MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ccatrn Structured version   Visualization version   GIF version

Theorem ccatrn 14515
Description: The range of a concatenated word. (Contributed by Stefan O'Rear, 15-Aug-2015.)
Assertion
Ref Expression
ccatrn ((𝑆 ∈ Word 𝐵𝑇 ∈ Word 𝐵) → ran (𝑆 ++ 𝑇) = (ran 𝑆 ∪ ran 𝑇))

Proof of Theorem ccatrn
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 ccatvalfn 14507 . . . 4 ((𝑆 ∈ Word 𝐵𝑇 ∈ Word 𝐵) → (𝑆 ++ 𝑇) Fn (0..^((♯‘𝑆) + (♯‘𝑇))))
2 lencl 14459 . . . . . . . . . . . 12 (𝑆 ∈ Word 𝐵 → (♯‘𝑆) ∈ ℕ0)
3 nn0uz 12796 . . . . . . . . . . . 12 0 = (ℤ‘0)
42, 3eleqtrdi 2838 . . . . . . . . . . 11 (𝑆 ∈ Word 𝐵 → (♯‘𝑆) ∈ (ℤ‘0))
54adantr 480 . . . . . . . . . 10 ((𝑆 ∈ Word 𝐵𝑇 ∈ Word 𝐵) → (♯‘𝑆) ∈ (ℤ‘0))
62nn0zd 12516 . . . . . . . . . . . 12 (𝑆 ∈ Word 𝐵 → (♯‘𝑆) ∈ ℤ)
76uzidd 12770 . . . . . . . . . . 11 (𝑆 ∈ Word 𝐵 → (♯‘𝑆) ∈ (ℤ‘(♯‘𝑆)))
8 lencl 14459 . . . . . . . . . . 11 (𝑇 ∈ Word 𝐵 → (♯‘𝑇) ∈ ℕ0)
9 uzaddcl 12824 . . . . . . . . . . 11 (((♯‘𝑆) ∈ (ℤ‘(♯‘𝑆)) ∧ (♯‘𝑇) ∈ ℕ0) → ((♯‘𝑆) + (♯‘𝑇)) ∈ (ℤ‘(♯‘𝑆)))
107, 8, 9syl2an 596 . . . . . . . . . 10 ((𝑆 ∈ Word 𝐵𝑇 ∈ Word 𝐵) → ((♯‘𝑆) + (♯‘𝑇)) ∈ (ℤ‘(♯‘𝑆)))
11 elfzuzb 13440 . . . . . . . . . 10 ((♯‘𝑆) ∈ (0...((♯‘𝑆) + (♯‘𝑇))) ↔ ((♯‘𝑆) ∈ (ℤ‘0) ∧ ((♯‘𝑆) + (♯‘𝑇)) ∈ (ℤ‘(♯‘𝑆))))
125, 10, 11sylanbrc 583 . . . . . . . . 9 ((𝑆 ∈ Word 𝐵𝑇 ∈ Word 𝐵) → (♯‘𝑆) ∈ (0...((♯‘𝑆) + (♯‘𝑇))))
13 fzosplit 13614 . . . . . . . . 9 ((♯‘𝑆) ∈ (0...((♯‘𝑆) + (♯‘𝑇))) → (0..^((♯‘𝑆) + (♯‘𝑇))) = ((0..^(♯‘𝑆)) ∪ ((♯‘𝑆)..^((♯‘𝑆) + (♯‘𝑇)))))
