| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ccatlid | Structured version Visualization version GIF version | ||
| Description: Concatenation of a word by the empty word on the left. (Contributed by Stefan O'Rear, 15-Aug-2015.) (Proof shortened by AV, 1-May-2020.) |
| Ref | Expression |
|---|---|
| ccatlid | ⊢ (𝑆 ∈ Word 𝐵 → (∅ ++ 𝑆) = 𝑆) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | wrd0 14504 | . . . 4 ⊢ ∅ ∈ Word 𝐵 | |
| 2 | ccatvalfn 14546 | . . . 4 ⊢ ((∅ ∈ Word 𝐵 ∧ 𝑆 ∈ Word 𝐵) → (∅ ++ 𝑆) Fn (0..^((♯‘∅) + (♯‘𝑆)))) | |
| 3 | 1, 2 | mpan 690 | . . 3 ⊢ (𝑆 ∈ Word 𝐵 → (∅ ++ 𝑆) Fn (0..^((♯‘∅) + (♯‘𝑆)))) |
| 4 | hash0 14332 | . . . . . . . 8 ⊢ (♯‘∅) = 0 | |
| 5 | 4 | oveq1i 7397 | . . . . . . 7 ⊢ ((♯‘∅) + (♯‘𝑆)) = (0 + (♯‘𝑆)) |
| 6 | lencl 14498 | . . . . . . . . 9 ⊢ (𝑆 ∈ Word 𝐵 → (♯‘𝑆) ∈ ℕ0) | |
| 7 | 6 | nn0cnd 12505 | . . . . . . . 8 ⊢ (𝑆 ∈ Word 𝐵 → (♯‘𝑆) ∈ ℂ) |
| 8 | 7 | addlidd 11375 | . . . . . . 7 ⊢ (𝑆 ∈ Word 𝐵 → (0 + (♯‘𝑆)) = (♯‘𝑆)) |
| 9 | 5, 8 | eqtrid 2776 | . . . . . 6 ⊢ (𝑆 ∈ Word 𝐵 → ((♯‘∅) + (♯‘𝑆)) = (♯‘𝑆)) |
| 10 | 9 | eqcomd 2735 | . . . . 5 ⊢ (𝑆 ∈ Word 𝐵 → (♯‘𝑆) = ((♯‘∅) + (♯‘𝑆))) |
| 11 | 10 | oveq2d 7403 | . . . 4 ⊢ (𝑆 ∈ Word 𝐵 → (0..^(♯‘𝑆)) = (0..^((♯‘∅) + (♯‘𝑆)))) |
| 12 | 11 | fneq2d 6612 | . . 3 ⊢ (𝑆 ∈ Word 𝐵 → ((∅ ++ 𝑆) Fn (0..^(♯‘𝑆)) ↔ (∅ ++ 𝑆) Fn (0..^((♯‘∅) + (♯‘𝑆))))) |
| 13 | 3, 12 | mpbird 257 | . 2 ⊢ (𝑆 ∈ Word 𝐵 → (∅ ++ 𝑆) Fn (0..^(♯‘𝑆))) |
| 14 | wrdfn 14493 | . 2 ⊢ (𝑆 ∈ Word 𝐵 → 𝑆 Fn (0..^(♯‘𝑆))) | |
| 15 | 4 | a1i 11 | . . . . . . 7 ⊢ (𝑆 ∈ Word 𝐵 → (♯‘∅) = 0) |
| 16 | 15, 9 | oveq12d 7405 | . . . . . 6 ⊢ (𝑆 ∈ Word 𝐵 → ((♯‘∅)..^((♯‘∅) + (♯‘𝑆))) = (0..^(♯‘𝑆))) |
| 17 | 16 | eleq2d 2814 | . . . . 5 ⊢ (𝑆 ∈ Word 𝐵 → (𝑥 ∈ ((♯‘∅)..^((♯‘∅) + (♯‘𝑆))) ↔ 𝑥 ∈ (0..^(♯‘𝑆)))) |
| 18 | 17 | biimpar 477 | . . . 4 ⊢ ((𝑆 ∈ Word 𝐵 ∧ 𝑥 ∈ (0..^(♯‘𝑆))) → 𝑥 ∈ ((♯‘∅)..^((♯‘∅) + (♯‘𝑆)))) |
| 19 | ccatval2 14543 | . . . . 5 ⊢ ((∅ ∈ Word 𝐵 ∧ 𝑆 ∈ Word 𝐵 ∧ 𝑥 ∈ ((♯‘∅)..^((♯‘∅) + (♯‘𝑆)))) → ((∅ ++ 𝑆)‘𝑥) = (𝑆‘(𝑥 − (♯‘∅)))) | |
| 20 | 1, 19 | mp3an1 1450 | . . . 4 ⊢ ((𝑆 ∈ Word 𝐵 ∧ 𝑥 ∈ ((♯‘∅)..^((♯‘∅) + (♯‘𝑆)))) → ((∅ ++ 𝑆)‘𝑥) = (𝑆‘(𝑥 − (♯‘∅)))) |
| 21 | 18, 20 | syldan 591 | . . 3 ⊢ ((𝑆 ∈ Word 𝐵 ∧ 𝑥 ∈ (0..^(♯‘𝑆))) → ((∅ ++ 𝑆)‘𝑥) = (𝑆‘(𝑥 − (♯‘∅)))) |
| 22 | 4 | oveq2i 7398 | . . . . 5 ⊢ (𝑥 − (♯‘∅)) = (𝑥 − 0) |
| 23 | elfzoelz 13620 | . . . . . . . 8 ⊢ (𝑥 ∈ (0..^(♯‘𝑆)) → 𝑥 ∈ ℤ) | |
| 24 | 23 | adantl 481 | . . . . . . 7 ⊢ ((𝑆 ∈ Word 𝐵 ∧ 𝑥 ∈ (0..^(♯‘𝑆))) → 𝑥 ∈ ℤ) |
| 25 | 24 | zcnd 12639 | . . . . . 6 ⊢ ((𝑆 ∈ Word 𝐵 ∧ 𝑥 ∈ (0..^(♯‘𝑆))) → 𝑥 ∈ ℂ) |
