MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ccatlid Structured version   Visualization version   GIF version

Theorem ccatlid 14398
Description: Concatenation of a word by the empty word on the left. (Contributed by Stefan O'Rear, 15-Aug-2015.) (Proof shortened by AV, 1-May-2020.)
Assertion
Ref Expression
ccatlid (𝑆 ∈ Word 𝐵 → (∅ ++ 𝑆) = 𝑆)

Proof of Theorem ccatlid
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 wrd0 14351 . . . 4 ∅ ∈ Word 𝐵
2 ccatvalfn 14393 . . . 4 ((∅ ∈ Word 𝐵𝑆 ∈ Word 𝐵) → (∅ ++ 𝑆) Fn (0..^((♯‘∅) + (♯‘𝑆))))
31, 2mpan 688 . . 3 (𝑆 ∈ Word 𝐵 → (∅ ++ 𝑆) Fn (0..^((♯‘∅) + (♯‘𝑆))))
4 hash0 14191 . . . . . . . 8 (♯‘∅) = 0
54oveq1i 7356 . . . . . . 7 ((♯‘∅) + (♯‘𝑆)) = (0 + (♯‘𝑆))
6 lencl 14345 . . . . . . . . 9 (𝑆 ∈ Word 𝐵 → (♯‘𝑆) ∈ ℕ0)
76nn0cnd 12405 . . . . . . . 8 (𝑆 ∈ Word 𝐵 → (♯‘𝑆) ∈ ℂ)
87addid2d 11286 . . . . . . 7 (𝑆 ∈ Word 𝐵 → (0 + (♯‘𝑆)) = (♯‘𝑆))
95, 8eqtrid 2789 . . . . . 6 (𝑆 ∈ Word 𝐵 → ((♯‘∅) + (♯‘𝑆)) = (♯‘𝑆))
109eqcomd 2743 . . . . 5 (𝑆 ∈ Word 𝐵 → (♯‘𝑆) = ((♯‘∅) + (♯‘𝑆)))
1110oveq2d 7362 . . . 4 (𝑆 ∈ Word 𝐵 → (0..^(♯‘𝑆)) = (0..^((♯‘∅) + (♯‘𝑆))))
1211fneq2d 6588 . . 3 (𝑆 ∈ Word 𝐵 → ((∅ ++ 𝑆) Fn (0..^(♯‘𝑆)) ↔ (∅ ++ 𝑆) Fn (0..^((♯‘∅) + (♯‘𝑆)))))
133, 12mpbird 257 . 2 (𝑆 ∈ Word 𝐵 → (∅ ++ 𝑆) Fn (0..^(♯‘𝑆)))
14 wrdfn 14340 . 2 (𝑆 ∈ Word 𝐵𝑆 Fn (0..^(♯‘𝑆)))
154a1i 11 . . . . . . 7 (𝑆 ∈ Word 𝐵 → (♯‘∅) = 0)
1615, 9oveq12d 7364 . . . . . 6 (𝑆 ∈ Word 𝐵 → ((♯‘∅)..^((♯‘∅) + (♯‘𝑆))) = (0..^(♯‘𝑆)))
1716eleq2d 2823 . . . . 5 (𝑆 ∈ Word 𝐵 → (𝑥 ∈ ((♯‘∅)..^((♯‘∅) + (♯‘𝑆))) ↔ 𝑥 ∈ (0..^(♯‘𝑆))))
1817biimpar 479 . . . 4 ((𝑆 ∈ Word 𝐵𝑥 ∈ (0..^(♯‘𝑆))) → 𝑥 ∈ ((♯‘∅)..^((♯‘∅) + (♯‘𝑆))))
19 ccatval2 14390 . . . . 5 ((∅ ∈ Word 𝐵𝑆 ∈ Word 𝐵𝑥 ∈ ((♯‘∅)..^((♯‘∅) + (♯‘𝑆)))) → ((∅ ++ 𝑆)‘𝑥) = (𝑆‘(𝑥 − (♯‘∅))))
201, 19mp3an1 1448 . . . 4 ((𝑆 ∈ Word 𝐵𝑥 ∈ ((♯‘∅)..^((♯‘∅) + (♯‘𝑆)))) → ((∅ ++ 𝑆)‘𝑥) = (𝑆‘(𝑥 − (♯‘∅))))
2118, 20syldan 592 . . 3 ((𝑆 ∈ Word 𝐵𝑥 ∈ (0..^(♯‘𝑆))) → ((∅ ++ 𝑆)‘𝑥) = (𝑆‘(𝑥 − (♯‘∅))))
224oveq2i 7357 . . . . 5 (𝑥 − (♯‘∅)) = (𝑥 − 0)
23 elfzoelz 13497 . . . . . . . 8 (𝑥 ∈ (0..^(♯‘𝑆)) → 𝑥 ∈ ℤ)
2423adantl 483 . . . . . . 7 ((𝑆 ∈ Word 𝐵𝑥 ∈ (0..^(♯‘𝑆))) → 𝑥 ∈ ℤ)
2524zcnd 12537 . . . . . 6 ((𝑆 ∈ Word 𝐵𝑥 ∈ (0..^(♯‘𝑆))) → 𝑥 ∈ ℂ)
2625subid1d 11431 . . . . 5 ((𝑆 ∈ Word 𝐵𝑥 ∈ (0..^(♯‘𝑆))) → (𝑥 − 0) = 𝑥)
2722, 26eqtrid 2789 . . . 4 ((𝑆 ∈ Word 𝐵𝑥 ∈ (0..^(♯‘𝑆))) → (𝑥 − (♯‘∅)) = 𝑥)
2827fveq2d 6838 . . 3 ((𝑆 ∈ Word 𝐵𝑥 ∈ (0..^(♯‘𝑆))) → (𝑆‘(𝑥 − (♯‘∅))) = (𝑆𝑥))