1412, 13syl 17 . . . . . . . 8 ((𝑆 ∈ Word 𝐵𝑇 ∈ Word 𝐵) → (0..^((♯‘𝑆) + (♯‘𝑇))) = ((0..^(♯‘𝑆)) ∪ ((♯‘𝑆)..^((♯‘𝑆) + (♯‘𝑇)))))
1514eleq2d 2814 . . . . . . 7 ((𝑆 ∈ Word 𝐵𝑇 ∈ Word 𝐵) → (𝑥 ∈ (0..^((♯‘𝑆) + (♯‘𝑇))) ↔ 𝑥 ∈ ((0..^(♯‘𝑆)) ∪ ((♯‘𝑆)..^((♯‘𝑆) + (♯‘𝑇))))))
16 elun 4106 . . . . . . 7 (𝑥 ∈ ((0..^(♯‘𝑆)) ∪ ((♯‘𝑆)..^((♯‘𝑆) + (♯‘𝑇)))) ↔ (𝑥 ∈ (0..^(♯‘𝑆)) ∨ 𝑥 ∈ ((♯‘𝑆)..^((♯‘𝑆) + (♯‘𝑇)))))
1715, 16bitrdi 287 . . . . . 6 ((𝑆 ∈ Word 𝐵𝑇 ∈ Word 𝐵) → (𝑥 ∈ (0..^((♯‘𝑆) + (♯‘𝑇))) ↔ (𝑥 ∈ (0..^(♯‘𝑆)) ∨ 𝑥 ∈ ((♯‘𝑆)..^((♯‘𝑆) + (♯‘𝑇))))))
18 ccatval1 14503 . . . . . . . . . 10 ((𝑆 ∈ Word 𝐵𝑇 ∈ Word 𝐵𝑥 ∈ (0..^(♯‘𝑆))) → ((𝑆 ++ 𝑇)‘𝑥) = (𝑆𝑥))
19183expa 1118 . . . . . . . . 9 (((𝑆 ∈ Word 𝐵𝑇 ∈ Word 𝐵) ∧ 𝑥 ∈ (0..^(♯‘𝑆))) → ((𝑆 ++ 𝑇)‘𝑥) = (𝑆𝑥))
20 ssun1 4131 . . . . . . . . . 10 ran 𝑆 ⊆ (ran 𝑆 ∪ ran 𝑇)
21 wrdfn 14454 . . . . . . . . . . . 12 (𝑆 ∈ Word 𝐵𝑆 Fn (0..^(♯‘𝑆)))
2221adantr 480 . . . . . . . . . . 11 ((𝑆 ∈ Word 𝐵𝑇 ∈ Word 𝐵) → 𝑆 Fn (0..^(♯‘𝑆)))
23 fnfvelrn 7018 . . . . . . . . . . 11 ((𝑆 Fn (0..^(♯‘𝑆)) ∧ 𝑥 ∈ (0..^(♯‘𝑆))) → (𝑆𝑥) ∈ ran 𝑆)
2422, 23sylan 580 . . . . . . . . . 10 (((𝑆 ∈ Word 𝐵𝑇 ∈ Word 𝐵) ∧ 𝑥 ∈ (0..^(♯‘𝑆))) → (𝑆𝑥) ∈ ran 𝑆)
2520, 24sselid 3935 . . . . . . . . 9 (((𝑆 ∈ Word 𝐵𝑇 ∈ Word 𝐵) ∧ 𝑥 ∈ (0..^(♯‘𝑆))) → (𝑆𝑥) ∈ (ran 𝑆 ∪ ran 𝑇))
2619, 25eqeltrd 2828 . . . . . . . 8 (((𝑆 ∈ Word 𝐵𝑇 ∈ Word 𝐵) ∧ 𝑥 ∈ (0..^(♯‘𝑆))) → ((𝑆 ++ 𝑇)‘𝑥) ∈ (ran 𝑆 ∪ ran 𝑇))
