Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > ccatlid | Structured version Visualization version GIF version |
Description: Concatenation of a word by the empty word on the left. (Contributed by Stefan O'Rear, 15-Aug-2015.) (Proof shortened by AV, 1-May-2020.) |
Ref | Expression |
---|---|
ccatlid | ⊢ (𝑆 ∈ Word 𝐵 → (∅ ++ 𝑆) = 𝑆) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | wrd0 14170 | . . . 4 ⊢ ∅ ∈ Word 𝐵 | |
2 | ccatvalfn 14214 | . . . 4 ⊢ ((∅ ∈ Word 𝐵 ∧ 𝑆 ∈ Word 𝐵) → (∅ ++ 𝑆) Fn (0..^((♯‘∅) + (♯‘𝑆)))) | |
3 | 1, 2 | mpan 686 | . . 3 ⊢ (𝑆 ∈ Word 𝐵 → (∅ ++ 𝑆) Fn (0..^((♯‘∅) + (♯‘𝑆)))) |
4 | hash0 14010 | . . . . . . . 8 ⊢ (♯‘∅) = 0 | |
5 | 4 | oveq1i 7265 | . . . . . . 7 ⊢ ((♯‘∅) + (♯‘𝑆)) = (0 + (♯‘𝑆)) |
6 | lencl 14164 | . . . . . . . . 9 ⊢ (𝑆 ∈ Word 𝐵 → (♯‘𝑆) ∈ ℕ0) | |
7 | 6 | nn0cnd 12225 | . . . . . . . 8 ⊢ (𝑆 ∈ Word 𝐵 → (♯‘𝑆) ∈ ℂ) |
8 | 7 | addid2d 11106 | . . . . . . 7 ⊢ (𝑆 ∈ Word 𝐵 → (0 + (♯‘𝑆)) = (♯‘𝑆)) |
9 | 5, 8 | eqtrid 2790 | . . . . . 6 ⊢ (𝑆 ∈ Word 𝐵 → ((♯‘∅) + (♯‘𝑆)) = (♯‘𝑆)) |
10 | 9 | eqcomd 2744 | . . . . 5 ⊢ (𝑆 ∈ Word 𝐵 → (♯‘𝑆) = ((♯‘∅) + (♯‘𝑆))) |
11 | 10 | oveq2d 7271 | . . . 4 ⊢ (𝑆 ∈ Word 𝐵 → (0..^(♯‘𝑆)) = (0..^((♯‘∅) + (♯‘𝑆)))) |
12 | 11 | fneq2d 6511 | . . 3 ⊢ (𝑆 ∈ Word 𝐵 → ((∅ ++ 𝑆) Fn (0..^(♯‘𝑆)) ↔ (∅ ++ 𝑆) Fn (0..^((♯‘∅) + (♯‘𝑆))))) |
13 | 3, 12 | mpbird 256 | . 2 ⊢ (𝑆 ∈ Word 𝐵 → (∅ ++ 𝑆) Fn (0..^(♯‘𝑆))) |
14 | wrdfn 14159 | . 2 ⊢ (𝑆 ∈ Word 𝐵 → 𝑆 Fn (0..^(♯‘𝑆))) | |
15 | 4 | a1i 11 | . . . . . . 7 ⊢ (𝑆 ∈ Word 𝐵 → (♯‘∅) = 0) |
16 | 15, 9 | oveq12d 7273 | . . . . . 6 ⊢ (𝑆 ∈ Word 𝐵 → ((♯‘∅)..^((♯‘∅) + (♯‘𝑆))) = (0..^(♯‘𝑆))) |
17 | 16 | eleq2d 2824 | . . . . 5 ⊢ (𝑆 ∈ Word 𝐵 → (𝑥 ∈ ((♯‘∅)..^((♯‘∅) + (♯‘𝑆))) ↔ 𝑥 ∈ (0..^(♯‘𝑆)))) |
18 | 17 | biimpar 477 | . . . 4 ⊢ ((𝑆 ∈ Word 𝐵 ∧ 𝑥 ∈ (0..^(♯‘𝑆))) → 𝑥 ∈ ((♯‘∅)..^((♯‘∅) + (♯‘𝑆)))) |
19 | ccatval2 14211 | . . . . 5 ⊢ ((∅ ∈ Word 𝐵 ∧ 𝑆 ∈ Word 𝐵 ∧ 𝑥 ∈ ((♯‘∅)..^((♯‘∅) + (♯‘𝑆)))) → ((∅ ++ 𝑆)‘𝑥) = (𝑆‘(𝑥 − (♯‘∅)))) | |
20 | 1, 19 | mp3an1 1446 | . . . 4 ⊢ ((𝑆 ∈ Word 𝐵 ∧ 𝑥 ∈ ((♯‘∅)..^((♯‘∅) + (♯‘𝑆)))) → ((∅ ++ 𝑆)‘𝑥) = (𝑆‘(𝑥 − (♯‘∅)))) |
21 | 18, 20 | syldan 590 | . . 3 ⊢ ((𝑆 ∈ Word 𝐵 ∧ 𝑥 ∈ (0..^(♯‘𝑆))) → ((∅ ++ 𝑆)‘𝑥) = (𝑆‘(𝑥 − (♯‘∅)))) |
22 | 4 | oveq2i 7266 | . . . . 5 ⊢ (𝑥 − (♯‘∅)) = (𝑥 − 0) |
23 | elfzoelz 13316 | . . . . . . . 8 ⊢ (𝑥 ∈ (0..^(♯‘𝑆)) → 𝑥 ∈ ℤ) | |
24 | 23 | adantl 481 | . . . . . . 7 ⊢ ((𝑆 ∈ Word 𝐵 ∧ 𝑥 ∈ (0..^(♯‘𝑆))) → 𝑥 ∈ ℤ) |
25 | 24 | zcnd 12356 | . . . . . 6 ⊢ ((𝑆 ∈ Word 𝐵 ∧ 𝑥 ∈ (0..^(♯‘𝑆))) → 𝑥 ∈ ℂ) |
26 | 25 | subid1d 11251 | . . . . 5 ⊢ ((𝑆 ∈ Word 𝐵 ∧ 𝑥 ∈ (0..^(♯‘𝑆))) → (𝑥 − 0) = 𝑥) |
