![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > ccatvalfn | Structured version Visualization version GIF version |
Description: The concatenation of two words is a function over the half-open integer range having the sum of the lengths of the word as length. (Contributed by Alexander van der Vekens, 30-Mar-2018.) |
Ref | Expression |
---|---|
ccatvalfn | ⊢ ((𝐴 ∈ Word 𝑉 ∧ 𝐵 ∈ Word 𝑉) → (𝐴 ++ 𝐵) Fn (0..^((♯‘𝐴) + (♯‘𝐵)))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ccatfval 14528 | . 2 ⊢ ((𝐴 ∈ Word 𝑉 ∧ 𝐵 ∈ Word 𝑉) → (𝐴 ++ 𝐵) = (𝑥 ∈ (0..^((♯‘𝐴) + (♯‘𝐵))) ↦ if(𝑥 ∈ (0..^(♯‘𝐴)), (𝐴‘𝑥), (𝐵‘(𝑥 − (♯‘𝐴)))))) | |
2 | fvex 6905 | . . . . 5 ⊢ (𝐴‘𝑥) ∈ V | |
3 | fvex 6905 | . . . . 5 ⊢ (𝐵‘(𝑥 − (♯‘𝐴))) ∈ V | |
4 | 2, 3 | ifex 4579 | . . . 4 ⊢ if(𝑥 ∈ (0..^(♯‘𝐴)), (𝐴‘𝑥), (𝐵‘(𝑥 − (♯‘𝐴)))) ∈ V |
5 | eqid 2731 | . . . 4 ⊢ (𝑥 ∈ (0..^((♯‘𝐴) + (♯‘𝐵))) ↦ if(𝑥 ∈ (0..^(♯‘𝐴)), (𝐴‘𝑥), (𝐵‘(𝑥 − (♯‘𝐴))))) = (𝑥 ∈ (0..^((♯‘𝐴) + (♯‘𝐵))) ↦ if(𝑥 ∈ (0..^(♯‘𝐴)), (𝐴‘𝑥), (𝐵‘(𝑥 − (♯‘𝐴))))) | |
6 | 4, 5 | fnmpti 6694 | . . 3 ⊢ (𝑥 ∈ (0..^((♯‘𝐴) + (♯‘𝐵))) ↦ if(𝑥 ∈ (0..^(♯‘𝐴)), (𝐴‘𝑥), (𝐵‘(𝑥 − (♯‘𝐴))))) Fn (0..^((♯‘𝐴) + (♯‘𝐵))) |
7 | fneq1 6641 | . . 3 ⊢ ((𝐴 ++ 𝐵) = (𝑥 ∈ (0..^((♯‘𝐴) + (♯‘𝐵))) ↦ if(𝑥 ∈ (0..^(♯‘𝐴)), (𝐴‘𝑥), (𝐵‘(𝑥 − (♯‘𝐴))))) → ((𝐴 ++ 𝐵) Fn (0..^((♯‘𝐴) + (♯‘𝐵))) ↔ (𝑥 ∈ (0..^((♯‘𝐴) + (♯‘𝐵))) ↦ if(𝑥 ∈ (0..^(♯‘𝐴)), (𝐴‘𝑥), (𝐵‘(𝑥 − (♯‘𝐴))))) Fn (0..^((♯‘𝐴) + (♯‘𝐵))))) | |
8 | 6, 7 | mpbiri 257 | . 2 ⊢ ((𝐴 ++ 𝐵) = (𝑥 ∈ (0..^((♯‘𝐴) + (♯‘𝐵))) ↦ if(𝑥 ∈ (0..^(♯‘𝐴)), (𝐴‘𝑥), (𝐵‘(𝑥 − (♯‘𝐴))))) → (𝐴 ++ 𝐵) Fn (0..^((♯‘𝐴) + (♯‘𝐵)))) |
9 | 1, 8 | syl 17 | 1 ⊢ ((𝐴 ∈ Word 𝑉 ∧ 𝐵 ∈ Word 𝑉) → (𝐴 ++ 𝐵) Fn (0..^((♯‘𝐴) + (♯‘𝐵)))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2105 ifcif 4529 ↦ cmpt 5232 Fn wfn 6539 ‘cfv 6544 (class class class)co 7412 0cc0 11113 + caddc 11116 − cmin 11449 ..^cfzo 13632 ♯chash 14295 Word cword 14469 ++ cconcat 14525 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-10 2136 ax-11 2153 ax-12 2170 ax-ext 2702 ax-rep 5286 ax-sep 5300 ax-nul 5307 ax-pr 5428 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2533 df-eu 2562 df-clab 2709 df-cleq 2723 df-clel 2809 df-nfc 2884 df-ne 2940 df-ral 3061 df-rex 3070 df-reu 3376 df-rab 3432 df-v 3475 df-sbc 3779 df-csb 3895 df-dif 3952 df-un 3954 df-in 3956 df-ss 3966 df-nul 4324 df-if 4530 df-sn 4630 df-pr 4632 df-op 4636 df-uni 4910 df-iun 5000 df-br 5150 df-opab 5212 df-mpt 5233 df-id 5575 df-xp 5683 df-rel 5684 df-cnv 5685 df-co 5686 df-dm 5687 df-rn 5688 df-res 5689 df-ima 5690 df-iota 6496 df-fun 6546 df-fn 6547 df-f 6548 df-f1 6549 df-fo 6550 df-f1o 6551 df-fv 6552 df-ov 7415 df-oprab 7416 df-mpo 7417 df-concat 14526 |
This theorem is referenced by: ccatlid 14541 ccatrid 14542 ccatrn 14544 pfxccat1 14657 pfxccatin12 14688 frlmvscadiccat 41387 |
Copyright terms: Public domain | W3C validator |