MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  itg2le Structured version   Visualization version   GIF version

Theorem itg2le 24902
Description: If one function dominates another, then the integral of the larger is also larger. (Contributed by Mario Carneiro, 28-Jun-2014.)
Assertion
Ref Expression
itg2le ((𝐹:ℝ⟶(0[,]+∞) ∧ 𝐺:ℝ⟶(0[,]+∞) ∧ 𝐹r𝐺) → (∫2𝐹) ≤ (∫2𝐺))

Proof of Theorem itg2le
Dummy variables 𝑥 𝑧 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 reex 10963 . . . . . . . . . 10 ℝ ∈ V
21a1i 11 . . . . . . . . 9 (((𝐹:ℝ⟶(0[,]+∞) ∧ 𝐺:ℝ⟶(0[,]+∞)) ∧ ∈ dom ∫1) → ℝ ∈ V)
3 i1ff 24838 . . . . . . . . . . 11 ( ∈ dom ∫1:ℝ⟶ℝ)
43adantl 482 . . . . . . . . . 10 (((𝐹:ℝ⟶(0[,]+∞) ∧ 𝐺:ℝ⟶(0[,]+∞)) ∧ ∈ dom ∫1) → :ℝ⟶ℝ)
5 ressxr 11020 . . . . . . . . . 10 ℝ ⊆ ℝ*
6 fss 6615 . . . . . . . . . 10 ((:ℝ⟶ℝ ∧ ℝ ⊆ ℝ*) → :ℝ⟶ℝ*)
74, 5, 6sylancl 586 . . . . . . . . 9 (((𝐹:ℝ⟶(0[,]+∞) ∧ 𝐺:ℝ⟶(0[,]+∞)) ∧ ∈ dom ∫1) → :ℝ⟶ℝ*)
8 simpll 764 . . . . . . . . . 10 (((𝐹:ℝ⟶(0[,]+∞) ∧ 𝐺:ℝ⟶(0[,]+∞)) ∧ ∈ dom ∫1) → 𝐹:ℝ⟶(0[,]+∞))
9 iccssxr 13161 . . . . . . . . . 10 (0[,]+∞) ⊆ ℝ*
10 fss 6615 . . . . . . . . . 10 ((𝐹:ℝ⟶(0[,]+∞) ∧ (0[,]+∞) ⊆ ℝ*) → 𝐹:ℝ⟶ℝ*)
118, 9, 10sylancl 586 . . . . . . . . 9 (((𝐹:ℝ⟶(0[,]+∞) ∧ 𝐺:ℝ⟶(0[,]+∞)) ∧ ∈ dom ∫1) → 𝐹:ℝ⟶ℝ*)
12 simplr 766 . . . . . . . . . 10 (((𝐹:ℝ⟶(0[,]+∞) ∧ 𝐺:ℝ⟶(0[,]+∞)) ∧ ∈ dom ∫1) → 𝐺:ℝ⟶(0[,]+∞))
13 fss 6615 . . . . . . . . . 10 ((𝐺:ℝ⟶(0[,]+∞) ∧ (0[,]+∞) ⊆ ℝ*) → 𝐺:ℝ⟶ℝ*)
1412, 9, 13sylancl 586 . . . . . . . . 9 (((𝐹:ℝ⟶(0[,]+∞) ∧ 𝐺:ℝ⟶(0[,]+∞)) ∧ ∈ dom ∫1) → 𝐺:ℝ⟶ℝ*)
15 xrletr 12891 . . . . . . . . . 10 ((𝑥 ∈ ℝ*𝑦 ∈ ℝ*𝑧 ∈ ℝ*) → ((𝑥𝑦𝑦𝑧) → 𝑥𝑧))
1615adantl 482 . . . . . . . . 9 ((((𝐹:ℝ⟶(0[,]+∞) ∧ 𝐺:ℝ⟶(0[,]+∞)) ∧ ∈ dom ∫1) ∧ (𝑥 ∈ ℝ*𝑦 ∈ ℝ*𝑧 ∈ ℝ*)) → ((𝑥𝑦𝑦𝑧) → 𝑥𝑧))
172, 7, 11, 14, 16caoftrn 7565 . . . . . . . 8 (((𝐹:ℝ⟶(0[,]+∞) ∧ 𝐺:ℝ⟶(0[,]+∞)) ∧ ∈ dom ∫1) → ((r𝐹𝐹r𝐺) → r𝐺))
18 simplr 766 . . . . . . . . . 10 (((𝐹:ℝ⟶(0[,]+∞) ∧ 𝐺:ℝ⟶(0[,]+∞)) ∧ ( ∈ dom ∫1r𝐺)) → 𝐺:ℝ⟶(0[,]+∞))
19 simprl 768 . . . . . . . . . 10 (((𝐹:ℝ⟶(0[,]+∞) ∧ 𝐺:ℝ⟶(0[,]+∞)) ∧ ( ∈ dom ∫1r𝐺)) → ∈ dom ∫1)
20 simprr 770 . . . . . . . . . 10 (((𝐹:ℝ⟶(0[,]+∞) ∧ 𝐺:ℝ⟶(0[,]+∞)) ∧ ( ∈ dom ∫1r𝐺)) → r𝐺)
21 itg2ub 24896 . . . . . . . . . 10 ((𝐺:ℝ⟶(0[,]+∞) ∧ ∈ dom ∫1r𝐺) → (∫1) ≤ (∫2𝐺))
2218, 19, 20, 21syl3anc 1370 . . . . . . . . 9 (((𝐹:ℝ⟶(0[,]+∞) ∧ 𝐺:ℝ⟶(0[,]+∞)) ∧ ( ∈ dom ∫1r𝐺)) → (∫1) ≤ (∫2𝐺))
