![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > itg2le | Structured version Visualization version GIF version |
Description: If one function dominates another, then the integral of the larger is also larger. (Contributed by Mario Carneiro, 28-Jun-2014.) |
Ref | Expression |
---|---|
itg2le | ⊢ ((𝐹:ℝ⟶(0[,]+∞) ∧ 𝐺:ℝ⟶(0[,]+∞) ∧ 𝐹 ∘r ≤ 𝐺) → (∫2‘𝐹) ≤ (∫2‘𝐺)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | reex 11275 | . . . . . . . . . 10 ⊢ ℝ ∈ V | |
2 | 1 | a1i 11 | . . . . . . . . 9 ⊢ (((𝐹:ℝ⟶(0[,]+∞) ∧ 𝐺:ℝ⟶(0[,]+∞)) ∧ ℎ ∈ dom ∫1) → ℝ ∈ V) |
3 | i1ff 25730 | . . . . . . . . . . 11 ⊢ (ℎ ∈ dom ∫1 → ℎ:ℝ⟶ℝ) | |
4 | 3 | adantl 481 | . . . . . . . . . 10 ⊢ (((𝐹:ℝ⟶(0[,]+∞) ∧ 𝐺:ℝ⟶(0[,]+∞)) ∧ ℎ ∈ dom ∫1) → ℎ:ℝ⟶ℝ) |
5 | ressxr 11334 | . . . . . . . . . 10 ⊢ ℝ ⊆ ℝ* | |
6 | fss 6763 | . . . . . . . . . 10 ⊢ ((ℎ:ℝ⟶ℝ ∧ ℝ ⊆ ℝ*) → ℎ:ℝ⟶ℝ*) | |
7 | 4, 5, 6 | sylancl 585 | . . . . . . . . 9 ⊢ (((𝐹:ℝ⟶(0[,]+∞) ∧ 𝐺:ℝ⟶(0[,]+∞)) ∧ ℎ ∈ dom ∫1) → ℎ:ℝ⟶ℝ*) |
8 | simpll 766 | . . . . . . . . . 10 ⊢ (((𝐹:ℝ⟶(0[,]+∞) ∧ 𝐺:ℝ⟶(0[,]+∞)) ∧ ℎ ∈ dom ∫1) → 𝐹:ℝ⟶(0[,]+∞)) | |
9 | iccssxr 13490 | . . . . . . . . . 10 ⊢ (0[,]+∞) ⊆ ℝ* | |
10 | fss 6763 | . . . . . . . . . 10 ⊢ ((𝐹:ℝ⟶(0[,]+∞) ∧ (0[,]+∞) ⊆ ℝ*) → 𝐹:ℝ⟶ℝ*) | |
11 | 8, 9, 10 | sylancl 585 | . . . . . . . . 9 ⊢ (((𝐹:ℝ⟶(0[,]+∞) ∧ 𝐺:ℝ⟶(0[,]+∞)) ∧ ℎ ∈ dom ∫1) → 𝐹:ℝ⟶ℝ*) |
12 | simplr 768 | . . . . . . . . . 10 ⊢ (((𝐹:ℝ⟶(0[,]+∞) ∧ 𝐺:ℝ⟶(0[,]+∞)) ∧ ℎ ∈ dom ∫1) → 𝐺:ℝ⟶(0[,]+∞)) | |
13 | fss 6763 | . . . . . . . . . 10 ⊢ ((𝐺:ℝ⟶(0[,]+∞) ∧ (0[,]+∞) ⊆ ℝ*) → 𝐺:ℝ⟶ℝ*) | |
14 | 12, 9, 13 | sylancl 585 | . . . . . . . . 9 ⊢ (((𝐹:ℝ⟶(0[,]+∞) ∧ 𝐺:ℝ⟶(0[,]+∞)) ∧ ℎ ∈ dom ∫1) → 𝐺:ℝ⟶ℝ*) |
15 | xrletr 13220 | . . . . . . . . . 10 ⊢ ((𝑥 ∈ ℝ* ∧ 𝑦 ∈ ℝ* ∧ 𝑧 ∈ ℝ*) → ((𝑥 ≤ 𝑦 ∧ 𝑦 ≤ 𝑧) → 𝑥 ≤ 𝑧)) | |
