| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ccatlid | Structured version Visualization version GIF version | ||
| Description: Concatenation of a word by the empty word on the left. (Contributed by Stefan O'Rear, 15-Aug-2015.) (Proof shortened by AV, 1-May-2020.) |
| Ref | Expression |
|---|---|
| ccatlid | ⊢ (𝑆 ∈ Word 𝐵 → (∅ ++ 𝑆) = 𝑆) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | wrd0 14450 | . . . 4 ⊢ ∅ ∈ Word 𝐵 | |
| 2 | ccatvalfn 14492 | . . . 4 ⊢ ((∅ ∈ Word 𝐵 ∧ 𝑆 ∈ Word 𝐵) → (∅ ++ 𝑆) Fn (0..^((♯‘∅) + (♯‘𝑆)))) | |
| 3 | 1, 2 | mpan 690 | . . 3 ⊢ (𝑆 ∈ Word 𝐵 → (∅ ++ 𝑆) Fn (0..^((♯‘∅) + (♯‘𝑆)))) |
| 4 | hash0 14278 | . . . . . . . 8 ⊢ (♯‘∅) = 0 | |
| 5 | 4 | oveq1i 7364 | . . . . . . 7 ⊢ ((♯‘∅) + (♯‘𝑆)) = (0 + (♯‘𝑆)) |
| 6 | lencl 14444 | . . . . . . . . 9 ⊢ (𝑆 ∈ Word 𝐵 → (♯‘𝑆) ∈ ℕ0) | |
| 7 | 6 | nn0cnd 12453 | . . . . . . . 8 ⊢ (𝑆 ∈ Word 𝐵 → (♯‘𝑆) ∈ ℂ) |
| 8 | 7 | addlidd 11323 | . . . . . . 7 ⊢ (𝑆 ∈ Word 𝐵 → (0 + (♯‘𝑆)) = (♯‘𝑆)) |
| 9 | 5, 8 | eqtrid 2780 | . . . . . 6 ⊢ (𝑆 ∈ Word 𝐵 → ((♯‘∅) + (♯‘𝑆)) = (♯‘𝑆)) |
| 10 | 9 | eqcomd 2739 | . . . . 5 ⊢ (𝑆 ∈ Word 𝐵 → (♯‘𝑆) = ((♯‘∅) + (♯‘𝑆))) |
| 11 | 10 | oveq2d 7370 | . . . 4 ⊢ (𝑆 ∈ Word 𝐵 → (0..^(♯‘𝑆)) = (0..^((♯‘∅) + (♯‘𝑆)))) |
| 12 | 11 | fneq2d 6582 | . . 3 ⊢ (𝑆 ∈ Word 𝐵 → ((∅ ++ 𝑆) Fn (0..^(♯‘𝑆)) ↔ (∅ ++ 𝑆) Fn (0..^((♯‘∅) + (♯‘𝑆))))) |
| 13 | 3, 12 | mpbird 257 | . 2 ⊢ (𝑆 ∈ Word 𝐵 → (∅ ++ 𝑆) Fn (0..^(♯‘𝑆))) |
| 14 | wrdfn 14439 | . 2 ⊢ (𝑆 ∈ Word 𝐵 → 𝑆 Fn (0..^(♯‘𝑆))) | |
| 15 | 4 | a1i 11 | . . . . . . 7 ⊢ (𝑆 ∈ Word 𝐵 → (♯‘∅) = 0) |
| 16 | 15, 9 | oveq12d 7372 | . . . . . 6 ⊢ (𝑆 ∈ Word 𝐵 → ((♯‘∅)..^((♯‘∅) + (♯‘𝑆))) = (0..^(♯‘𝑆))) |
| 17 | 16 | eleq2d 2819 | . . . . 5 ⊢ (𝑆 ∈ Word 𝐵 → (𝑥 ∈ ((♯‘∅)..^((♯‘∅) + (♯‘𝑆))) ↔ 𝑥 ∈ (0..^(♯‘𝑆)))) |
| 18 | 17 | biimpar 477 | . . . 4 ⊢ ((𝑆 ∈ Word 𝐵 ∧ 𝑥 ∈ (0..^(♯‘𝑆))) → 𝑥 ∈ ((♯‘∅)..^((♯‘∅) + (♯‘𝑆)))) |
| 19 | ccatval2 14489 | . . . . 5 ⊢ ((∅ ∈ Word 𝐵 ∧ 𝑆 ∈ Word 𝐵 ∧ 𝑥 ∈ ((♯‘∅)..^((♯‘∅) + (♯‘𝑆)))) → ((∅ ++ 𝑆)‘𝑥) = (𝑆‘(𝑥 − (♯‘∅)))) | |
| 20 | 1, 19 | mp3an1 1450 | . . . 4 ⊢ ((𝑆 ∈ Word 𝐵 ∧ 𝑥 ∈ ((♯‘∅)..^((♯‘∅) + (♯‘𝑆)))) → ((∅ ++ 𝑆)‘𝑥) = (𝑆‘(𝑥 − (♯‘∅)))) |
| 21 | 18, 20 | syldan 591 | . . 3 ⊢ ((𝑆 ∈ Word 𝐵 ∧ 𝑥 ∈ (0..^(♯‘𝑆))) → ((∅ ++ 𝑆)‘𝑥) = (𝑆‘(𝑥 − (♯‘∅)))) |
| 22 | 4 | oveq2i 7365 | . . . . 5 ⊢ (𝑥 − (♯‘∅)) = (𝑥 − 0) |
| 23 | elfzoelz 13563 | . . . . . . . 8 ⊢ (𝑥 ∈ (0..^(♯‘𝑆)) → 𝑥 ∈ ℤ) | |
| 24 | 23 | adantl 481 | . . . . . . 7 ⊢ ((𝑆 ∈ Word 𝐵 ∧ 𝑥 ∈ (0..^(♯‘𝑆))) → 𝑥 ∈ ℤ) |
| 25 | 24 | zcnd 12586 | . . . . . 6 ⊢ ((𝑆 ∈ Word 𝐵 ∧ 𝑥 ∈ (0..^(♯‘𝑆))) → 𝑥 ∈ ℂ) |
| 26 | 25 | subid1d 11470 | . . . . 5 ⊢ ((𝑆 ∈ Word 𝐵 ∧ 𝑥 ∈ (0..^(♯‘𝑆))) → (𝑥 − 0) = 𝑥) |
