MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ccatlid Structured version   Visualization version   GIF version

Theorem ccatlid 14494
Description: Concatenation of a word by the empty word on the left. (Contributed by Stefan O'Rear, 15-Aug-2015.) (Proof shortened by AV, 1-May-2020.)
Assertion
Ref Expression
ccatlid (𝑆 ∈ Word 𝐵 → (∅ ++ 𝑆) = 𝑆)

Proof of Theorem ccatlid
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 wrd0 14446 . . . 4 ∅ ∈ Word 𝐵
2 ccatvalfn 14488 . . . 4 ((∅ ∈ Word 𝐵𝑆 ∈ Word 𝐵) → (∅ ++ 𝑆) Fn (0..^((♯‘∅) + (♯‘𝑆))))
31, 2mpan 690 . . 3 (𝑆 ∈ Word 𝐵 → (∅ ++ 𝑆) Fn (0..^((♯‘∅) + (♯‘𝑆))))
4 hash0 14274 . . . . . . . 8 (♯‘∅) = 0
54oveq1i 7356 . . . . . . 7 ((♯‘∅) + (♯‘𝑆)) = (0 + (♯‘𝑆))
6 lencl 14440 . . . . . . . . 9 (𝑆 ∈ Word 𝐵 → (♯‘𝑆) ∈ ℕ0)
76nn0cnd 12444 . . . . . . . 8 (𝑆 ∈ Word 𝐵 → (♯‘𝑆) ∈ ℂ)
87addlidd 11314 . . . . . . 7 (𝑆 ∈ Word 𝐵 → (0 + (♯‘𝑆)) = (♯‘𝑆))
95, 8eqtrid 2778 . . . . . 6 (𝑆 ∈ Word 𝐵 → ((♯‘∅) + (♯‘𝑆)) = (♯‘𝑆))
109eqcomd 2737 . . . . 5 (𝑆 ∈ Word 𝐵 → (♯‘𝑆) = ((♯‘∅) + (♯‘𝑆)))
1110oveq2d 7362 . . . 4 (𝑆 ∈ Word 𝐵 → (0..^(♯‘𝑆)) = (0..^((♯‘∅) + (♯‘𝑆))))
1211fneq2d 6575 . . 3 (𝑆 ∈ Word 𝐵 → ((∅ ++ 𝑆) Fn (0..^(♯‘𝑆)) ↔ (∅ ++ 𝑆) Fn (0..^((♯‘∅) + (♯‘𝑆)))))
133, 12mpbird 257 . 2 (𝑆 ∈ Word 𝐵 → (∅ ++ 𝑆) Fn (0..^(♯‘𝑆)))
14 wrdfn 14435 . 2 (𝑆 ∈ Word 𝐵𝑆 Fn (0..^(♯‘𝑆)))
154a1i 11 . . . . . . 7 (𝑆 ∈ Word 𝐵 → (♯‘∅) = 0)
1615, 9oveq12d 7364 . . . . . 6 (𝑆 ∈ Word 𝐵 → ((♯‘∅)..^((♯‘∅) + (♯‘𝑆))) = (0..^(♯‘𝑆)))
1716eleq2d 2817 . . . . 5 (𝑆 ∈ Word 𝐵 → (𝑥 ∈ ((♯‘∅)..^((♯‘∅) + (♯‘𝑆))) ↔ 𝑥 ∈ (0..^(♯‘𝑆))))
1817biimpar 477 . . . 4 ((𝑆 ∈ Word 𝐵𝑥 ∈ (0..^(♯‘𝑆))) → 𝑥 ∈ ((♯‘∅)..^((♯‘∅) + (♯‘𝑆))))
19 ccatval2 14485 . . . . 5 ((∅ ∈ Word 𝐵𝑆 ∈ Word 𝐵𝑥 ∈ ((♯‘∅)..^((♯‘∅) + (♯‘𝑆)))) → ((∅ ++ 𝑆)‘𝑥) = (𝑆‘(𝑥 − (♯‘∅))))
201, 19mp3an1 1450 . . . 4 ((𝑆 ∈ Word 𝐵𝑥 ∈ ((♯‘∅)..^((♯‘∅) + (♯‘𝑆)))) → ((∅ ++ 𝑆)‘𝑥) = (𝑆‘(𝑥 − (♯‘∅))))
2118, 20syldan 591 . . 3 ((𝑆 ∈ Word 𝐵𝑥 ∈ (0..^(♯‘𝑆))) → ((∅ ++ 𝑆)‘𝑥) = (𝑆‘(𝑥 − (♯‘∅))))
224oveq2i 7357 . . . . 5 (𝑥 − (♯‘∅)) = (𝑥 − 0)
23 elfzoelz 13559 . . . . . . . 8 (𝑥 ∈ (0..^(♯‘𝑆)) → 𝑥 ∈ ℤ)
2423adantl 481 . . . . . . 7 ((𝑆 ∈ Word 𝐵𝑥 ∈ (0..^(♯‘𝑆))) → 𝑥 ∈ ℤ)
2524zcnd 12578 . . . . . 6 ((𝑆 ∈ Word 𝐵𝑥 ∈ (0..^(♯‘𝑆))) → 𝑥 ∈ ℂ)
2625subid1d 11461 . . . . 5 ((𝑆 ∈ Word 𝐵𝑥 ∈ (0..^(♯‘𝑆))) → (𝑥 − 0) = 𝑥)
2722, 26eqtrid 2778 . . . 4 ((𝑆 ∈ Word 𝐵𝑥 ∈ (0..^(♯‘𝑆))) → (𝑥 − (♯‘∅)) = 𝑥)
