MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  itg2le Structured version   Visualization version   GIF version

Theorem itg2le 24885
Description: If one function dominates another, then the integral of the larger is also larger. (Contributed by Mario Carneiro, 28-Jun-2014.)
Assertion
Ref Expression
itg2le ((𝐹:ℝ⟶(0[,]+∞) ∧ 𝐺:ℝ⟶(0[,]+∞) ∧ 𝐹r𝐺) → (∫2𝐹) ≤ (∫2𝐺))

Proof of Theorem itg2le
Dummy variables 𝑥 𝑧 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 reex 10946 . . . . . . . . . 10 ℝ ∈ V
21a1i 11 . . . . . . . . 9 (((𝐹:ℝ⟶(0[,]+∞) ∧ 𝐺:ℝ⟶(0[,]+∞)) ∧ ∈ dom ∫1) → ℝ ∈ V)
3 i1ff 24821 . . . . . . . . . . 11 ( ∈ dom ∫1:ℝ⟶ℝ)
43adantl 481 . . . . . . . . . 10 (((𝐹:ℝ⟶(0[,]+∞) ∧ 𝐺:ℝ⟶(0[,]+∞)) ∧ ∈ dom ∫1) → :ℝ⟶ℝ)
5 ressxr 11003 . . . . . . . . . 10 ℝ ⊆ ℝ*
6 fss 6613 . . . . . . . . . 10 ((:ℝ⟶ℝ ∧ ℝ ⊆ ℝ*) → :ℝ⟶ℝ*)
74, 5, 6sylancl 585 . . . . . . . . 9 (((𝐹:ℝ⟶(0[,]+∞) ∧ 𝐺:ℝ⟶(0[,]+∞)) ∧ ∈ dom ∫1) → :ℝ⟶ℝ*)
8 simpll 763 . . . . . . . . . 10 (((𝐹:ℝ⟶(0[,]+∞) ∧ 𝐺:ℝ⟶(0[,]+∞)) ∧ ∈ dom ∫1) → 𝐹:ℝ⟶(0[,]+∞))
9 iccssxr 13144 . . . . . . . . . 10 (0[,]+∞) ⊆ ℝ*
10 fss 6613 . . . . . . . . . 10 ((𝐹:ℝ⟶(0[,]+∞) ∧ (0[,]+∞) ⊆ ℝ*) → 𝐹:ℝ⟶ℝ*)
118, 9, 10sylancl 585 . . . . . . . . 9 (((𝐹:ℝ⟶(0[,]+∞) ∧ 𝐺:ℝ⟶(0[,]+∞)) ∧ ∈ dom ∫1) → 𝐹:ℝ⟶ℝ*)
12 simplr 765 . . . . . . . . . 10 (((𝐹:ℝ⟶(0[,]+∞) ∧ 𝐺:ℝ⟶(0[,]+∞)) ∧ ∈ dom ∫1) → 𝐺:ℝ⟶(0[,]+∞))
13 fss 6613 . . . . . . . . . 10 ((𝐺:ℝ⟶(0[,]+∞) ∧ (0[,]+∞) ⊆ ℝ*) → 𝐺:ℝ⟶ℝ*)
1412, 9, 13sylancl 585 . . . . . . . . 9 (((𝐹:ℝ⟶(0[,]+∞) ∧ 𝐺:ℝ⟶(0[,]+∞)) ∧ ∈ dom ∫1) → 𝐺:ℝ⟶ℝ*)
15 xrletr 12874 . . . . . . . . . 10 ((𝑥 ∈ ℝ*𝑦 ∈ ℝ*𝑧 ∈ ℝ*) → ((𝑥𝑦𝑦𝑧) → 𝑥𝑧))
1615adantl 481 . . . . . . . . 9 ((((𝐹:ℝ⟶(0[,]+∞) ∧ 𝐺:ℝ⟶(0[,]+∞)) ∧ ∈ dom ∫1) ∧ (𝑥 ∈ ℝ*𝑦 ∈ ℝ*𝑧 ∈ ℝ*)) → ((𝑥𝑦𝑦𝑧) → 𝑥𝑧))
172, 7, 11, 14, 16caoftrn 7562 . . . . . . . 8 (((𝐹:ℝ⟶(0[,]+∞) ∧ 𝐺:ℝ⟶(0[,]+∞)) ∧ ∈ dom ∫1) → ((r𝐹𝐹r𝐺) → r𝐺))
18 simplr 765 . . . . . . . . . 10 (((𝐹:ℝ⟶(0[,]+∞) ∧ 𝐺:ℝ⟶(0[,]+∞)) ∧ ( ∈ dom ∫1r𝐺)) → 𝐺:ℝ⟶(0[,]+∞))
19 simprl 767 . . . . . . . . . 10 (((𝐹:ℝ⟶(0[,]+∞) ∧ 𝐺:ℝ⟶(0[,]+∞)) ∧ ( ∈ dom ∫1r𝐺)) → ∈ dom ∫1)
20 simprr 769 . . . . . . . . . 10 (((𝐹:ℝ⟶(0[,]+∞) ∧ 𝐺:ℝ⟶(0[,]+∞)) ∧ ( ∈ dom ∫1r𝐺)) → r𝐺)
21 itg2ub 24879 . . . . . . . . . 10 ((𝐺:ℝ⟶(0[,]+∞) ∧ ∈ dom ∫1r𝐺) → (∫1) ≤ (∫2𝐺))
2218, 19, 20, 21syl3anc 1369 . . . . . . . . 9 (((𝐹:ℝ⟶(0[,]+∞) ∧ 𝐺:ℝ⟶(0[,]+∞)) ∧ ( ∈ dom ∫1r𝐺)) → (∫1) ≤ (∫2𝐺))
