MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ccatlid Structured version   Visualization version   GIF version

Theorem ccatlid 14481
Description: Concatenation of a word by the empty word on the left. (Contributed by Stefan O'Rear, 15-Aug-2015.) (Proof shortened by AV, 1-May-2020.)
Assertion
Ref Expression
ccatlid (𝑆 ∈ Word 𝐵 → (∅ ++ 𝑆) = 𝑆)

Proof of Theorem ccatlid
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 wrd0 14434 . . . 4 ∅ ∈ Word 𝐵
2 ccatvalfn 14476 . . . 4 ((∅ ∈ Word 𝐵𝑆 ∈ Word 𝐵) → (∅ ++ 𝑆) Fn (0..^((♯‘∅) + (♯‘𝑆))))
31, 2mpan 689 . . 3 (𝑆 ∈ Word 𝐵 → (∅ ++ 𝑆) Fn (0..^((♯‘∅) + (♯‘𝑆))))
4 hash0 14274 . . . . . . . 8 (♯‘∅) = 0
54oveq1i 7372 . . . . . . 7 ((♯‘∅) + (♯‘𝑆)) = (0 + (♯‘𝑆))
6 lencl 14428 . . . . . . . . 9 (𝑆 ∈ Word 𝐵 → (♯‘𝑆) ∈ ℕ0)
76nn0cnd 12482 . . . . . . . 8 (𝑆 ∈ Word 𝐵 → (♯‘𝑆) ∈ ℂ)
87addid2d 11363 . . . . . . 7 (𝑆 ∈ Word 𝐵 → (0 + (♯‘𝑆)) = (♯‘𝑆))
95, 8eqtrid 2789 . . . . . 6 (𝑆 ∈ Word 𝐵 → ((♯‘∅) + (♯‘𝑆)) = (♯‘𝑆))
109eqcomd 2743 . . . . 5 (𝑆 ∈ Word 𝐵 → (♯‘𝑆) = ((♯‘∅) + (♯‘𝑆)))
1110oveq2d 7378 . . . 4 (𝑆 ∈ Word 𝐵 → (0..^(♯‘𝑆)) = (0..^((♯‘∅) + (♯‘𝑆))))
1211fneq2d 6601 . . 3 (𝑆 ∈ Word 𝐵 → ((∅ ++ 𝑆) Fn (0..^(♯‘𝑆)) ↔ (∅ ++ 𝑆) Fn (0..^((♯‘∅) + (♯‘𝑆)))))
133, 12mpbird 257 . 2 (𝑆 ∈ Word 𝐵 → (∅ ++ 𝑆) Fn (0..^(♯‘𝑆)))
14 wrdfn 14423 . 2 (𝑆 ∈ Word 𝐵𝑆 Fn (0..^(♯‘𝑆)))
154a1i 11 . . . . . . 7 (𝑆 ∈ Word 𝐵 → (♯‘∅) = 0)
1615, 9oveq12d 7380 . . . . . 6 (𝑆 ∈ Word 𝐵 → ((♯‘∅)..^((♯‘∅) + (♯‘𝑆))) = (0..^(♯‘𝑆)))
1716eleq2d 2824 . . . . 5 (𝑆 ∈ Word 𝐵 → (𝑥 ∈ ((♯‘∅)..^((♯‘∅) + (♯‘𝑆))) ↔ 𝑥 ∈ (0..^(♯‘𝑆))))
1817biimpar 479 . . . 4 ((𝑆 ∈ Word 𝐵𝑥 ∈ (0..^(♯‘𝑆))) → 𝑥 ∈ ((♯‘∅)..^((♯‘∅) + (♯‘𝑆))))
19 ccatval2 14473 . . . . 5 ((∅ ∈ Word 𝐵𝑆 ∈ Word 𝐵𝑥 ∈ ((♯‘∅)..^((♯‘∅) + (♯‘𝑆)))) → ((∅ ++ 𝑆)‘𝑥) = (𝑆‘(𝑥 − (♯‘∅))))
201, 19mp3an1 1449 . . . 4 ((𝑆 ∈ Word 𝐵𝑥 ∈ ((♯‘∅)..^((♯‘∅) + (♯‘𝑆)))) → ((∅ ++ 𝑆)‘𝑥) = (𝑆‘(𝑥 − (♯‘∅))))
2118, 20syldan 592 . . 3 ((𝑆 ∈ Word 𝐵𝑥 ∈ (0..^(♯‘𝑆))) → ((∅ ++ 𝑆)‘𝑥) = (𝑆‘(𝑥 − (♯‘∅))))
224oveq2i 7373 . . . . 5 (𝑥 − (♯‘∅)) = (𝑥 − 0)
23 elfzoelz 13579 . . . . . . . 8 (𝑥 ∈ (0..^(♯‘𝑆)) → 𝑥 ∈ ℤ)
2423adantl 483 . . . . . . 7 ((𝑆 ∈ Word 𝐵𝑥 ∈ (0..^(♯‘𝑆))) → 𝑥 ∈ ℤ)
2524zcnd 12615 . . . . . 6 ((𝑆 ∈ Word 𝐵𝑥 ∈ (0..^(♯‘𝑆))) → 𝑥 ∈ ℂ)
2625subid1d 11508 . . . . 5 ((𝑆 ∈ Word 𝐵𝑥 ∈ (0..^(♯‘𝑆))) → (𝑥 − 0) = 𝑥)
2722, 26eqtrid 2789 . . . 4 ((𝑆 ∈ Word 𝐵𝑥 ∈ (0..^(♯‘𝑆))) → (𝑥 − (♯‘∅)) = 𝑥)
2827fveq2d 6851 . . 3 ((𝑆 ∈ Word 𝐵𝑥 ∈ (0..^(♯‘𝑆))) → (𝑆‘(𝑥 − (♯‘∅))) = (𝑆𝑥))
2921, 28eqtrd 2777 . 2 ((𝑆 ∈ Word 𝐵𝑥 ∈ (0..^(♯‘𝑆))) → ((∅ ++ 𝑆)‘𝑥) = (𝑆𝑥))