27 ccatval2 14504 . . . . . . . . . 10 ((𝑆 ∈ Word 𝐵𝑇 ∈ Word 𝐵𝑥 ∈ ((♯‘𝑆)..^((♯‘𝑆) + (♯‘𝑇)))) → ((𝑆 ++ 𝑇)‘𝑥) = (𝑇‘(𝑥 − (♯‘𝑆))))
28273expa 1118 . . . . . . . . 9 (((𝑆 ∈ Word 𝐵𝑇 ∈ Word 𝐵) ∧ 𝑥 ∈ ((♯‘𝑆)..^((♯‘𝑆) + (♯‘𝑇)))) → ((𝑆 ++ 𝑇)‘𝑥) = (𝑇‘(𝑥 − (♯‘𝑆))))
29 ssun2 4132 . . . . . . . . . 10 ran 𝑇 ⊆ (ran 𝑆 ∪ ran 𝑇)
30 wrdfn 14454 . . . . . . . . . . . 12 (𝑇 ∈ Word 𝐵𝑇 Fn (0..^(♯‘𝑇)))
3130adantl 481 . . . . . . . . . . 11 ((𝑆 ∈ Word 𝐵𝑇 ∈ Word 𝐵) → 𝑇 Fn (0..^(♯‘𝑇)))
32 elfzouz 13585 . . . . . . . . . . . . . . 15 (𝑥 ∈ ((♯‘𝑆)..^((♯‘𝑆) + (♯‘𝑇))) → 𝑥 ∈ (ℤ‘(♯‘𝑆)))
33 uznn0sub 12793 . . . . . . . . . . . . . . 15 (𝑥 ∈ (ℤ‘(♯‘𝑆)) → (𝑥 − (♯‘𝑆)) ∈ ℕ0)
3432, 33syl 17 . . . . . . . . . . . . . 14 (𝑥 ∈ ((♯‘𝑆)..^((♯‘𝑆) + (♯‘𝑇))) → (𝑥 − (♯‘𝑆)) ∈ ℕ0)
3534, 3eleqtrdi 2838 . . . . . . . . . . . . 13 (𝑥 ∈ ((♯‘𝑆)..^((♯‘𝑆) + (♯‘𝑇))) → (𝑥 − (♯‘𝑆)) ∈ (ℤ‘0))
3635adantl 481 . . . . . . . . . . . 12 (((𝑆 ∈ Word 𝐵𝑇 ∈ Word 𝐵) ∧ 𝑥 ∈ ((♯‘𝑆)..^((♯‘𝑆) + (♯‘𝑇)))) → (𝑥 − (♯‘𝑆)) ∈ (ℤ‘0))
378nn0zd 12516 . . . . . . . . . . . . 13 (𝑇 ∈ Word 𝐵 → (♯‘𝑇) ∈ ℤ)
3837ad2antlr 727 . . . . . . . . . . . 12 (((𝑆 ∈ Word 𝐵𝑇 ∈ Word 𝐵) ∧ 𝑥 ∈ ((♯‘𝑆)..^((♯‘𝑆) + (♯‘𝑇)))) → (♯‘𝑇) ∈ ℤ)
39 elfzolt2 13590 . . . . . . . . . . . . . 14 (𝑥 ∈ ((♯‘𝑆)..^((♯‘𝑆) + (♯‘𝑇))) → 𝑥 < ((♯‘𝑆) + (♯‘𝑇)))
4039adantl 481 . . . . . . . . . . . . 13 (((𝑆 ∈ Word 𝐵𝑇 ∈ Word 𝐵) ∧ 𝑥 ∈ ((♯‘𝑆)..^((♯‘𝑆) + (♯‘𝑇)))) → 𝑥 < ((♯‘𝑆) + (♯‘𝑇)))
41 elfzoelz 13581 . . . . . . . . . . . . . . . 16 (𝑥 ∈ ((♯‘𝑆)..^((♯‘𝑆) + (♯‘𝑇))) → 𝑥 ∈ ℤ)