2322expr 456 . . . . . . . 8 (((𝐹:ℝ⟶(0[,]+∞) ∧ 𝐺:ℝ⟶(0[,]+∞)) ∧ ∈ dom ∫1) → (r𝐺 → (∫1) ≤ (∫2𝐺)))
2417, 23syld 47 . . . . . . 7 (((𝐹:ℝ⟶(0[,]+∞) ∧ 𝐺:ℝ⟶(0[,]+∞)) ∧ ∈ dom ∫1) → ((r𝐹𝐹r𝐺) → (∫1) ≤ (∫2𝐺)))
2524ancomsd 465 . . . . . 6 (((𝐹:ℝ⟶(0[,]+∞) ∧ 𝐺:ℝ⟶(0[,]+∞)) ∧ ∈ dom ∫1) → ((𝐹r𝐺r𝐹) → (∫1) ≤ (∫2𝐺)))
2625exp4b 430 . . . . 5 ((𝐹:ℝ⟶(0[,]+∞) ∧ 𝐺:ℝ⟶(0[,]+∞)) → ( ∈ dom ∫1 → (𝐹r𝐺 → (r𝐹 → (∫1) ≤ (∫2𝐺)))))
2726com23 86 . . . 4 ((𝐹:ℝ⟶(0[,]+∞) ∧ 𝐺:ℝ⟶(0[,]+∞)) → (𝐹r𝐺 → ( ∈ dom ∫1 → (r𝐹 → (∫1) ≤ (∫2𝐺)))))
28273impia 1115 . . 3 ((𝐹:ℝ⟶(0[,]+∞) ∧ 𝐺:ℝ⟶(0[,]+∞) ∧ 𝐹r𝐺) → ( ∈ dom ∫1 → (r𝐹 → (∫1) ≤ (∫2𝐺))))
2928ralrimiv 3108 . 2 ((𝐹:ℝ⟶(0[,]+∞) ∧ 𝐺:ℝ⟶(0[,]+∞) ∧ 𝐹r𝐺) → ∀ ∈ dom ∫1(r𝐹 → (∫1) ≤ (∫2𝐺)))
30 simp1 1134 . . 3 ((𝐹:ℝ⟶(0[,]+∞) ∧ 𝐺:ℝ⟶(0[,]+∞) ∧ 𝐹r𝐺) → 𝐹:ℝ⟶(0[,]+∞))
31 itg2cl 24878 . . . 4 (𝐺:ℝ⟶(0[,]+∞) → (∫2𝐺) ∈ ℝ*)
32313ad2ant2 1132 . . 3 ((𝐹:ℝ⟶(0[,]+∞) ∧ 𝐺:ℝ⟶(0[,]+∞) ∧ 𝐹r𝐺) → (∫2𝐺) ∈ ℝ*)
33 itg2leub 24880 . . 3 ((𝐹:ℝ⟶(0[,]+∞) ∧ (∫2𝐺) ∈ ℝ*) → ((∫2𝐹) ≤ (∫2𝐺) ↔ ∀ ∈ dom ∫1(r𝐹 → (∫1) ≤ (∫2𝐺))))
3430, 32, 33syl2anc 583 . 2 ((𝐹:ℝ⟶(0[,]+∞) ∧ 𝐺:ℝ⟶(0[,]+∞) ∧ 𝐹r𝐺) → ((∫2𝐹) ≤ (∫2𝐺) ↔ ∀ ∈ dom ∫1(r𝐹 → (∫1) ≤ (∫2𝐺))))
3529, 34mpbird 256 1 ((𝐹:ℝ⟶(0[,]+∞) ∧ 𝐺:ℝ⟶(0[,]+∞) ∧ 𝐹r𝐺) → (∫2𝐹) ≤ (∫2𝐺))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 395  w3a 1085  wcel 2109  wral 3065  Vcvv 3430  wss 3891   class class class wbr 5078  dom cdm 5588  wf 6426  cfv 6430  (class class class)co 7268  r cofr 7523  cr 10854  0cc0 10855  +∞cpnf 10990  *cxr 10992  cle 10994  [,]cicc 13064  1citg1 24760  2citg2 24761
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1801  ax-4 1815  ax-5 1916  ax-6 1974  ax-7 2014  ax-8 2111  ax-9 2119  ax-10 2140  ax-11 2157  ax-12 2174  ax-ext 2710  ax-rep 5213  ax-sep 5226  ax-nul 5233  ax-pow 5291  ax-pr 5355  ax-un 7579  ax-inf2 9360  ax-cnex 10911  ax-resscn 10912  ax-1cn 10913  ax-icn 10914  ax-addcl 10915  ax-addrcl 10916  ax-mulcl 10917  ax-mulrcl 10918  ax-mulcom 10919  ax-addass 10920  ax-mulass 10921  ax-distr 10922  ax-i2m1 10923  ax-1ne0 10924  ax-1rid 10925  ax-rnegex 10926  ax-rrecex 10927  ax-cnre 10928  ax-pre-lttri 10929  ax-pre-lttrn 10930  ax-pre-ltadd 10931  ax-pre-mulgt0 10932  ax-pre-sup 10933
