MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ccatrid Structured version   Visualization version   GIF version

Theorem ccatrid 14540
Description: Concatenation of a word by the empty word on the right. (Contributed by Stefan O'Rear, 15-Aug-2015.) (Proof shortened by AV, 1-May-2020.)
Assertion
Ref Expression
ccatrid (𝑆 ∈ Word 𝐵 → (𝑆 ++ ∅) = 𝑆)

Proof of Theorem ccatrid
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 wrd0 14492 . . . 4 ∅ ∈ Word 𝐵
2 ccatvalfn 14534 . . . 4 ((𝑆 ∈ Word 𝐵 ∧ ∅ ∈ Word 𝐵) → (𝑆 ++ ∅) Fn (0..^((♯‘𝑆) + (♯‘∅))))
31, 2mpan2 688 . . 3 (𝑆 ∈ Word 𝐵 → (𝑆 ++ ∅) Fn (0..^((♯‘𝑆) + (♯‘∅))))
4 hash0 14329 . . . . . . 7 (♯‘∅) = 0
54oveq2i 7415 . . . . . 6 ((♯‘𝑆) + (♯‘∅)) = ((♯‘𝑆) + 0)
6 lencl 14486 . . . . . . . 8 (𝑆 ∈ Word 𝐵 → (♯‘𝑆) ∈ ℕ0)
76nn0cnd 12535 . . . . . . 7 (𝑆 ∈ Word 𝐵 → (♯‘𝑆) ∈ ℂ)
87addridd 11415 . . . . . 6 (𝑆 ∈ Word 𝐵 → ((♯‘𝑆) + 0) = (♯‘𝑆))
95, 8eqtr2id 2779 . . . . 5 (𝑆 ∈ Word 𝐵 → (♯‘𝑆) = ((♯‘𝑆) + (♯‘∅)))
109oveq2d 7420 . . . 4 (𝑆 ∈ Word 𝐵 → (0..^(♯‘𝑆)) = (0..^((♯‘𝑆) + (♯‘∅))))
1110fneq2d 6636 . . 3 (𝑆 ∈ Word 𝐵 → ((𝑆 ++ ∅) Fn (0..^(♯‘𝑆)) ↔ (𝑆 ++ ∅) Fn (0..^((♯‘𝑆) + (♯‘∅)))))
123, 11mpbird 257 . 2 (𝑆 ∈ Word 𝐵 → (𝑆 ++ ∅) Fn (0..^(♯‘𝑆)))
13 wrdfn 14481 . 2 (𝑆 ∈ Word 𝐵𝑆 Fn (0..^(♯‘𝑆)))
14 ccatval1 14530 . . 3 ((𝑆 ∈ Word 𝐵 ∧ ∅ ∈ Word 𝐵𝑥 ∈ (0..^(♯‘𝑆))) → ((𝑆 ++ ∅)‘𝑥) = (𝑆𝑥))
151, 14mp3an2 1445 . 2 ((𝑆 ∈ Word 𝐵𝑥 ∈ (0..^(♯‘𝑆))) → ((𝑆 ++ ∅)‘𝑥) = (𝑆𝑥))
1612, 13, 15eqfnfvd 7028 1 (𝑆 ∈ Word 𝐵 → (𝑆 ++ ∅) = 𝑆)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1533  wcel 2098  c0 4317   Fn wfn 6531  cfv 6536  (class class class)co 7404  0cc0 11109   + caddc 11112  ..^cfzo 13630  chash 14292  Word cword 14467   ++ cconcat 14523
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2163  ax-ext 2697  ax-rep 5278  ax-sep 5292  ax-nul 5299  ax-pow 5356  ax-pr 5420  ax-un 7721  ax-cnex 11165  ax-resscn 11166  ax-1cn 11167  ax-icn 11168  ax-addcl 11169  ax-addrcl 11170  ax-mulcl 11171  ax-mulrcl 11172  ax-mulcom 11173  ax-addass 11174  ax-mulass 11175  ax-distr 11176  ax-i2m1 11177  ax-1ne0 11178  ax-1rid 11179  ax-rnegex 11180  ax-rrecex 11181  ax-cnre 11182  ax-pre-lttri 11183  ax-pre-lttrn 11184  ax-pre-ltadd 11185  ax-pre-mulgt0 11186
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3or 1085  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2528  df-eu 2557  df-clab 2704  df-cleq 2718  df-clel 2804  df-nfc 2879  df-ne 2935  df-nel 3041  df-ral 3056  df-rex 3065  df-reu 3371  df-rab 3427  df-v 3470  df-sbc 3773  df-csb 3889  df-dif 3946  df-un 3948  df-in 3950  df-ss 3960  df-pss 3962  df-nul 4318  df-if 4524  df-pw 4599  df-sn 4624  df-pr 4626  df-op 4630  df-uni 4903  df-int 4944  df-iun 4992  df-br 5142  df-opab 5204  df-mpt 5225  df-tr 5259  df-id 5567  df-eprel 5573  df-po 5581  df-so 5582  df-fr 5624  df-we 5626  df-xp 5675  df-rel 5676  df-cnv 5677  df-co 5678  df-dm 5679  df-rn 5680  df-res 5681  df-ima 5682  df-pred 6293  df-ord 6360  df-on 6361  df-lim 6362  df-suc 6363  df-iota 6488  df-fun 6538  df-fn 6539  df-f 6540  df-f1 6541  df-fo 6542  df-f1o 6543  df-fv 6544  df-riota 7360  df-ov 7407  df-oprab 7408  df-mpo 7409  df-om 7852  df-1st 7971  df-2nd 7972  df-frecs 8264  df-wrecs 8295  df-recs 8369  df-rdg 8408  df-1o 8464  df-er 8702  df-en 8939  df-dom 8940  df-sdom 8941  df-fin 8942  df-card 9933  df-pnf 11251  df-mnf 11252  df-xr 11253  df-ltxr 11254  df-le 11255  df-sub 11447  df-neg 11448  df-nn 12214  df-n0 12474  df-z 12560  df-uz 12824  df-fz 13488  df-fzo 13631  df-hash 14293  df-word 14468  df-concat 14524
This theorem is referenced by:  lswccat0lsw  14545  swrdccat  14688  swrdccat3blem  14692  cshw0  14747  gsumccat  18763  frmdmnd  18781  frmd0  18782  efginvrel2  19644  efgredleme  19660  efgcpbllemb  19672  efgcpbl2  19674  frgpnabllem1  19790  signstfvc  34114
  Copyright terms: Public domain W3C validator