Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > ccatlid | Structured version Visualization version GIF version |
Description: Concatenation of a word by the empty word on the left. (Contributed by Stefan O'Rear, 15-Aug-2015.) (Proof shortened by AV, 1-May-2020.) |
Ref | Expression |
---|---|
ccatlid | ⊢ (𝑆 ∈ Word 𝐵 → (∅ ++ 𝑆) = 𝑆) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | wrd0 14251 | . . . 4 ⊢ ∅ ∈ Word 𝐵 | |
2 | ccatvalfn 14295 | . . . 4 ⊢ ((∅ ∈ Word 𝐵 ∧ 𝑆 ∈ Word 𝐵) → (∅ ++ 𝑆) Fn (0..^((♯‘∅) + (♯‘𝑆)))) | |
3 | 1, 2 | mpan 687 | . . 3 ⊢ (𝑆 ∈ Word 𝐵 → (∅ ++ 𝑆) Fn (0..^((♯‘∅) + (♯‘𝑆)))) |
4 | hash0 14091 | . . . . . . . 8 ⊢ (♯‘∅) = 0 | |
5 | 4 | oveq1i 7294 | . . . . . . 7 ⊢ ((♯‘∅) + (♯‘𝑆)) = (0 + (♯‘𝑆)) |
6 | lencl 14245 | . . . . . . . . 9 ⊢ (𝑆 ∈ Word 𝐵 → (♯‘𝑆) ∈ ℕ0) | |
7 | 6 | nn0cnd 12304 | . . . . . . . 8 ⊢ (𝑆 ∈ Word 𝐵 → (♯‘𝑆) ∈ ℂ) |
8 | 7 | addid2d 11185 | . . . . . . 7 ⊢ (𝑆 ∈ Word 𝐵 → (0 + (♯‘𝑆)) = (♯‘𝑆)) |
9 | 5, 8 | eqtrid 2791 | . . . . . 6 ⊢ (𝑆 ∈ Word 𝐵 → ((♯‘∅) + (♯‘𝑆)) = (♯‘𝑆)) |
10 | 9 | eqcomd 2745 | . . . . 5 ⊢ (𝑆 ∈ Word 𝐵 → (♯‘𝑆) = ((♯‘∅) + (♯‘𝑆))) |
11 | 10 | oveq2d 7300 | . . . 4 ⊢ (𝑆 ∈ Word 𝐵 → (0..^(♯‘𝑆)) = (0..^((♯‘∅) + (♯‘𝑆)))) |
12 | 11 | fneq2d 6536 | . . 3 ⊢ (𝑆 ∈ Word 𝐵 → ((∅ ++ 𝑆) Fn (0..^(♯‘𝑆)) ↔ (∅ ++ 𝑆) Fn (0..^((♯‘∅) + (♯‘𝑆))))) |
13 | 3, 12 | mpbird 256 | . 2 ⊢ (𝑆 ∈ Word 𝐵 → (∅ ++ 𝑆) Fn (0..^(♯‘𝑆))) |
14 | wrdfn 14240 | . 2 ⊢ (𝑆 ∈ Word 𝐵 → 𝑆 Fn (0..^(♯‘𝑆))) | |
15 | 4 | a1i 11 | . . . . . . 7 ⊢ (𝑆 ∈ Word 𝐵 → (♯‘∅) = 0) |
16 | 15, 9 | oveq12d 7302 | . . . . . 6 ⊢ (𝑆 ∈ Word 𝐵 → ((♯‘∅)..^((♯‘∅) + (♯‘𝑆))) = (0..^(♯‘𝑆))) |
17 | 16 | eleq2d 2825 | . . . . 5 ⊢ (𝑆 ∈ Word 𝐵 → (𝑥 ∈ ((♯‘∅)..^((♯‘∅) + (♯‘𝑆))) ↔ 𝑥 ∈ (0..^(♯‘𝑆)))) |
18 | 17 | biimpar 478 | . . . 4 ⊢ ((𝑆 ∈ Word 𝐵 ∧ 𝑥 ∈ (0..^(♯‘𝑆))) → 𝑥 ∈ ((♯‘∅)..^((♯‘∅) + (♯‘𝑆)))) |
19 | ccatval2 14292 | . . . . 5 ⊢ ((∅ ∈ Word 𝐵 ∧ 𝑆 ∈ Word 𝐵 ∧ 𝑥 ∈ ((♯‘∅)..^((♯‘∅) + (♯‘𝑆)))) → ((∅ ++ 𝑆)‘𝑥) = (𝑆‘(𝑥 − (♯‘∅)))) | |
20 | 1, 19 | mp3an1 1447 | . . . 4 ⊢ ((𝑆 ∈ Word 𝐵 ∧ 𝑥 ∈ ((♯‘∅)..^((♯‘∅) + (♯‘𝑆)))) → ((∅ ++ 𝑆)‘𝑥) = (𝑆‘(𝑥 − (♯‘∅)))) |
21 | 18, 20 | syldan 591 | . . 3 ⊢ ((𝑆 ∈ Word 𝐵 ∧ 𝑥 ∈ (0..^(♯‘𝑆))) → ((∅ ++ 𝑆)‘𝑥) = (𝑆‘(𝑥 − (♯‘∅)))) |
22 | 4 | oveq2i 7295 | . . . . 5 ⊢ (𝑥 − (♯‘∅)) = (𝑥 − 0) |
23 | elfzoelz 13396 | . . . . . . . 8 ⊢ (𝑥 ∈ (0..^(♯‘𝑆)) → 𝑥 ∈ ℤ) | |
24 | 23 | adantl 482 | . . . . . . 7 ⊢ ((𝑆 ∈ Word 𝐵 ∧ 𝑥 ∈ (0..^(♯‘𝑆))) → 𝑥 ∈ ℤ) |
25 | 24 | zcnd 12436 | . . . . . 6 ⊢ ((𝑆 ∈ Word 𝐵 ∧ 𝑥 ∈ (0..^(♯‘𝑆))) → 𝑥 ∈ ℂ) |
26 | 25 | subid1d 11330 | . . . . 5 ⊢ ((𝑆 ∈ Word 𝐵 ∧ 𝑥 ∈ (0..^(♯‘𝑆))) → (𝑥 − 0) = 𝑥) |