2921, 28eqtrd 2777 . 2 ((𝑆 ∈ Word 𝐵𝑥 ∈ (0..^(♯‘𝑆))) → ((∅ ++ 𝑆)‘𝑥) = (𝑆𝑥))
3013, 14, 29eqfnfvd 6977 1 (𝑆 ∈ Word 𝐵 → (∅ ++ 𝑆) = 𝑆)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 397   = wceq 1541  wcel 2106  c0 4277   Fn wfn 6483  cfv 6488  (class class class)co 7346  0cc0 10981   + caddc 10984  cmin 11315  cz 12429  ..^cfzo 13492  chash 14154  Word cword 14326   ++ cconcat 14382
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2708  ax-rep 5237  ax-sep 5251  ax-nul 5258  ax-pow 5315  ax-pr 5379  ax-un 7659  ax-cnex 11037  ax-resscn 11038  ax-1cn 11039  ax-icn 11040  ax-addcl 11041  ax-addrcl 11042  ax-mulcl 11043  ax-mulrcl 11044  ax-mulcom 11045  ax-addass 11046  ax-mulass 11047  ax-distr 11048  ax-i2m1 11049  ax-1ne0 11050  ax-1rid 11051  ax-rnegex 11052  ax-rrecex 11053  ax-cnre 11054  ax-pre-lttri 11055  ax-pre-lttrn 11056  ax-pre-ltadd 11057  ax-pre-mulgt0 11058
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2539  df-eu 2568  df-clab 2715  df-cleq 2729  df-clel 2815  df-nfc 2887  df-ne 2942  df-nel 3048  df-ral 3063  df-rex 3072  df-reu 3352  df-rab 3406  df-v 3445  df-sbc 3735  df-csb 3851  df-dif 3908  df-un 3910  df-in 3912  df-ss 3922  df-pss 3924  df-nul 4278  df-if 4482  df-pw 4557  df-sn 4582  df-pr 4584  df-op 4588  df-uni 4861  df-int 4903  df-iun 4951  df-br 5101  df-opab 5163  df-mpt 5184  df-tr 5218  df-id 5525  df-eprel 5531  df-po 5539  df-so 5540  df-fr 5582  df-we 5584  df-xp 5633  df-rel 5634  df-cnv 5635  df-co 5636  df-dm 5637  df-rn 5638  df-res 5639  df-ima 5640  df-pred 6246  df-ord 6313  df-on 6314  df-lim 6315  df-suc 6316  df-iota 6440  df-fun 6490  df-fn 6491  df-f 6492  df-f1 6493  df-fo 6494  df-f1o 6495  df-fv 6496  df-riota 7302  df-ov 7349  df-oprab 7350  df-mpo 7351  df-om 7790  df-1st 7908  df-2nd 7909  df-frecs 8176  df-wrecs 8207  df-recs 8281  df-rdg 8320  df-1o 8376  df-er 8578  df-en 8814  df-dom 8815  df-sdom 8816  df-fin 8817  df-card 9805  df-pnf 11121  df-mnf 11122  df-xr 11123  df-ltxr 11124  df-le 11125  df-sub 11317  df-neg 11318  df-nn 12084  df-n0 12344  df-z 12430  df-uz 12693  df-fz 13350  df-fzo 13493  df-hash 14155  df-word 14327  df-concat 14383
This theorem is referenced by:  ccatidid  14402  ccat1st1st  14440  swrdccat  14551  s0s1  14739  gsumccat  18581  frmdmnd  18599  frmd0  18600  efgcpbl2  19463  frgp0  19466  frgpnabllem1  19574  signstfvneq0  32915  lpadlen1  33023
  Copyright terms: Public domain W3C validator