16 | 15 | adantl 481 | . . . . . . . . 9 ⊢ ((((𝐹:ℝ⟶(0[,]+∞) ∧ 𝐺:ℝ⟶(0[,]+∞)) ∧ ℎ ∈ dom ∫1) ∧ (𝑥 ∈ ℝ* ∧ 𝑦 ∈ ℝ* ∧ 𝑧 ∈ ℝ*)) → ((𝑥 ≤ 𝑦 ∧ 𝑦 ≤ 𝑧) → 𝑥 ≤ 𝑧)) |
17 | 2, 7, 11, 14, 16 | caoftrn 7753 | . . . . . . . 8 ⊢ (((𝐹:ℝ⟶(0[,]+∞) ∧ 𝐺:ℝ⟶(0[,]+∞)) ∧ ℎ ∈ dom ∫1) → ((ℎ ∘r ≤ 𝐹 ∧ 𝐹 ∘r ≤ 𝐺) → ℎ ∘r ≤ 𝐺)) |
18 | simplr 768 | . . . . . . . . . 10 ⊢ (((𝐹:ℝ⟶(0[,]+∞) ∧ 𝐺:ℝ⟶(0[,]+∞)) ∧ (ℎ ∈ dom ∫1 ∧ ℎ ∘r ≤ 𝐺)) → 𝐺:ℝ⟶(0[,]+∞)) | |
19 | simprl 770 | . . . . . . . . . 10 ⊢ (((𝐹:ℝ⟶(0[,]+∞) ∧ 𝐺:ℝ⟶(0[,]+∞)) ∧ (ℎ ∈ dom ∫1 ∧ ℎ ∘r ≤ 𝐺)) → ℎ ∈ dom ∫1) | |
20 | simprr 772 | . . . . . . . . . 10 ⊢ (((𝐹:ℝ⟶(0[,]+∞) ∧ 𝐺:ℝ⟶(0[,]+∞)) ∧ (ℎ ∈ dom ∫1 ∧ ℎ ∘r ≤ 𝐺)) → ℎ ∘r ≤ 𝐺) | |
21 | itg2ub 25788 | . . . . . . . . . 10 ⊢ ((𝐺:ℝ⟶(0[,]+∞) ∧ ℎ ∈ dom ∫1 ∧ ℎ ∘r ≤ 𝐺) → (∫1‘ℎ) ≤ (∫2‘𝐺)) | |
22 | 18, 19, 20, 21 | syl3anc 1371 | . . . . . . . . 9 ⊢ (((𝐹:ℝ⟶(0[,]+∞) ∧ 𝐺:ℝ⟶(0[,]+∞)) ∧ (ℎ ∈ dom ∫1 ∧ ℎ ∘r ≤ 𝐺)) → (∫1‘ℎ) ≤ (∫2‘𝐺)) |
23 | 22 | expr 456 | . . . . . . . 8 ⊢ (((𝐹:ℝ⟶(0[,]+∞) ∧ 𝐺:ℝ⟶(0[,]+∞)) ∧ ℎ ∈ dom ∫1) → (ℎ ∘r ≤ 𝐺 → (∫1‘ℎ) ≤ (∫2‘𝐺))) |
24 | 17, 23 | syld 47 | . . . . . . 7 ⊢ (((𝐹:ℝ⟶(0[,]+∞) ∧ 𝐺:ℝ⟶(0[,]+∞)) ∧ ℎ ∈ dom ∫1) → ((ℎ ∘r ≤ 𝐹 ∧ 𝐹 ∘r ≤ 𝐺) → (∫1‘ℎ) ≤ (∫2‘𝐺))) |
25 | 24 | ancomsd 465 | . . . . . 6 ⊢ (((𝐹:ℝ⟶(0[,]+∞) ∧ 𝐺:ℝ⟶(0[,]+∞)) ∧ ℎ ∈ dom ∫1) → ((𝐹 ∘r ≤ 𝐺 ∧ ℎ ∘r ≤ 𝐹) → (∫1‘ℎ) ≤ (∫2‘𝐺))) |
26 | 25 | exp4b 430 | . . . . 5 ⊢ ((𝐹:ℝ⟶(0[,]+∞) ∧ 𝐺:ℝ⟶(0[,]+∞)) → (ℎ ∈ dom ∫1 → (𝐹 ∘r ≤ 𝐺 → (ℎ ∘r ≤ 𝐹 → (∫1‘ℎ) ≤ (∫2‘𝐺))))) |
27 | 26 | com23 86 | . . . 4 ⊢ ((𝐹:ℝ⟶(0[,]+∞) ∧ 𝐺:ℝ⟶(0[,]+∞)) → (𝐹 ∘r ≤ 𝐺 → (ℎ ∈ dom ∫1 → (ℎ ∘r ≤ 𝐹 → (∫1‘ℎ) ≤ (∫2‘𝐺))))) |
28 | 27 | 3impia 1117 | . . 3 ⊢ ((𝐹:ℝ⟶(0[,]+∞) ∧ 𝐺:ℝ⟶(0[,]+∞) ∧ 𝐹 ∘r ≤ 𝐺) → (ℎ ∈ dom ∫1 → (ℎ ∘r ≤ 𝐹 → (∫1‘ℎ) ≤ (∫2‘𝐺)))) |
29 | 28 | ralrimiv 3151 | . 2 ⊢ ((𝐹:ℝ⟶(0[,]+∞) ∧ 𝐺:ℝ⟶(0[,]+∞) ∧ 𝐹 ∘r ≤ 𝐺) → ∀ℎ ∈ dom ∫1(ℎ ∘r ≤ 𝐹 → (∫1‘ℎ) ≤ (∫2‘𝐺))) |