4241zred 12599 . . . . . . . . . . . . . . 15 (𝑥 ∈ ((♯‘𝑆)..^((♯‘𝑆) + (♯‘𝑇))) → 𝑥 ∈ ℝ)
4342adantl 481 . . . . . . . . . . . . . 14 (((𝑆 ∈ Word 𝐵𝑇 ∈ Word 𝐵) ∧ 𝑥 ∈ ((♯‘𝑆)..^((♯‘𝑆) + (♯‘𝑇)))) → 𝑥 ∈ ℝ)
442nn0red 12465 . . . . . . . . . . . . . . 15 (𝑆 ∈ Word 𝐵 → (♯‘𝑆) ∈ ℝ)
4544ad2antrr 726 . . . . . . . . . . . . . 14 (((𝑆 ∈ Word 𝐵𝑇 ∈ Word 𝐵) ∧ 𝑥 ∈ ((♯‘𝑆)..^((♯‘𝑆) + (♯‘𝑇)))) → (♯‘𝑆) ∈ ℝ)
468nn0red 12465 . . . . . . . . . . . . . . 15 (𝑇 ∈ Word 𝐵 → (♯‘𝑇) ∈ ℝ)
4746ad2antlr 727 . . . . . . . . . . . . . 14 (((𝑆 ∈ Word 𝐵𝑇 ∈ Word 𝐵) ∧ 𝑥 ∈ ((♯‘𝑆)..^((♯‘𝑆) + (♯‘𝑇)))) → (♯‘𝑇) ∈ ℝ)
4843, 45, 47ltsubadd2d 11737 . . . . . . . . . . . . 13 (((𝑆 ∈ Word 𝐵𝑇 ∈ Word 𝐵) ∧ 𝑥 ∈ ((♯‘𝑆)..^((♯‘𝑆) + (♯‘𝑇)))) → ((𝑥 − (♯‘𝑆)) < (♯‘𝑇) ↔ 𝑥 < ((♯‘𝑆) + (♯‘𝑇))))
4940, 48mpbird 257 . . . . . . . . . . . 12 (((𝑆 ∈ Word 𝐵𝑇 ∈ Word 𝐵) ∧ 𝑥 ∈ ((♯‘𝑆)..^((♯‘𝑆) + (♯‘𝑇)))) → (𝑥 − (♯‘𝑆)) < (♯‘𝑇))
50 elfzo2 13584 . . . . . . . . . . . 12 ((𝑥 − (♯‘𝑆)) ∈ (0..^(♯‘𝑇)) ↔ ((𝑥 − (♯‘𝑆)) ∈ (ℤ‘0) ∧ (♯‘𝑇) ∈ ℤ ∧ (𝑥 − (♯‘𝑆)) < (♯‘𝑇)))
5136, 38, 49, 50syl3anbrc 1344 . . . . . . . . . . 11 (((𝑆 ∈ Word 𝐵𝑇 ∈ Word 𝐵) ∧ 𝑥 ∈ ((♯‘𝑆)..^((♯‘𝑆) + (♯‘𝑇)))) → (𝑥 − (♯‘𝑆)) ∈ (0..^(♯‘𝑇)))
52 fnfvelrn 7018 . . . . . . . . . . 11 ((𝑇 Fn (0..^(♯‘𝑇)) ∧ (𝑥 − (♯‘𝑆)) ∈ (0..^(♯‘𝑇))) → (𝑇‘(𝑥 − (♯‘𝑆))) ∈ ran 𝑇)
5331, 51, 52syl2an2r 685 . . . . . . . . . 10 (((𝑆 ∈ Word 𝐵𝑇 ∈ Word 𝐵) ∧ 𝑥 ∈ ((♯‘𝑆)..^((♯‘𝑆) + (♯‘𝑇)))) → (𝑇‘(𝑥 − (♯‘𝑆))) ∈ ran 𝑇)
5429, 53sselid 3935 . . . . . . . . 9 (((𝑆 ∈ Word 𝐵𝑇 ∈ Word 𝐵) ∧ 𝑥 ∈ ((♯‘𝑆)..^((♯‘𝑆) + (♯‘𝑇)))) → (𝑇‘(𝑥 − (♯‘𝑆))) ∈ (ran 𝑆 ∪ ran 𝑇))