27 | 22, 26 | eqtrid 2790 | . . . 4 ⊢ ((𝑆 ∈ Word 𝐵 ∧ 𝑥 ∈ (0..^(♯‘𝑆))) → (𝑥 − (♯‘∅)) = 𝑥) |
28 | 27 | fveq2d 6760 | . . 3 ⊢ ((𝑆 ∈ Word 𝐵 ∧ 𝑥 ∈ (0..^(♯‘𝑆))) → (𝑆‘(𝑥 − (♯‘∅))) = (𝑆‘𝑥)) |
29 | 21, 28 | eqtrd 2778 | . 2 ⊢ ((𝑆 ∈ Word 𝐵 ∧ 𝑥 ∈ (0..^(♯‘𝑆))) → ((∅ ++ 𝑆)‘𝑥) = (𝑆‘𝑥)) |
30 | 13, 14, 29 | eqfnfvd 6894 | 1 ⊢ (𝑆 ∈ Word 𝐵 → (∅ ++ 𝑆) = 𝑆) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1539 ∈ wcel 2108 ∅c0 4253 Fn wfn 6413 ‘cfv 6418 (class class class)co 7255 0cc0 10802 + caddc 10805 − cmin 11135 ℤcz 12249 ..^cfzo 13311 ♯chash 13972 Word cword 14145 ++ cconcat 14201 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-rep 5205 ax-sep 5218 ax-nul 5225 ax-pow 5283 ax-pr 5347 ax-un 7566 ax-cnex 10858 ax-resscn 10859 ax-1cn 10860 ax-icn 10861 ax-addcl 10862 ax-addrcl 10863 ax-mulcl 10864 ax-mulrcl 10865 ax-mulcom 10866 ax-addass 10867 ax-mulass 10868 ax-distr 10869 ax-i2m1 10870 ax-1ne0 10871 ax-1rid 10872 ax-rnegex 10873 ax-rrecex 10874 ax-cnre 10875 ax-pre-lttri 10876 ax-pre-lttrn 10877 ax-pre-ltadd 10878 ax-pre-mulgt0 10879 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3or 1086 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-nel 3049 df-ral 3068 df-rex 3069 df-reu 3070 df-rab 3072 df-v 3424 df-sbc 3712 df-csb 3829 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-pss 3902 df-nul 4254 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-tp 4563 df-op 4565 df-uni 4837 df-int 4877 df-iun 4923 df-br 5071 df-opab 5133 df-mpt 5154 df-tr 5188 df-id 5480 df-eprel 5486 df-po 5494 df-so 5495 df-fr 5535 df-we 5537 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-pred 6191 df-ord 6254 df-on 6255 df-lim 6256 df-suc 6257 df-iota 6376 df-fun 6420 df-fn 6421 df-f 6422 df-f1 6423 df-fo 6424 df-f1o 6425 df-fv 6426 df-riota 7212 df-ov 7258 df-oprab 7259 df-mpo 7260 df-om 7688 df-1st 7804 df-2nd 7805 df-frecs 8068 df-wrecs 8099 df-recs 8173 df-rdg 8212 df-1o 8267 df-er 8456 df-en 8692 df-dom 8693 df-sdom 8694 df-fin 8695 df-card 9628 df-pnf 10942 df-mnf 10943 df-xr 10944 df-ltxr 10945 df-le 10946 df-sub 11137 df-neg 11138 df-nn 11904 df-n0 12164 df-z 12250 df-uz 12512 df-fz 13169 df-fzo 13312 df-hash 13973 df-word 14146 df-concat 14202 |
This theorem is referenced by: ccatidid 14223 ccat1st1st 14263 swrdccat 14376 s0s1 14563 gsumccatOLD 18394 gsumccat 18395 frmdmnd 18413 frmd0 18414 efgcpbl2 19278 frgp0 19281 frgpnabllem1 19389 signstfvneq0 32451 lpadlen1 32559 |
Copyright terms: Public domain | W3C validator |