30 | simp1 1136 | . . 3 ⊢ ((𝐹:ℝ⟶(0[,]+∞) ∧ 𝐺:ℝ⟶(0[,]+∞) ∧ 𝐹 ∘r ≤ 𝐺) → 𝐹:ℝ⟶(0[,]+∞)) | |
31 | itg2cl 25787 | . . . 4 ⊢ (𝐺:ℝ⟶(0[,]+∞) → (∫2‘𝐺) ∈ ℝ*) | |
32 | 31 | 3ad2ant2 1134 | . . 3 ⊢ ((𝐹:ℝ⟶(0[,]+∞) ∧ 𝐺:ℝ⟶(0[,]+∞) ∧ 𝐹 ∘r ≤ 𝐺) → (∫2‘𝐺) ∈ ℝ*) |
33 | itg2leub 25789 | . . 3 ⊢ ((𝐹:ℝ⟶(0[,]+∞) ∧ (∫2‘𝐺) ∈ ℝ*) → ((∫2‘𝐹) ≤ (∫2‘𝐺) ↔ ∀ℎ ∈ dom ∫1(ℎ ∘r ≤ 𝐹 → (∫1‘ℎ) ≤ (∫2‘𝐺)))) | |
34 | 30, 32, 33 | syl2anc 583 | . 2 ⊢ ((𝐹:ℝ⟶(0[,]+∞) ∧ 𝐺:ℝ⟶(0[,]+∞) ∧ 𝐹 ∘r ≤ 𝐺) → ((∫2‘𝐹) ≤ (∫2‘𝐺) ↔ ∀ℎ ∈ dom ∫1(ℎ ∘r ≤ 𝐹 → (∫1‘ℎ) ≤ (∫2‘𝐺)))) |
35 | 29, 34 | mpbird 257 | 1 ⊢ ((𝐹:ℝ⟶(0[,]+∞) ∧ 𝐺:ℝ⟶(0[,]+∞) ∧ 𝐹 ∘r ≤ 𝐺) → (∫2‘𝐹) ≤ (∫2‘𝐺)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∧ w3a 1087 ∈ wcel 2108 ∀wral 3067 Vcvv 3488 ⊆ wss 3976 class class class wbr 5166 dom cdm 5700 ⟶wf 6569 ‘cfv 6573 (class class class)co 7448 ∘r cofr 7713 ℝcr 11183 0cc0 11184 +∞cpnf 11321 ℝ*cxr 11323 ≤ cle 11325 [,]cicc 13410 ∫1citg1 25669 ∫2citg2 25670 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-rep 5303 ax-sep 5317 ax-nul 5324 ax-pow 5383 ax-pr 5447 ax-un 7770 ax-inf2 9710 ax-cnex 11240 ax-resscn 11241 ax-1cn 11242 ax-icn 11243 ax-addcl 11244 ax-addrcl 11245 ax-mulcl 11246 ax-mulrcl 11247 ax-mulcom 11248 ax-addass 11249 ax-mulass 11250 ax-distr 11251 ax-i2m1 11252 ax-1ne0 11253 ax-1rid 11254 ax-rnegex 11255 ax-rrecex 11256 ax-cnre 11257 ax-pre-lttri 11258 ax-pre-lttrn 11259 ax-pre-ltadd 11260 ax-pre-mulgt0 11261 ax-pre-sup 11262 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3or 1088 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-nel 3053 df-ral 3068 df-rex 3077 df-rmo 3388 df-reu 3389 df-rab 3444 df-v 3490 df-sbc 3805 df-csb 3922 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-pss 