MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ccatvalfn Structured version   Visualization version   GIF version

Theorem ccatvalfn 13927
Description: The concatenation of two words is a function over the half-open integer range having the sum of the lengths of the word as length. (Contributed by Alexander van der Vekens, 30-Mar-2018.)
Assertion
Ref Expression
ccatvalfn ((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) → (𝐴 ++ 𝐵) Fn (0..^((♯‘𝐴) + (♯‘𝐵))))

Proof of Theorem ccatvalfn
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 ccatfval 13917 . 2 ((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) → (𝐴 ++ 𝐵) = (𝑥 ∈ (0..^((♯‘𝐴) + (♯‘𝐵))) ↦ if(𝑥 ∈ (0..^(♯‘𝐴)), (𝐴𝑥), (𝐵‘(𝑥 − (♯‘𝐴))))))
2 fvex 6676 . . . . 5 (𝐴𝑥) ∈ V
3 fvex 6676 . . . . 5 (𝐵‘(𝑥 − (♯‘𝐴))) ∈ V
42, 3ifex 4513 . . . 4 if(𝑥 ∈ (0..^(♯‘𝐴)), (𝐴𝑥), (𝐵‘(𝑥 − (♯‘𝐴)))) ∈ V
5 eqid 2819 . . . 4 (𝑥 ∈ (0..^((♯‘𝐴) + (♯‘𝐵))) ↦ if(𝑥 ∈ (0..^(♯‘𝐴)), (𝐴𝑥), (𝐵‘(𝑥 − (♯‘𝐴))))) = (𝑥 ∈ (0..^((♯‘𝐴) + (♯‘𝐵))) ↦ if(𝑥 ∈ (0..^(♯‘𝐴)), (𝐴𝑥), (𝐵‘(𝑥 − (♯‘𝐴)))))
64, 5fnmpti 6484 . . 3 (𝑥 ∈ (0..^((♯‘𝐴) + (♯‘𝐵))) ↦ if(𝑥 ∈ (0..^(♯‘𝐴)), (𝐴𝑥), (𝐵‘(𝑥 − (♯‘𝐴))))) Fn (0..^((♯‘𝐴) + (♯‘𝐵)))
7 fneq1 6437 . . 3 ((𝐴 ++ 𝐵) = (𝑥 ∈ (0..^((♯‘𝐴) + (♯‘𝐵))) ↦ if(𝑥 ∈ (0..^(♯‘𝐴)), (𝐴𝑥), (𝐵‘(𝑥 − (♯‘𝐴))))) → ((𝐴 ++ 𝐵) Fn (0..^((♯‘𝐴) + (♯‘𝐵))) ↔ (𝑥 ∈ (0..^((♯‘𝐴) + (♯‘𝐵))) ↦ if(𝑥 ∈ (0..^(♯‘𝐴)), (𝐴𝑥), (𝐵‘(𝑥 − (♯‘𝐴))))) Fn (0..^((♯‘𝐴) + (♯‘𝐵)))))
86, 7mpbiri 260 . 2 ((𝐴 ++ 𝐵) = (𝑥 ∈ (0..^((♯‘𝐴) + (♯‘𝐵))) ↦ if(𝑥 ∈ (0..^(♯‘𝐴)), (𝐴𝑥), (𝐵‘(𝑥 − (♯‘𝐴))))) → (𝐴 ++ 𝐵) Fn (0..^((♯‘𝐴) + (♯‘𝐵))))
91, 8syl 17 1 ((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) → (𝐴 ++ 𝐵) Fn (0..^((♯‘𝐴) + (♯‘𝐵))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 398   = wceq 1530  wcel 2107  ifcif 4465  cmpt 5137   Fn wfn 6343  cfv 6348  (class class class)co 7148  0cc0 10529   + caddc 10532  cmin 10862  ..^cfzo 13025  chash 13682  Word cword 13853   ++ cconcat 13914
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1904  ax-6 1963  ax-7 2008  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2153  ax-12 2169  ax-ext 2791  ax-rep 5181  ax-sep 5194  ax-nul 5201  ax-pr 5320
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3an 1083  df-tru 1533  df-ex 1774  df-nf 1778  df-sb 2063  df-mo 2616  df-eu 2648  df-clab 2798  df-cleq 2812  df-clel 2891  df-nfc 2961  df-ne 3015  df-ral 3141  df-rex 3142  df-reu 3143  df-rab 3145  df-v 3495  df-sbc 3771  df-csb 3882  df-dif 3937  df-un 3939  df-in 3941  df-ss 3950  df-nul 4290  df-if 4466  df-sn 4560  df-pr 4562  df-op 4566  df-uni 4831  df-iun 4912  df-br 5058  df-opab 5120  df-mpt 5138  df-id 5453  df-xp 5554  df-rel 5555  df-cnv 5556  df-co 5557  df-dm 5558  df-rn 5559  df-res 5560  df-ima 5561  df-iota 6307  df-fun 6350  df-fn 6351  df-f 6352  df-f1 6353  df-fo 6354  df-f1o 6355  df-fv 6356  df-ov 7151  df-oprab 7152  df-mpo 7153  df-concat 13915
This theorem is referenced by:  ccatlid  13932  ccatrid  13933  ccatrn  13935  pfxccat1  14056  pfxccatin12  14087  frlmvscadiccat  39125
  Copyright terms: Public domain W3C validator