2827fveq2d 6826 . . 3 ((𝑆 ∈ Word 𝐵𝑥 ∈ (0..^(♯‘𝑆))) → (𝑆‘(𝑥 − (♯‘∅))) = (𝑆𝑥))
2921, 28eqtrd 2766 . 2 ((𝑆 ∈ Word 𝐵𝑥 ∈ (0..^(♯‘𝑆))) → ((∅ ++ 𝑆)‘𝑥) = (𝑆𝑥))
3013, 14, 29eqfnfvd 6967 1 (𝑆 ∈ Word 𝐵 → (∅ ++ 𝑆) = 𝑆)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1541  wcel 2111  c0 4283   Fn wfn 6476  cfv 6481  (class class class)co 7346  0cc0 11006   + caddc 11009  cmin 11344  cz 12468  ..^cfzo 13554  chash 14237  Word cword 14420   ++ cconcat 14477
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-rep 5217  ax-sep 5234  ax-nul 5244  ax-pow 5303  ax-pr 5370  ax-un 7668  ax-cnex 11062  ax-resscn 11063  ax-1cn 11064  ax-icn 11065  ax-addcl 11066  ax-addrcl 11067  ax-mulcl 11068  ax-mulrcl 11069  ax-mulcom 11070  ax-addass 11071  ax-mulass 11072  ax-distr 11073  ax-i2m1 11074  ax-1ne0 11075  ax-1rid 11076  ax-rnegex 11077  ax-rrecex 11078  ax-cnre 11079  ax-pre-lttri 11080  ax-pre-lttrn 11081  ax-pre-ltadd 11082  ax-pre-mulgt0 11083
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-nel 3033  df-ral 3048  df-rex 3057  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3742  df-csb 3851  df-dif 3905  df-un 3907  df-in 3909  df-ss 3919  df-pss 3922  df-nul 4284  df-if 4476  df-pw 4552  df-sn 4577  df-pr 4579  df-op 4583  df-uni 4860  df-int 4898  df-iun 4943  df-br 5092  df-opab 5154  df-mpt 5173  df-tr 5199  df-id 5511  df-eprel 5516  df-po 5524  df-so 5525  df-fr 5569  df-we 5571  df-xp 5622  df-rel 5623  df-cnv 5624  df-co 5625  df-dm 5626  df-rn 5627  df-res 5628  df-ima 5629  df-pred 6248  df-ord 6309  df-on 6310  df-lim 6311  df-suc 6312  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489  df-riota 7303  df-ov 7349  df-oprab 7350  df-mpo 7351  df-om 7797  df-1st 7921  df-2nd 7922  df-frecs 8211  df-wrecs 8242  df-recs 8291  df-rdg 8329  df-1o 8385  df-er 8622  df-en 8870  df-dom 8871  df-sdom 8872  df-fin 8873  df-card 9832  df-pnf 11148  df-mnf 11149  df-xr 11150  df-ltxr 11151  df-le 11152  df-sub 11346  df-neg 11347  df-nn 12126  df-n0 12382  df-z 12469  df-uz 12733  df-fz 13408  df-fzo 13555  df-hash 14238  df-word 14421  df-concat 14478
This theorem is referenced by:  ccatidid  14498  ccat1st1st  14536  swrdccat  14642  s0s1  14829  gsumccat  18749  frmdmnd  18767  frmd0  18768  efgcpbl2  19670  frgp0  19673  frgpnabllem1  19786  signstfvneq0  34583  lpadlen1  34690
  Copyright terms: Public domain W3C validator