3996 df-nul 4353 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-int 4971 df-iun 5017 df-br 5167 df-opab 5229 df-mpt 5250 df-tr 5284 df-id 5593 df-eprel 5599 df-po 5607 df-so 5608 df-fr 5652 df-se 5653 df-we 5654 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-res 5712 df-ima 5713 df-pred 6332 df-ord 6398 df-on 6399 df-lim 6400 df-suc 6401 df-iota 6525 df-fun 6575 df-fn 6576 df-f 6577 df-f1 6578 df-fo 6579 df-f1o 6580 df-fv 6581 df-isom 6582 df-riota 7404 df-ov 7451 df-oprab 7452 df-mpo 7453 df-of 7714 df-ofr 7715 df-om 7904 df-1st 8030 df-2nd 8031 df-frecs 8322 df-wrecs 8353 df-recs 8427 df-rdg 8466 df-1o 8522 df-2o 8523 df-er 8763 df-map 8886 df-pm 8887 df-en 9004 df-dom 9005 df-sdom 9006 df-fin 9007 df-sup 9511 df-inf 9512 df-oi 9579 df-dju 9970 df-card 10008 df-pnf 11326 df-mnf 11327 df-xr 11328 df-ltxr 11329 df-le 11330 df-sub 11522 df-neg 11523 df-div 11948 df-nn 12294 df-2 12356 df-3 12357 df-n0 12554 df-z 12640 df-uz 12904 df-q 13014 df-rp 13058 df-xadd 13176 df-ioo 13411 df-ico 13413 df-icc 13414 df-fz 13568 df-fzo 13712 df-fl 13843 df-seq 14053 df-exp 14113 df-hash 14380 df-cj 15148 df-re 15149 df-im 15150 df-sqrt 15284 df-abs 15285 df-clim 15534 df-sum 15735 df-xmet 21380 df-met 21381 df-ovol 25518 df-vol 25519 df-mbf 25673 df-itg1 25674 df-itg2 25675 |
This theorem is referenced by: itg2const2 25796 itg2monolem1 25805 itg2mono 25808 itg2gt0 25815 itg2cnlem2 25817 iblss 25860 itgle 25865 ibladdlem 25875 iblabs 25884 iblabsr 25885 iblmulc2 25886 bddmulibl 25894 bddiblnc 25897 itg2gt0cn 37635 ibladdnclem 37636 iblabsnc 37644 iblmulc2nc 37645 ftc1anclem4 37656 ftc1anclem6 37658 ftc1anclem7 37659 ftc1anclem8 37660 ftc1anc 37661 |
Copyright terms: Public domain | W3C validator |