Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > ccatvalfn | Structured version Visualization version GIF version |
Description: The concatenation of two words is a function over the half-open integer range having the sum of the lengths of the word as length. (Contributed by Alexander van der Vekens, 30-Mar-2018.) |
Ref | Expression |
---|---|
ccatvalfn | ⊢ ((𝐴 ∈ Word 𝑉 ∧ 𝐵 ∈ Word 𝑉) → (𝐴 ++ 𝐵) Fn (0..^((♯‘𝐴) + (♯‘𝐵)))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ccatfval 14015 | . 2 ⊢ ((𝐴 ∈ Word 𝑉 ∧ 𝐵 ∈ Word 𝑉) → (𝐴 ++ 𝐵) = (𝑥 ∈ (0..^((♯‘𝐴) + (♯‘𝐵))) ↦ if(𝑥 ∈ (0..^(♯‘𝐴)), (𝐴‘𝑥), (𝐵‘(𝑥 − (♯‘𝐴)))))) | |
2 | fvex 6688 | . . . . 5 ⊢ (𝐴‘𝑥) ∈ V | |
3 | fvex 6688 | . . . . 5 ⊢ (𝐵‘(𝑥 − (♯‘𝐴))) ∈ V | |
4 | 2, 3 | ifex 4465 | . . . 4 ⊢ if(𝑥 ∈ (0..^(♯‘𝐴)), (𝐴‘𝑥), (𝐵‘(𝑥 − (♯‘𝐴)))) ∈ V |
5 | eqid 2738 | . . . 4 ⊢ (𝑥 ∈ (0..^((♯‘𝐴) + (♯‘𝐵))) ↦ if(𝑥 ∈ (0..^(♯‘𝐴)), (𝐴‘𝑥), (𝐵‘(𝑥 − (♯‘𝐴))))) = (𝑥 ∈ (0..^((♯‘𝐴) + (♯‘𝐵))) ↦ if(𝑥 ∈ (0..^(♯‘𝐴)), (𝐴‘𝑥), (𝐵‘(𝑥 − (♯‘𝐴))))) | |
6 | 4, 5 | fnmpti 6481 | . . 3 ⊢ (𝑥 ∈ (0..^((♯‘𝐴) + (♯‘𝐵))) ↦ if(𝑥 ∈ (0..^(♯‘𝐴)), (𝐴‘𝑥), (𝐵‘(𝑥 − (♯‘𝐴))))) Fn (0..^((♯‘𝐴) + (♯‘𝐵))) |
7 | fneq1 6430 | . . 3 ⊢ ((𝐴 ++ 𝐵) = (𝑥 ∈ (0..^((♯‘𝐴) + (♯‘𝐵))) ↦ if(𝑥 ∈ (0..^(♯‘𝐴)), (𝐴‘𝑥), (𝐵‘(𝑥 − (♯‘𝐴))))) → ((𝐴 ++ 𝐵) Fn (0..^((♯‘𝐴) + (♯‘𝐵))) ↔ (𝑥 ∈ (0..^((♯‘𝐴) + (♯‘𝐵))) ↦ if(𝑥 ∈ (0..^(♯‘𝐴)), (𝐴‘𝑥), (𝐵‘(𝑥 − (♯‘𝐴))))) Fn (0..^((♯‘𝐴) + (♯‘𝐵))))) | |
8 | 6, 7 | mpbiri 261 | . 2 ⊢ ((𝐴 ++ 𝐵) = (𝑥 ∈ (0..^((♯‘𝐴) + (♯‘𝐵))) ↦ if(𝑥 ∈ (0..^(♯‘𝐴)), (𝐴‘𝑥), (𝐵‘(𝑥 − (♯‘𝐴))))) → (𝐴 ++ 𝐵) Fn (0..^((♯‘𝐴) + (♯‘𝐵)))) |
9 | 1, 8 | syl 17 | 1 ⊢ ((𝐴 ∈ Word 𝑉 ∧ 𝐵 ∈ Word 𝑉) → (𝐴 ++ 𝐵) Fn (0..^((♯‘𝐴) + (♯‘𝐵)))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 399 = wceq 1542 ∈ wcel 2113 ifcif 4415 ↦ cmpt 5111 Fn wfn 6335 ‘cfv 6340 (class class class)co 7171 0cc0 10616 + caddc 10619 − cmin 10949 ..^cfzo 13125 ♯chash 13783 Word cword 13956 ++ cconcat 14012 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1802 ax-4 1816 ax-5 1916 ax-6 1974 ax-7 2019 ax-8 2115 ax-9 2123 ax-10 2144 ax-11 2161 ax-12 2178 ax-ext 2710 ax-rep 5155 ax-sep 5168 ax-nul 5175 ax-pr 5297 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 847 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1787 df-nf 1791 df-sb 2074 df-mo 2540 df-eu 2570 df-clab 2717 df-cleq 2730 df-clel 2811 df-nfc 2881 df-ne 2935 df-ral 3058 df-rex 3059 df-reu 3060 df-rab 3062 df-v 3400 df-sbc 3683 df-csb 3792 df-dif 3847 df-un 3849 df-in 3851 df-ss 3861 df-nul 4213 df-if 4416 df-sn 4518 df-pr 4520 df-op 4524 df-uni 4798 df-iun 4884 df-br 5032 df-opab 5094 df-mpt 5112 df-id 5430 df-xp 5532 df-rel 5533 df-cnv 5534 df-co 5535 df-dm 5536 df-rn 5537 df-res 5538 df-ima 5539 df-iota 6298 df-fun 6342 df-fn 6343 df-f 6344 df-f1 6345 df-fo 6346 df-f1o 6347 df-fv 6348 df-ov 7174 df-oprab 7175 df-mpo 7176 df-concat 14013 |
This theorem is referenced by: ccatlid 14030 ccatrid 14031 ccatrn 14033 pfxccat1 14154 pfxccatin12 14185 frlmvscadiccat 39811 |
Copyright terms: Public domain | W3C validator |