5528, 54eqeltrd 2828 . . . . . . . 8 (((𝑆 ∈ Word 𝐵𝑇 ∈ Word 𝐵) ∧ 𝑥 ∈ ((♯‘𝑆)..^((♯‘𝑆) + (♯‘𝑇)))) → ((𝑆 ++ 𝑇)‘𝑥) ∈ (ran 𝑆 ∪ ran 𝑇))
5626, 55jaodan 959 . . . . . . 7 (((𝑆 ∈ Word 𝐵𝑇 ∈ Word 𝐵) ∧ (𝑥 ∈ (0..^(♯‘𝑆)) ∨ 𝑥 ∈ ((♯‘𝑆)..^((♯‘𝑆) + (♯‘𝑇))))) → ((𝑆 ++ 𝑇)‘𝑥) ∈ (ran 𝑆 ∪ ran 𝑇))
5756ex 412 . . . . . 6 ((𝑆 ∈ Word 𝐵𝑇 ∈ Word 𝐵) → ((𝑥 ∈ (0..^(♯‘𝑆)) ∨ 𝑥 ∈ ((♯‘𝑆)..^((♯‘𝑆) + (♯‘𝑇)))) → ((𝑆 ++ 𝑇)‘𝑥) ∈ (ran 𝑆 ∪ ran 𝑇)))
5817, 57sylbid 240 . . . . 5 ((𝑆 ∈ Word 𝐵𝑇 ∈ Word 𝐵) → (𝑥 ∈ (0..^((♯‘𝑆) + (♯‘𝑇))) → ((𝑆 ++ 𝑇)‘𝑥) ∈ (ran 𝑆 ∪ ran 𝑇)))
5958ralrimiv 3120 . . . 4 ((𝑆 ∈ Word 𝐵𝑇 ∈ Word 𝐵) → ∀𝑥 ∈ (0..^((♯‘𝑆) + (♯‘𝑇)))((𝑆 ++ 𝑇)‘𝑥) ∈ (ran 𝑆 ∪ ran 𝑇))
60 ffnfv 7057 . . . 4 ((𝑆 ++ 𝑇):(0..^((♯‘𝑆) + (♯‘𝑇)))⟶(ran 𝑆 ∪ ran 𝑇) ↔ ((𝑆 ++ 𝑇) Fn (0..^((♯‘𝑆) + (♯‘𝑇))) ∧ ∀𝑥 ∈ (0..^((♯‘𝑆) + (♯‘𝑇)))((𝑆 ++ 𝑇)‘𝑥) ∈ (ran 𝑆 ∪ ran 𝑇)))
611, 59, 60sylanbrc 583 . . 3 ((𝑆 ∈ Word 𝐵𝑇 ∈ Word 𝐵) → (𝑆 ++ 𝑇):(0..^((♯‘𝑆) + (♯‘𝑇)))⟶(ran 𝑆 ∪ ran 𝑇))
6261frnd 6664 . 2 ((𝑆 ∈ Word 𝐵𝑇 ∈ Word 𝐵) → ran (𝑆 ++ 𝑇) ⊆ (ran 𝑆 ∪ ran 𝑇))
63 fzoss2 13609 . . . . . . . . . 10 (((♯‘𝑆) + (♯‘𝑇)) ∈ (ℤ‘(♯‘𝑆)) → (0..^(♯‘𝑆)) ⊆ (0..^((♯‘𝑆) + (♯‘𝑇))))
6410, 63syl 17 . . . . . . . . 9 ((𝑆 ∈ Word 𝐵𝑇 ∈ Word 𝐵) → (0..^(♯‘𝑆)) ⊆ (0..^((♯‘𝑆) + (♯‘𝑇))))
6564sselda 3937 . . . . . . . 8 (((𝑆 ∈ Word 𝐵𝑇 ∈ Word 𝐵) ∧ 𝑥 ∈ (0..^(♯‘𝑆))) → 𝑥 ∈ (0..^((♯‘𝑆) + (♯‘𝑇))))
66 fnfvelrn 7018 . . . . . . . 8 (((𝑆 ++ 𝑇) Fn (0..^((♯‘𝑆) + (♯‘𝑇))) ∧ 𝑥 ∈ (0..^((♯‘𝑆) + (♯‘𝑇)))) → ((𝑆 ++ 𝑇)‘𝑥) ∈ ran (𝑆 ++ 𝑇))
