MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ccatvalfn Structured version   Visualization version   GIF version

Theorem ccatvalfn 14480
Description: The concatenation of two words is a function over the half-open integer range having the sum of the lengths of the word as length. (Contributed by Alexander van der Vekens, 30-Mar-2018.)
Assertion
Ref Expression
ccatvalfn ((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) → (𝐴 ++ 𝐵) Fn (0..^((♯‘𝐴) + (♯‘𝐵))))

Proof of Theorem ccatvalfn
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 ccatfval 14472 . 2 ((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) → (𝐴 ++ 𝐵) = (𝑥 ∈ (0..^((♯‘𝐴) + (♯‘𝐵))) ↦ if(𝑥 ∈ (0..^(♯‘𝐴)), (𝐴𝑥), (𝐵‘(𝑥 − (♯‘𝐴))))))
2 fvex 6830 . . . . 5 (𝐴𝑥) ∈ V
3 fvex 6830 . . . . 5 (𝐵‘(𝑥 − (♯‘𝐴))) ∈ V
42, 3ifex 4524 . . . 4 if(𝑥 ∈ (0..^(♯‘𝐴)), (𝐴𝑥), (𝐵‘(𝑥 − (♯‘𝐴)))) ∈ V
5 eqid 2730 . . . 4 (𝑥 ∈ (0..^((♯‘𝐴) + (♯‘𝐵))) ↦ if(𝑥 ∈ (0..^(♯‘𝐴)), (𝐴𝑥), (𝐵‘(𝑥 − (♯‘𝐴))))) = (𝑥 ∈ (0..^((♯‘𝐴) + (♯‘𝐵))) ↦ if(𝑥 ∈ (0..^(♯‘𝐴)), (𝐴𝑥), (𝐵‘(𝑥 − (♯‘𝐴)))))
64, 5fnmpti 6620 . . 3 (𝑥 ∈ (0..^((♯‘𝐴) + (♯‘𝐵))) ↦ if(𝑥 ∈ (0..^(♯‘𝐴)), (𝐴𝑥), (𝐵‘(𝑥 − (♯‘𝐴))))) Fn (0..^((♯‘𝐴) + (♯‘𝐵)))
7 fneq1 6568 . . 3 ((𝐴 ++ 𝐵) = (𝑥 ∈ (0..^((♯‘𝐴) + (♯‘𝐵))) ↦ if(𝑥 ∈ (0..^(♯‘𝐴)), (𝐴𝑥), (𝐵‘(𝑥 − (♯‘𝐴))))) → ((𝐴 ++ 𝐵) Fn (0..^((♯‘𝐴) + (♯‘𝐵))) ↔ (𝑥 ∈ (0..^((♯‘𝐴) + (♯‘𝐵))) ↦ if(𝑥 ∈ (0..^(♯‘𝐴)), (𝐴𝑥), (𝐵‘(𝑥 − (♯‘𝐴))))) Fn (0..^((♯‘𝐴) + (♯‘𝐵)))))
86, 7mpbiri 258 . 2 ((𝐴 ++ 𝐵) = (𝑥 ∈ (0..^((♯‘𝐴) + (♯‘𝐵))) ↦ if(𝑥 ∈ (0..^(♯‘𝐴)), (𝐴𝑥), (𝐵‘(𝑥 − (♯‘𝐴))))) → (𝐴 ++ 𝐵) Fn (0..^((♯‘𝐴) + (♯‘𝐵))))
91, 8syl 17 1 ((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) → (𝐴 ++ 𝐵) Fn (0..^((♯‘𝐴) + (♯‘𝐵))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1541  wcel 2110  ifcif 4473  cmpt 5170   Fn wfn 6472  cfv 6477  (class class class)co 7341  0cc0 10998   + caddc 11001  cmin 11336  ..^cfzo 13546  chash 14229  Word cword 14412   ++ cconcat 14469
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2112  ax-9 2120  ax-10 2143  ax-11 2159  ax-12 2179  ax-ext 2702  ax-rep 5215  ax-sep 5232  ax-nul 5242  ax-pr 5368
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2067  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-ral 3046  df-rex 3055  df-reu 3345  df-rab 3394  df-v 3436  df-sbc 3740  df-csb 3849  df-dif 3903  df-un 3905  df-in 3907  df-ss 3917  df-nul 4282  df-if 4474  df-sn 4575  df-pr 4577  df-op 4581  df-uni 4858  df-iun 4941  df-br 5090  df-opab 5152  df-mpt 5171  df-id 5509  df-xp 5620  df-rel 5621  df-cnv 5622  df-co 5623  df-dm 5624  df-rn 5625  df-res 5626  df-ima 5627  df-iota 6433  df-fun 6479  df-fn 6480  df-f 6481  df-f1 6482  df-fo 6483  df-f1o 6484  df-fv 6485  df-ov 7344  df-oprab 7345  df-mpo 7346  df-concat 14470
This theorem is referenced by:  ccatlid  14486  ccatrid  14487  ccatrn  14489  pfxccat1  14601  pfxccatin12  14632  frlmvscadiccat  42518
  Copyright terms: Public domain W3C validator