![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > ccatrid | Structured version Visualization version GIF version |
Description: Concatenation of a word by the empty word on the right. (Contributed by Stefan O'Rear, 15-Aug-2015.) (Proof shortened by AV, 1-May-2020.) |
Ref | Expression |
---|---|
ccatrid | ⊢ (𝑆 ∈ Word 𝐵 → (𝑆 ++ ∅) = 𝑆) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | wrd0 14489 | . . . 4 ⊢ ∅ ∈ Word 𝐵 | |
2 | ccatvalfn 14531 | . . . 4 ⊢ ((𝑆 ∈ Word 𝐵 ∧ ∅ ∈ Word 𝐵) → (𝑆 ++ ∅) Fn (0..^((♯‘𝑆) + (♯‘∅)))) | |
3 | 1, 2 | mpan2 690 | . . 3 ⊢ (𝑆 ∈ Word 𝐵 → (𝑆 ++ ∅) Fn (0..^((♯‘𝑆) + (♯‘∅)))) |
4 | hash0 14327 | . . . . . . 7 ⊢ (♯‘∅) = 0 | |
5 | 4 | oveq2i 7420 | . . . . . 6 ⊢ ((♯‘𝑆) + (♯‘∅)) = ((♯‘𝑆) + 0) |
6 | lencl 14483 | . . . . . . . 8 ⊢ (𝑆 ∈ Word 𝐵 → (♯‘𝑆) ∈ ℕ0) | |
7 | 6 | nn0cnd 12534 | . . . . . . 7 ⊢ (𝑆 ∈ Word 𝐵 → (♯‘𝑆) ∈ ℂ) |
8 | 7 | addridd 11414 | . . . . . 6 ⊢ (𝑆 ∈ Word 𝐵 → ((♯‘𝑆) + 0) = (♯‘𝑆)) |
9 | 5, 8 | eqtr2id 2786 | . . . . 5 ⊢ (𝑆 ∈ Word 𝐵 → (♯‘𝑆) = ((♯‘𝑆) + (♯‘∅))) |
10 | 9 | oveq2d 7425 | . . . 4 ⊢ (𝑆 ∈ Word 𝐵 → (0..^(♯‘𝑆)) = (0..^((♯‘𝑆) + (♯‘∅)))) |
11 | 10 | fneq2d 6644 | . . 3 ⊢ (𝑆 ∈ Word 𝐵 → ((𝑆 ++ ∅) Fn (0..^(♯‘𝑆)) ↔ (𝑆 ++ ∅) Fn (0..^((♯‘𝑆) + (♯‘∅))))) |
12 | 3, 11 | mpbird 257 | . 2 ⊢ (𝑆 ∈ Word 𝐵 → (𝑆 ++ ∅) Fn (0..^(♯‘𝑆))) |
13 | wrdfn 14478 | . 2 ⊢ (𝑆 ∈ Word 𝐵 → 𝑆 Fn (0..^(♯‘𝑆))) | |
14 | ccatval1 14527 | . . 3 ⊢ ((𝑆 ∈ Word 𝐵 ∧ ∅ ∈ Word 𝐵 ∧ 𝑥 ∈ (0..^(♯‘𝑆))) → ((𝑆 ++ ∅)‘𝑥) = (𝑆‘𝑥)) | |
15 | 1, 14 | mp3an2 1450 | . 2 ⊢ ((𝑆 ∈ Word 𝐵 ∧ 𝑥 ∈ (0..^(♯‘𝑆))) → ((𝑆 ++ ∅)‘𝑥) = (𝑆‘𝑥)) |
16 | 12, 13, 15 | eqfnfvd 7036 | 1 ⊢ (𝑆 ∈ Word 𝐵 → (𝑆 ++ ∅) = 𝑆) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1542 ∈ wcel 2107 ∅c0 4323 Fn wfn 6539 ‘cfv 6544 (class class class)co 7409 0cc0 11110 + caddc 11113 ..^cfzo 13627 ♯chash 14290 Word cword 14464 ++ cconcat 14520 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-10 2138 ax-11 2155 ax-12 2172 ax-ext 2704 ax-rep 5286 ax-sep 5300 ax-nul 5307 ax-pow 5364 ax-pr 5428 ax-un 7725 ax-cnex 11166 ax-resscn 11167 ax-1cn 11168 ax-icn 11169 ax-addcl 11170 ax-addrcl 11171 ax-mulcl 11172 ax-mulrcl 11173 ax-mulcom 11174 ax-addass 11175 ax-mulass 11176 ax-distr 11177 ax-i2m1 11178 ax-1ne0 11179 ax-1rid 11180 ax-rnegex 11181 ax-rrecex 11182 ax-cnre 11183 ax-pre-lttri 11184 ax-pre-lttrn 11185 ax-pre-ltadd 11186 ax-pre-mulgt0 11187 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 847 df-3or 1089 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1783 df-nf 1787 df-sb 2069 df-mo 2535 df-eu 2564 df-clab 2711 df-cleq 2725 df-clel 2811 df-nfc 2886 df-ne 2942 df-nel 3048 df-ral 3063 df-rex 3072 df-reu 3378 df-rab 3434 df-v 3477 df-sbc 3779 df-csb 3895 df-dif 3952 df-un 3954 df-in 3956 df-ss 3966 df-pss 3968 df-nul 4324 df-if 4530 df-pw 4605 df-sn 4630 df-pr 4632 df-op 4636 df-uni 4910 df-int 4952 df-iun 5000 df-br 5150 df-opab 5212 df-mpt 5233 df-tr 5267 df-id 5575 df-eprel 5581 df-po 5589 df-so 5590 df-fr 5632 df-we 5634 df-xp 5683 df-rel 5684 df-cnv 5685 df-co 5686 df-dm 5687 df-rn 5688 df-res 5689 df-ima 5690 df-pred 6301 df-ord 6368 df-on 6369 df-lim 6370 df-suc 6371 df-iota 6496 df-fun 6546 df-fn 6547 df-f 6548 df-f1 6549 df-fo 6550 df-f1o 6551 df-fv 6552 df-riota 7365 df-ov 7412 df-oprab 7413 df-mpo 7414 df-om 7856 df-1st 7975 df-2nd 7976 df-frecs 8266 df-wrecs 8297 df-recs 8371 df-rdg 8410 df-1o 8466 df-er 8703 df-en 8940 df-dom 8941 df-sdom 8942 df-fin 8943 df-card 9934 df-pnf 11250 df-mnf 11251 df-xr 11252 df-ltxr 11253 df-le 11254 df-sub 11446 df-neg 11447 df-nn 12213 df-n0 12473 df-z 12559 df-uz 12823 df-fz 13485 df-fzo 13628 df-hash 14291 df-word 14465 df-concat 14521 |
This theorem is referenced by: lswccat0lsw 14542 swrdccat 14685 swrdccat3blem 14689 cshw0 14744 gsumccat 18722 frmdmnd 18740 frmd0 18741 efginvrel2 19595 efgredleme 19611 efgcpbllemb 19623 efgcpbl2 19625 frgpnabllem1 19741 signstfvc 33585 |
Copyright terms: Public domain | W3C validator |