671, 65, 66syl2an2r 685 . . . . . . 7 (((𝑆 ∈ Word 𝐵𝑇 ∈ Word 𝐵) ∧ 𝑥 ∈ (0..^(♯‘𝑆))) → ((𝑆 ++ 𝑇)‘𝑥) ∈ ran (𝑆 ++ 𝑇))
6819, 67eqeltrrd 2829 . . . . . 6 (((𝑆 ∈ Word 𝐵𝑇 ∈ Word 𝐵) ∧ 𝑥 ∈ (0..^(♯‘𝑆))) → (𝑆𝑥) ∈ ran (𝑆 ++ 𝑇))
6968ralrimiva 3121 . . . . 5 ((𝑆 ∈ Word 𝐵𝑇 ∈ Word 𝐵) → ∀𝑥 ∈ (0..^(♯‘𝑆))(𝑆𝑥) ∈ ran (𝑆 ++ 𝑇))
70 ffnfv 7057 . . . . 5 (𝑆:(0..^(♯‘𝑆))⟶ran (𝑆 ++ 𝑇) ↔ (𝑆 Fn (0..^(♯‘𝑆)) ∧ ∀𝑥 ∈ (0..^(♯‘𝑆))(𝑆𝑥) ∈ ran (𝑆 ++ 𝑇)))
7122, 69, 70sylanbrc 583 . . . 4 ((𝑆 ∈ Word 𝐵𝑇 ∈ Word 𝐵) → 𝑆:(0..^(♯‘𝑆))⟶ran (𝑆 ++ 𝑇))
7271frnd 6664 . . 3 ((𝑆 ∈ Word 𝐵𝑇 ∈ Word 𝐵) → ran 𝑆 ⊆ ran (𝑆 ++ 𝑇))
73 ccatval3 14505 . . . . . . . 8 ((𝑆 ∈ Word 𝐵𝑇 ∈ Word 𝐵𝑥 ∈ (0..^(♯‘𝑇))) → ((𝑆 ++ 𝑇)‘(𝑥 + (♯‘𝑆))) = (𝑇𝑥))
74733expa 1118 . . . . . . 7 (((𝑆 ∈ Word 𝐵𝑇 ∈ Word 𝐵) ∧ 𝑥 ∈ (0..^(♯‘𝑇))) → ((𝑆 ++ 𝑇)‘(𝑥 + (♯‘𝑆))) = (𝑇𝑥))
75 elfzouz 13585 . . . . . . . . . 10 (𝑥 ∈ (0..^(♯‘𝑇)) → 𝑥 ∈ (ℤ‘0))
762adantr 480 . . . . . . . . . 10 ((𝑆 ∈ Word 𝐵𝑇 ∈ Word 𝐵) → (♯‘𝑆) ∈ ℕ0)
77 uzaddcl 12824 . . . . . . . . . 10 ((𝑥 ∈ (ℤ‘0) ∧ (♯‘𝑆) ∈ ℕ0) → (𝑥 + (♯‘𝑆)) ∈ (ℤ‘0))
7875, 76, 77syl2anr 597 . . . . . . . . 9 (((𝑆 ∈ Word 𝐵𝑇 ∈ Word 𝐵) ∧ 𝑥 ∈ (0..^(♯‘𝑇))) → (𝑥 + (♯‘𝑆)) ∈ (ℤ‘0))
79 nn0addcl 12438 . . . . . . . . . . . 12 (((♯‘𝑆) ∈ ℕ0 ∧ (♯‘𝑇) ∈ ℕ0) → ((♯‘𝑆) + (♯‘𝑇)) ∈ ℕ0)
802, 8, 79syl2an 596 . . . . . . . . . . 11 ((𝑆 ∈ Word 𝐵𝑇 ∈ Word 𝐵) → ((♯‘𝑆) + (♯‘𝑇)) ∈ ℕ0)
8180nn0zd 12516 . . . . . . . . . 10 ((𝑆 ∈ Word 𝐵𝑇 ∈ Word 𝐵) → ((♯‘𝑆) + (♯‘𝑇)) ∈ ℤ)