2322expr 457 . . . . . . . 8 (((𝐹:ℝ⟶(0[,]+∞) ∧ 𝐺:ℝ⟶(0[,]+∞)) ∧ ∈ dom ∫1) → (r𝐺 → (∫1) ≤ (∫2𝐺)))
2417, 23syld 47 . . . . . . 7 (((𝐹:ℝ⟶(0[,]+∞) ∧ 𝐺:ℝ⟶(0[,]+∞)) ∧ ∈ dom ∫1) → ((r𝐹𝐹r𝐺) → (∫1) ≤ (∫2𝐺)))
2524ancomsd 466 . . . . . 6 (((𝐹:ℝ⟶(0[,]+∞) ∧ 𝐺:ℝ⟶(0[,]+∞)) ∧ ∈ dom ∫1) → ((𝐹r𝐺r𝐹) → (∫1) ≤ (∫2𝐺)))
2625exp4b 431 . . . . 5 ((𝐹:ℝ⟶(0[,]+∞) ∧ 𝐺:ℝ⟶(0[,]+∞)) → ( ∈ dom ∫1 → (𝐹r𝐺 → (r𝐹 → (∫1) ≤ (∫2𝐺)))))
2726com23 86 . . . 4 ((𝐹:ℝ⟶(0[,]+∞) ∧ 𝐺:ℝ⟶(0[,]+∞)) → (𝐹r𝐺 → ( ∈ dom ∫1 → (r𝐹 → (∫1) ≤ (∫2𝐺)))))
28273impia 1116 . . 3 ((𝐹:ℝ⟶(0[,]+∞) ∧ 𝐺:ℝ⟶(0[,]+∞) ∧ 𝐹r𝐺) → ( ∈ dom ∫1 → (r𝐹 → (∫1) ≤ (∫2𝐺))))
2928ralrimiv 3109 . 2 ((𝐹:ℝ⟶(0[,]+∞) ∧ 𝐺:ℝ⟶(0[,]+∞) ∧ 𝐹r𝐺) → ∀ ∈ dom ∫1(r𝐹 → (∫1) ≤ (∫2𝐺)))
30 simp1 1135 . . 3 ((𝐹:ℝ⟶(0[,]+∞) ∧ 𝐺:ℝ⟶(0[,]+∞) ∧ 𝐹r𝐺) → 𝐹:ℝ⟶(0[,]+∞))
31 itg2cl 24895 . . . 4 (𝐺:ℝ⟶(0[,]+∞) → (∫2𝐺) ∈ ℝ*)
32313ad2ant2 1133 . . 3 ((𝐹:ℝ⟶(0[,]+∞) ∧ 𝐺:ℝ⟶(0[,]+∞) ∧ 𝐹r𝐺) → (∫2𝐺) ∈ ℝ*)
33 itg2leub 24897 . . 3 ((𝐹:ℝ⟶(0[,]+∞) ∧ (∫2𝐺) ∈ ℝ*) → ((∫2𝐹) ≤ (∫2𝐺) ↔ ∀ ∈ dom ∫1(r𝐹 → (∫1) ≤ (∫2𝐺))))
3430, 32, 33syl2anc 584 . 2 ((𝐹:ℝ⟶(0[,]+∞) ∧ 𝐺:ℝ⟶(0[,]+∞) ∧ 𝐹r𝐺) → ((∫2𝐹) ≤ (∫2𝐺) ↔ ∀ ∈ dom ∫1(r𝐹 → (∫1) ≤ (∫2𝐺))))
3529, 34mpbird 256 1 ((𝐹:ℝ⟶(0[,]+∞) ∧ 𝐺:ℝ⟶(0[,]+∞) ∧ 𝐹r𝐺) → (∫2𝐹) ≤ (∫2𝐺))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396  w3a 1086  wcel 2110  wral 3066  Vcvv 3431  wss 3892   class class class wbr 5079  dom cdm 5590  wf 6428  cfv 6432  (class class class)co 7271  r cofr 7526  cr 10871  0cc0 10872  +∞cpnf 11007  *cxr 11009  cle 11011  [,]cicc 13081  1citg1 24777  2citg2 24778
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1802  ax-4 1816  ax-5 1917  ax-6 1975  ax-7 2015  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2158  ax-12 2175  ax-ext 2711  ax-rep 5214  ax-sep 5227  ax-nul 5234  ax-pow 5292  ax-pr 5356  ax-un 7582  ax-inf2 9377  ax-cnex 10928  ax-resscn 10929  ax-1cn 10930  ax-icn 10931  ax-addcl 10932  ax-addrcl 10933  ax-mulcl 10934  ax-mulrcl 10935  ax-mulcom 10936  ax-addass 10937  ax-mulass 10938  ax-distr 10939  ax-i2m1 10940  ax-1ne0 10941  ax-1rid 10942  ax-rnegex 10943  ax-rrecex 10944  ax-cnre 10945  ax-pre-lttri 10946  ax-pre-lttrn 10947  ax-pre-ltadd 10948  ax-pre-mulgt0 10949  ax-pre-sup 10950