3013, 14, 29eqfnfvd 6990 1 (𝑆 ∈ Word 𝐵 → (∅ ++ 𝑆) = 𝑆)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 397   = wceq 1542  wcel 2107  c0 4287   Fn wfn 6496  cfv 6501  (class class class)co 7362  0cc0 11058   + caddc 11061  cmin 11392  cz 12506  ..^cfzo 13574  chash 14237  Word cword 14409   ++ cconcat 14465
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2155  ax-12 2172  ax-ext 2708  ax-rep 5247  ax-sep 5261  ax-nul 5268  ax-pow 5325  ax-pr 5389  ax-un 7677  ax-cnex 11114  ax-resscn 11115  ax-1cn 11116  ax-icn 11117  ax-addcl 11118  ax-addrcl 11119  ax-mulcl 11120  ax-mulrcl 11121  ax-mulcom 11122  ax-addass 11123  ax-mulass 11124  ax-distr 11125  ax-i2m1 11126  ax-1ne0 11127  ax-1rid 11128  ax-rnegex 11129  ax-rrecex 11130  ax-cnre 11131  ax-pre-lttri 11132  ax-pre-lttrn 11133  ax-pre-ltadd 11134  ax-pre-mulgt0 11135
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3or 1089  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-nf 1787  df-sb 2069  df-mo 2539  df-eu 2568  df-clab 2715  df-cleq 2729  df-clel 2815  df-nfc 2890  df-ne 2945  df-nel 3051  df-ral 3066  df-rex 3075  df-reu 3357  df-rab 3411  df-v 3450  df-sbc 3745  df-csb 3861  df-dif 3918  df-un 3920  df-in 3922  df-ss 3932  df-pss 3934  df-nul 4288  df-if 4492  df-pw 4567  df-sn 4592  df-pr 4594  df-op 4598  df-uni 4871  df-int 4913  df-iun 4961  df-br 5111  df-opab 5173  df-mpt 5194  df-tr 5228  df-id 5536  df-eprel 5542  df-po 5550  df-so 5551  df-fr 5593  df-we 5595  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-pred 6258  df-ord 6325  df-on 6326  df-lim 6327  df-suc 6328  df-iota 6453  df-fun 6503  df-fn 6504  df-f 6505  df-f1 6506  df-fo 6507  df-f1o 6508  df-fv 6509  df-riota 7318  df-ov 7365  df-oprab 7366  df-mpo 7367  df-om 7808  df-1st 7926  df-2nd 7927  df-frecs 8217  df-wrecs 8248  df-recs 8322  df-rdg 8361  df-1o 8417  df-er 8655  df-en 8891  df-dom 8892  df-sdom 8893  df-fin 8894  df-card 9882  df-pnf 11198  df-mnf 11199  df-xr 11200  df-ltxr 11201  df-le 11202  df-sub 11394  df-neg 11395  df-nn 12161  df-n0 12421  df-z 12507  df-uz 12771  df-fz 13432  df-fzo 13575  df-hash 14238  df-word 14410  df-concat 14466
This theorem is referenced by:  ccatidid  14485  ccat1st1st  14523  swrdccat  14630  s0s1  14818  gsumccat  18658  frmdmnd  18676  frmd0  18677  efgcpbl2  19546  frgp0  19549  frgpnabllem1  19658  signstfvneq0  33224  lpadlen1  33332
  Copyright terms: Public domain W3C validator