r ≤ 𝐹 → (∫1‘ℎ) ≤ (∫2‘𝐺)))) |
| 35 | 29, 34 | mpbird 257 | 1 ⊢ ((𝐹:ℝ⟶(0[,]+∞) ∧ 𝐺:ℝ⟶(0[,]+∞) ∧ 𝐹 ∘r ≤ 𝐺) → (∫2‘𝐹) ≤ (∫2‘𝐺)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∧ w3a 1086 ∈ wcel 2109 ∀wral 3045 Vcvv 3450 ⊆ wss 3917 class class class wbr 5110 dom cdm 5641 ⟶wf 6510 ‘cfv 6514 (class class class)co 7390 ∘r cofr 7655 ℝcr 11074 0cc0 11075 +∞cpnf 11212 ℝ*cxr 11214 ≤ cle 11216 [,]cicc 13316 ∫1citg1 25523 ∫2citg2 25524 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-rep 5237 ax-sep 5254 ax-nul 5264 ax-pow 5323 ax-pr 5390 ax-un 7714 ax-inf2 9601 ax-cnex 11131 ax-resscn 11132 ax-1cn 11133 ax-icn 11134 ax-addcl 11135 ax-addrcl 11136 ax-mulcl 11137 ax-mulrcl 11138 ax-mulcom 11139 ax-addass 11140 ax-mulass 11141 ax-distr 11142 ax-i2m1 11143 ax-1ne0 11144 ax-1rid 11145 ax-rnegex 11146 ax-rrecex 11147 ax-cnre 11148 ax-pre-lttri 11149 ax-pre-lttrn 11150 ax-pre-ltadd 11151 ax-pre-mulgt0 11152 ax-pre-sup 11153 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-nel 3031 df-ral 3046 df-rex 3055 df-rmo 3356 df-reu 3357 df-rab 3409 df-v 3452 df-sbc 3757 df-csb 3866 df-dif 3920 df-un 3922 df-in 3924 df-ss 3934 df-pss 3937 df-nul 4300 df-if 4492 df-pw 4568 df-sn 4593 df-pr 4595 df-op 4599 df-uni 4875 df-int 4914 df-iun 4960 df-br 5111 df-opab 5173 df-mpt 5192 df-tr 5218 df-id 5536 df-eprel 5541 df-po 5549 df-so 5550 df-fr 5594 df-se 5595 df-we 5596 df-xp 5647 df-rel 5648 df-cnv 5649 df-co 5650 df-dm 5651 df-rn 5652 df-res 5653 df-ima 5654 df-pred 6277 df-ord 6338 df-on 6339 df-lim 6340 df-suc 6341 df-iota 6467 df-fun 6516 df-fn 6517 df-f 6518 df-f1 6519 df-fo 6520 df-f1o 6521 df-fv 6522 df-isom 6523 df-riota 7347 df-ov 7393 df-oprab 7394 df-mpo 7395 df-of 7656 df-ofr 7657 df-om 7846 df-1st 7971 df-2nd 7972 df-frecs 8263 df-wrecs 8294 df-recs 8343 df-rdg 8381 df-1o 8437 df-2o 8438 df-er 8674 df-map 8804 df-pm 8805 df-en 8922 df-dom 8923 df-sdom 8924 df-fin 8925 df-sup 9400 df-inf 9401 df-oi 9470 df-dju 9861 df-card 9899 df-pnf 11217 df-mnf 11218 df-xr 11219 df-ltxr 11220 df-le 11221 df-sub 11414 df-neg 11415 df-div 11843 df-nn 12194 df-2 12256 df-3 12257 df-n0 12450 df-z 12537 df-uz 12801 df-q 12915 df-rp 12959 df-xadd 13080 df-ioo 13317 df-ico 13319 df-icc 13320 df-fz 13476 df-fzo 13623 df-fl 13761 df-seq 13974 df-exp 14034 df-hash 14303 df-cj 15072 df-re 15073 df-im 15074 df-sqrt 15208 df-abs 15209 df-clim 15461 df-sum 15660 df-xmet 21264 df-met 21265 df-ovol 25372 df-vol 25373 df-mbf 25527 df-itg1 25528 df-itg2 25529 |
| This theorem is referenced by: itg2const2 25649 itg2monolem1 25658 itg2mono 25661 itg2gt0 25668 itg2cnlem2 25670 iblss 25713 itgle 25718 ibladdlem 25728 iblabs 25737 iblabsr 25738 iblmulc2 25739 bddmulibl 25747 bddiblnc 25750 itg2gt0cn 37676 ibladdnclem 37677 iblabsnc 37685 iblmulc2nc 37686 ftc1anclem4 37697 ftc1anclem6 37699 ftc1anclem7 37700 ftc1anclem8 37701 ftc1anc 37702 |
| Copyright terms: Public domain | W3C validator |