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1545  df-fal 1555  df-ex 1787  df-nf 1791  df-sb 2072  df-mo 2542  df-eu 2571  df-clab 2718  df-cleq 2732  df-clel 2818  df-nfc 2891  df-ne 2946  df-nel 3052  df-ral 3071  df-rex 3072  df-reu 3073  df-rmo 3074  df-rab 3075  df-v 3433  df-sbc 3721  df-csb 3838  df-dif 3895  df-un 3897  df-in 3899  df-ss 3909  df-pss 3911  df-nul 4263  df-if 4466  df-pw 4541  df-sn 4568  df-pr 4570  df-op 4574  df-uni 4846  df-int 4886  df-iun 4932  df-br 5080  df-opab 5142  df-mpt 5163  df-tr 5197  df-id 5490  df-eprel 5496  df-po 5504  df-so 5505  df-fr 5545  df-se 5546  df-we 5547  df-xp 5596  df-rel 5597  df-cnv 5598  df-co 5599  df-dm 5600  df-rn 5601  df-res 5602  df-ima 5603  df-pred 6201  df-ord 6268  df-on 6269  df-lim 6270  df-suc 6271  df-iota 6390  df-fun 6434  df-fn 6435  df-f 6436  df-f1 6437  df-fo 6438  df-f1o 6439  df-fv 6440  df-isom 6441  df-riota 7228  df-ov 7274  df-oprab 7275  df-mpo 7276  df-of 7527  df-ofr 7528  df-om 7707  df-1st 7824  df-2nd 7825  df-frecs 8088  df-wrecs 8119  df-recs 8193  df-rdg 8232  df-1o 8288  df-2o 8289  df-er 8481  df-map 8600  df-pm 8601  df-en 8717  df-dom 8718  df-sdom 8719  df-fin 8720  df-sup 9179  df-inf 9180  df-oi 9247  df-dju 9660  df-card 9698  df-pnf 11012  df-mnf 11013  df-xr 11014  df-ltxr 11015  df-le 11016  df-sub 11207  df-neg 11208  df-div 11633  df-nn 11974  df-2 12036  df-3 12037  df-n0 12234  df-z 12320  df-uz 12582  df-q 12688  df-rp 12730  df-xadd 12848  df-ioo 13082  df-ico 13084  df-icc 13085  df-fz 13239  df-fzo 13382  df-fl 13510  df-seq 13720  df-exp 13781  df-hash 14043  df-cj 14808  df-re 14809  df-im 14810  df-sqrt 14944  df-abs 14945  df-clim 15195  df-sum 15396  df-xmet 20588  df-met 20589  df-ovol 24626  df-vol 24627  df-mbf 24781  df-itg1 24782  df-itg2 24783
This theorem is referenced by:  itg2const2  24904  itg2monolem1  24913  itg2mono  24916  itg2gt0  24923  itg2cnlem2  24925  iblss  24967  itgle  24972  ibladdlem  24982  iblabs  24991  iblabsr  24992  iblmulc2  24993  bddmulibl  25001  bddiblnc  25004  itg2gt0cn  35828  ibladdnclem  35829  iblabsnc  35837  iblmulc2nc  35838  ftc1anclem4  35849  ftc1anclem6  35851  ftc1anclem7  35852  ftc1anclem8  35853  ftc1anc  35854
  Copyright terms: Public domain W3C validator