| 26 | 25 | subid1d 11522 | . . . . 5 ⊢ ((𝑆 ∈ Word 𝐵 ∧ 𝑥 ∈ (0..^(♯‘𝑆))) → (𝑥 − 0) = 𝑥) |
| 27 | 22, 26 | eqtrid 2776 | . . . 4 ⊢ ((𝑆 ∈ Word 𝐵 ∧ 𝑥 ∈ (0..^(♯‘𝑆))) → (𝑥 − (♯‘∅)) = 𝑥) |
| 28 | 27 | fveq2d 6862 | . . 3 ⊢ ((𝑆 ∈ Word 𝐵 ∧ 𝑥 ∈ (0..^(♯‘𝑆))) → (𝑆‘(𝑥 − (♯‘∅))) = (𝑆‘𝑥)) |
| 29 | 21, 28 | eqtrd 2764 | . 2 ⊢ ((𝑆 ∈ Word 𝐵 ∧ 𝑥 ∈ (0..^(♯‘𝑆))) → ((∅ ++ 𝑆)‘𝑥) = (𝑆‘𝑥)) |
| 30 | 13, 14, 29 | eqfnfvd 7006 | 1 ⊢ (𝑆 ∈ Word 𝐵 → (∅ ++ 𝑆) = 𝑆) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ∅c0 4296 Fn wfn 6506 ‘cfv 6511 (class class class)co 7387 0cc0 11068 + caddc 11071 − cmin 11405 ℤcz 12529 ..^cfzo 13615 ♯chash 14295 Word cword 14478 ++ cconcat 14535 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5234 ax-sep 5251 ax-nul 5261 ax-pow 5320 ax-pr 5387 ax-un 7711 ax-cnex 11124 ax-resscn 11125 ax-1cn 11126 ax-icn 11127 ax-addcl 11128 ax-addrcl 11129 ax-mulcl 11130 ax-mulrcl 11131 ax-mulcom 11132 ax-addass 11133 ax-mulass 11134 ax-distr 11135 ax-i2m1 11136 ax-1ne0 11137 ax-1rid 11138 ax-rnegex 11139 ax-rrecex 11140 ax-cnre 11141 ax-pre-lttri 11142 ax-pre-lttrn 11143 ax-pre-ltadd 11144 ax-pre-mulgt0 11145 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-reu 3355 df-rab 3406 df-v 3449 df-sbc 3754 df-csb 3863 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-pss 3934 df-nul 4297 df-if 4489 df-pw 4565 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-int 4911 df-iun 4957 df-br 5108 df-opab 5170 df-mpt 5189 df-tr 5215 df-id 5533 df-eprel 5538 df-po 5546 df-so 5547 df-fr 5591 df-we 5593 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-res 5650 df-ima 5651 df-pred 6274 df-ord 6335 df-on 6336 df-lim 6337 df-suc 6338 df-iota 6464 df-fun 6513 df-fn 6514 df-f 6515 df-f1 6516 df-fo 6517 df-f1o 6518 df-fv 6519 df-riota 7344 df-ov 7390 df-oprab 7391 df-mpo 7392 df-om 7843 df-1st 7968 df-2nd 7969 df-frecs 8260 df-wrecs 8291 df-recs 8340 df-rdg 8378 df-1o 8434 df-er 8671 df-en 8919 df-dom 8920 df-sdom 8921 df-fin 8922 df-card 9892 df-pnf 11210 df-mnf 11211 df-xr 11212 df-ltxr 11213 df-le 11214 df-sub 11407 df-neg 11408 df-nn 12187 df-n0 12443 df-z 12530 df-uz 12794 df-fz 13469 df-fzo 13616 df-hash 14296 df-word 14479 df-concat 14536 |
| This theorem is referenced by: ccatidid 14555 ccat1st1st 14593 swrdccat 14700 s0s1 14888 gsumccat 18768 frmdmnd 18786 frmd0 18787 efgcpbl2 19687 frgp0 19690 frgpnabllem1 19803 signstfvneq0 34563 lpadlen1 34670 |
| Copyright terms: Public domain | W3C validator |