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1544  df-fal 1554  df-ex 1786  df-nf 1790  df-sb 2071  df-mo 2541  df-eu 2570  df-clab 2717  df-cleq 2731  df-clel 2817  df-nfc 2890  df-ne 2945  df-nel 3051  df-ral 3070  df-rex 3071  df-reu 3072  df-rmo 3073  df-rab 3074  df-v 3432  df-sbc 3720  df-csb 3837  df-dif 3894  df-un 3896  df-in 3898  df-ss 3908  df-pss 3910  df-nul 4262  df-if 4465  df-pw 4540  df-sn 4567  df-pr 4569  df-tp 4571  df-op 4573  df-uni 4845  df-int 4885  df-iun 4931  df-br 5079  df-opab 5141  df-mpt 5162  df-tr 5196  df-id 5488  df-eprel 5494  df-po 5502  df-so 5503  df-fr 5543  df-se 5544  df-we 5545  df-xp 5594  df-rel 5595  df-cnv 5596  df-co 5597  df-dm 5598  df-rn 5599  df-res 5600  df-ima 5601  df-pred 6199  df-ord 6266  df-on 6267  df-lim 6268  df-suc 6269  df-iota 6388  df-fun 6432  df-fn 6433  df-f 6434  df-f1 6435  df-fo 6436  df-f1o 6437  df-fv 6438  df-isom 6439  df-riota 7225  df-ov 7271  df-oprab 7272  df-mpo 7273  df-of 7524  df-ofr 7525  df-om 7701  df-1st 7817  df-2nd 7818  df-frecs 8081  df-wrecs 8112  df-recs 8186  df-rdg 8225  df-1o 8281  df-2o 8282  df-er 8472  df-map 8591  df-pm 8592  df-en 8708  df-dom 8709  df-sdom 8710  df-fin 8711  df-sup 9162  df-inf 9163  df-oi 9230  df-dju 9643  df-card 9681  df-pnf 10995  df-mnf 10996  df-xr 10997  df-ltxr 10998  df-le 10999  df-sub 11190  df-neg 11191  df-div 11616  df-nn 11957  df-2 12019  df-3 12020  df-n0 12217  df-z 12303  df-uz 12565  df-q 12671  df-rp 12713  df-xadd 12831  df-ioo 13065  df-ico 13067  df-icc 13068  df-fz 13222  df-fzo 13365  df-fl 13493  df-seq 13703  df-exp 13764  df-hash 14026  df-cj 14791  df-re 14792  df-im 14793  df-sqrt 14927  df-abs 14928  df-clim 15178  df-sum 15379  df-xmet 20571  df-met 20572  df-ovol 24609  df-vol 24610  df-mbf 24764  df-itg1 24765  df-itg2 24766
This theorem is referenced by:  itg2const2  24887  itg2monolem1  24896  itg2mono  24899  itg2gt0  24906  itg2cnlem2  24908  iblss  24950  itgle  24955  ibladdlem  24965  iblabs  24974  iblabsr  24975  iblmulc2  24976  bddmulibl  24984  bddiblnc  24987  itg2gt0cn  35811  ibladdnclem  35812  iblabsnc  35820  iblmulc2nc  35821  ftc1anclem4  35832  ftc1anclem6  35834  ftc1anclem7  35835  ftc1anclem8  35836  ftc1anc  35837
  Copyright terms: Public domain W3C validator