8281adantr 480 . . . . . . . . 9 (((𝑆 ∈ Word 𝐵𝑇 ∈ Word 𝐵) ∧ 𝑥 ∈ (0..^(♯‘𝑇))) → ((♯‘𝑆) + (♯‘𝑇)) ∈ ℤ)
83 elfzonn0 13629 . . . . . . . . . . . 12 (𝑥 ∈ (0..^(♯‘𝑇)) → 𝑥 ∈ ℕ0)
8483nn0cnd 12466 . . . . . . . . . . 11 (𝑥 ∈ (0..^(♯‘𝑇)) → 𝑥 ∈ ℂ)
852nn0cnd 12466 . . . . . . . . . . . 12 (𝑆 ∈ Word 𝐵 → (♯‘𝑆) ∈ ℂ)
8685adantr 480 . . . . . . . . . . 11 ((𝑆 ∈ Word 𝐵𝑇 ∈ Word 𝐵) → (♯‘𝑆) ∈ ℂ)
87 addcom 11321 . . . . . . . . . . 11 ((𝑥 ∈ ℂ ∧ (♯‘𝑆) ∈ ℂ) → (𝑥 + (♯‘𝑆)) = ((♯‘𝑆) + 𝑥))
8884, 86, 87syl2anr 597 . . . . . . . . . 10 (((𝑆 ∈ Word 𝐵𝑇 ∈ Word 𝐵) ∧ 𝑥 ∈ (0..^(♯‘𝑇))) → (𝑥 + (♯‘𝑆)) = ((♯‘𝑆) + 𝑥))
8983nn0red 12465 . . . . . . . . . . . 12 (𝑥 ∈ (0..^(♯‘𝑇)) → 𝑥 ∈ ℝ)
9089adantl 481 . . . . . . . . . . 11 (((𝑆 ∈ Word 𝐵𝑇 ∈ Word 𝐵) ∧ 𝑥 ∈ (0..^(♯‘𝑇))) → 𝑥 ∈ ℝ)
9146ad2antlr 727 . . . . . . . . . . 11 (((𝑆 ∈ Word 𝐵𝑇 ∈ Word 𝐵) ∧ 𝑥 ∈ (0..^(♯‘𝑇))) → (♯‘𝑇) ∈ ℝ)
9244ad2antrr 726 . . . . . . . . . . 11 (((𝑆 ∈ Word 𝐵𝑇 ∈ Word 𝐵) ∧ 𝑥 ∈ (0..^(♯‘𝑇))) → (♯‘𝑆) ∈ ℝ)
93 elfzolt2 13590 . . . . . . . . . . . 12 (𝑥 ∈ (0..^(♯‘𝑇)) → 𝑥 < (♯‘𝑇))
9493adantl 481 . . . . . . . . . . 11 (((𝑆 ∈ Word 𝐵𝑇 ∈ Word 𝐵) ∧ 𝑥 ∈ (0..^(♯‘𝑇))) → 𝑥 < (♯‘𝑇))
9590, 91, 92, 94ltadd2dd 11294 . . . . . . . . . 10 (((𝑆 ∈ Word 𝐵𝑇 ∈ Word 𝐵) ∧ 𝑥 ∈ (0..^(♯‘𝑇))) → ((♯‘𝑆) + 𝑥) < ((♯‘𝑆) + (♯‘𝑇)))
9688, 95eqbrtrd 5117 . . . . . . . . 9 (((𝑆 ∈ Word 𝐵𝑇 ∈ Word 𝐵) ∧ 𝑥 ∈ (0..^(♯‘𝑇))) → (𝑥 + (♯‘𝑆)) < ((♯‘𝑆) + (♯‘𝑇)))
97 elfzo2 13584 . . . . . . . . 9 ((𝑥 + (♯‘𝑆)) ∈ (0..^((♯‘𝑆) + (♯‘𝑇))) ↔ ((𝑥 + (♯‘𝑆)) ∈ (ℤ‘0) ∧ ((♯‘𝑆) + (♯‘𝑇)) ∈ ℤ ∧ (𝑥 + (♯‘𝑆)) < ((♯‘𝑆) + (♯‘𝑇))))