27 | 22, 26 | eqtrid 2791 | . . . 4 ⊢ ((𝑆 ∈ Word 𝐵 ∧ 𝑥 ∈ (0..^(♯‘𝑆))) → (𝑥 − (♯‘∅)) = 𝑥) |
28 | 27 | fveq2d 6787 | . . 3 ⊢ ((𝑆 ∈ Word 𝐵 ∧ 𝑥 ∈ (0..^(♯‘𝑆))) → (𝑆‘(𝑥 − (♯‘∅))) = (𝑆‘𝑥)) |
29 | 21, 28 | eqtrd 2779 | . 2 ⊢ ((𝑆 ∈ Word 𝐵 ∧ 𝑥 ∈ (0..^(♯‘𝑆))) → ((∅ ++ 𝑆)‘𝑥) = (𝑆‘𝑥)) |
30 | 13, 14, 29 | eqfnfvd 6921 | 1 ⊢ (𝑆 ∈ Word 𝐵 → (∅ ++ 𝑆) = 𝑆) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 = wceq 1539 ∈ wcel 2107 ∅c0 4257 Fn wfn 6432 ‘cfv 6437 (class class class)co 7284 0cc0 10880 + caddc 10883 − cmin 11214 ℤcz 12328 ..^cfzo 13391 ♯chash 14053 Word cword 14226 ++ cconcat 14282 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-10 2138 ax-11 2155 ax-12 2172 ax-ext 2710 ax-rep 5210 ax-sep 5224 ax-nul 5231 ax-pow 5289 ax-pr 5353 ax-un 7597 ax-cnex 10936 ax-resscn 10937 ax-1cn 10938 ax-icn 10939 ax-addcl 10940 ax-addrcl 10941 ax-mulcl 10942 ax-mulrcl 10943 ax-mulcom 10944 ax-addass 10945 ax-mulass 10946 ax-distr 10947 ax-i2m1 10948 ax-1ne0 10949 ax-1rid 10950 ax-rnegex 10951 ax-rrecex 10952 ax-cnre 10953 ax-pre-lttri 10954 ax-pre-lttrn 10955 ax-pre-ltadd 10956 ax-pre-mulgt0 10957 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2069 df-mo 2541 df-eu 2570 df-clab 2717 df-cleq 2731 df-clel 2817 df-nfc 2890 df-ne 2945 df-nel 3051 df-ral 3070 df-rex 3071 df-reu 3073 df-rab 3074 df-v 3435 df-sbc 3718 df-csb 3834 df-dif 3891 df-un 3893 df-in 3895 df-ss 3905 df-pss 3907 df-nul 4258 df-if 4461 df-pw 4536 df-sn 4563 df-pr 4565 df-op 4569 df-uni 4841 df-int 4881 df-iun 4927 df-br 5076 df-opab 5138 df-mpt 5159 df-tr 5193 df-id 5490 df-eprel 5496 df-po 5504 df-so 5505 df-fr 5545 df-we 5547 df-xp 5596 df-rel 5597 df-cnv 5598 df-co 5599 df-dm 5600 df-rn 5601 df-res 5602 df-ima 5603 df-pred 6206 df-ord 6273 df-on 6274 df-lim 6275 df-suc 6276 df-iota 6395 df-fun 6439 df-fn 6440 df-f 6441 df-f1 6442 df-fo 6443 df-f1o 6444 df-fv 6445 df-riota 7241 df-ov 7287 df-oprab 7288 df-mpo 7289 df-om 7722 df-1st 7840 df-2nd 7841 df-frecs 8106 df-wrecs 8137 df-recs 8211 df-rdg 8250 df-1o 8306 df-er 8507 df-en 8743 df-dom 8744 df-sdom 8745 df-fin 8746 df-card 9706 df-pnf 11020 df-mnf 11021 df-xr 11022 df-ltxr 11023 df-le 11024 df-sub 11216 df-neg 11217 df-nn 11983 df-n0 12243 df-z 12329 df-uz 12592 df-fz 13249 df-fzo 13392 df-hash 14054 df-word 14227 df-concat 14283 |
This theorem is referenced by: ccatidid 14304 ccat1st1st 14344 swrdccat 14457 s0s1 14644 gsumccatOLD 18488 gsumccat 18489 frmdmnd 18507 frmd0 18508 efgcpbl2 19372 frgp0 19375 frgpnabllem1 19483 signstfvneq0 32560 lpadlen1 32668 |
Copyright terms: Public domain | W3C validator |