| 27 | 22, 26 | eqtrid 2780 | . . . 4 ⊢ ((𝑆 ∈ Word 𝐵 ∧ 𝑥 ∈ (0..^(♯‘𝑆))) → (𝑥 − (♯‘∅)) = 𝑥) |
| 28 | 27 | fveq2d 6834 | . . 3 ⊢ ((𝑆 ∈ Word 𝐵 ∧ 𝑥 ∈ (0..^(♯‘𝑆))) → (𝑆‘(𝑥 − (♯‘∅))) = (𝑆‘𝑥)) |
| 29 | 21, 28 | eqtrd 2768 | . 2 ⊢ ((𝑆 ∈ Word 𝐵 ∧ 𝑥 ∈ (0..^(♯‘𝑆))) → ((∅ ++ 𝑆)‘𝑥) = (𝑆‘𝑥)) |
| 30 | 13, 14, 29 | eqfnfvd 6975 | 1 ⊢ (𝑆 ∈ Word 𝐵 → (∅ ++ 𝑆) = 𝑆) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1541 ∈ wcel 2113 ∅c0 4282 Fn wfn 6483 ‘cfv 6488 (class class class)co 7354 0cc0 11015 + caddc 11018 − cmin 11353 ℤcz 12477 ..^cfzo 13558 ♯chash 14241 Word cword 14424 ++ cconcat 14481 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-10 2146 ax-11 2162 ax-12 2182 ax-ext 2705 ax-rep 5221 ax-sep 5238 ax-nul 5248 ax-pow 5307 ax-pr 5374 ax-un 7676 ax-cnex 11071 ax-resscn 11072 ax-1cn 11073 ax-icn 11074 ax-addcl 11075 ax-addrcl 11076 ax-mulcl 11077 ax-mulrcl 11078 ax-mulcom 11079 ax-addass 11080 ax-mulass 11081 ax-distr 11082 ax-i2m1 11083 ax-1ne0 11084 ax-1rid 11085 ax-rnegex 11086 ax-rrecex 11087 ax-cnre 11088 ax-pre-lttri 11089 ax-pre-lttrn 11090 ax-pre-ltadd 11091 ax-pre-mulgt0 11092 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2725 df-clel 2808 df-nfc 2882 df-ne 2930 df-nel 3034 df-ral 3049 df-rex 3058 df-reu 3348 df-rab 3397 df-v 3439 df-sbc 3738 df-csb 3847 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-pss 3918 df-nul 4283 df-if 4477 df-pw 4553 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4861 df-int 4900 df-iun 4945 df-br 5096 df-opab 5158 df-mpt 5177 df-tr 5203 df-id 5516 df-eprel 5521 df-po 5529 df-so 5530 df-fr 5574 df-we 5576 df-xp 5627 df-rel 5628 df-cnv 5629 df-co 5630 df-dm 5631 df-rn 5632 df-res 5633 df-ima 5634 df-pred 6255 df-ord 6316 df-on 6317 df-lim 6318 df-suc 6319 df-iota 6444 df-fun 6490 df-fn 6491 df-f 6492 df-f1 6493 df-fo 6494 df-f1o 6495 df-fv 6496 df-riota 7311 df-ov 7357 df-oprab 7358 df-mpo 7359 df-om 7805 df-1st 7929 df-2nd 7930 df-frecs 8219 df-wrecs 8250 df-recs 8299 df-rdg 8337 df-1o 8393 df-er 8630 df-en 8878 df-dom 8879 df-sdom 8880 df-fin 8881 df-card 9841 df-pnf 11157 df-mnf 11158 df-xr 11159 df-ltxr 11160 df-le 11161 df-sub 11355 df-neg 11356 df-nn 12135 df-n0 12391 df-z 12478 df-uz 12741 df-fz 13412 df-fzo 13559 df-hash 14242 df-word 14425 df-concat 14482 |
| This theorem is referenced by: ccatidid 14502 ccat1st1st 14540 swrdccat 14646 s0s1 14833 gsumccat 18753 frmdmnd 18771 frmd0 18772 efgcpbl2 19673 frgp0 19676 frgpnabllem1 19789 signstfvneq0 34608 lpadlen1 34715 |
| Copyright terms: Public domain | W3C validator |