9878, 82, 96, 97syl3anbrc 1344 . . . . . . . 8 (((𝑆 ∈ Word 𝐵𝑇 ∈ Word 𝐵) ∧ 𝑥 ∈ (0..^(♯‘𝑇))) → (𝑥 + (♯‘𝑆)) ∈ (0..^((♯‘𝑆) + (♯‘𝑇))))
99 fnfvelrn 7018 . . . . . . . 8 (((𝑆 ++ 𝑇) Fn (0..^((♯‘𝑆) + (♯‘𝑇))) ∧ (𝑥 + (♯‘𝑆)) ∈ (0..^((♯‘𝑆) + (♯‘𝑇)))) → ((𝑆 ++ 𝑇)‘(𝑥 + (♯‘𝑆))) ∈ ran (𝑆 ++ 𝑇))
1001, 98, 99syl2an2r 685 . . . . . . 7 (((𝑆 ∈ Word 𝐵𝑇 ∈ Word 𝐵) ∧ 𝑥 ∈ (0..^(♯‘𝑇))) → ((𝑆 ++ 𝑇)‘(𝑥 + (♯‘𝑆))) ∈ ran (𝑆 ++ 𝑇))
10174, 100eqeltrrd 2829 . . . . . 6 (((𝑆 ∈ Word 𝐵𝑇 ∈ Word 𝐵) ∧ 𝑥 ∈ (0..^(♯‘𝑇))) → (𝑇𝑥) ∈ ran (𝑆 ++ 𝑇))
102101ralrimiva 3121 . . . . 5 ((𝑆 ∈ Word 𝐵𝑇 ∈ Word 𝐵) → ∀𝑥 ∈ (0..^(♯‘𝑇))(𝑇𝑥) ∈ ran (𝑆 ++ 𝑇))
103 ffnfv 7057 . . . . 5 (𝑇:(0..^(♯‘𝑇))⟶ran (𝑆 ++ 𝑇) ↔ (𝑇 Fn (0..^(♯‘𝑇)) ∧ ∀𝑥 ∈ (0..^(♯‘𝑇))(𝑇𝑥) ∈ ran (𝑆 ++ 𝑇)))
10431, 102, 103sylanbrc 583 . . . 4 ((𝑆 ∈ Word 𝐵𝑇 ∈ Word 𝐵) → 𝑇:(0..^(♯‘𝑇))⟶ran (𝑆 ++ 𝑇))
105104frnd 6664 . . 3 ((𝑆 ∈ Word 𝐵𝑇 ∈ Word 𝐵) → ran 𝑇 ⊆ ran (𝑆 ++ 𝑇))
10672, 105unssd 4145 . 2 ((𝑆 ∈ Word 𝐵𝑇 ∈ Word 𝐵) → (ran 𝑆 ∪ ran 𝑇) ⊆ ran (𝑆 ++ 𝑇))
10762, 106eqssd 3955 1 ((𝑆 ∈ Word 𝐵𝑇 ∈ Word 𝐵) → ran (𝑆 ++ 𝑇) = (ran 𝑆 ∪ ran 𝑇))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  wo 847   = wceq 1540  wcel 2109  wral 3044  cun 3903  wss 3905   class class class wbr 5095  ran crn 5624   Fn wfn 6481  wf 6482  cfv 6486  (class class class)co 7353  cc 11026  cr 11027  0cc0 11028   + caddc 11031   < clt 11168  cmin 11366  0cn0 12403  cz 12490  cuz 12754  ...cfz 13429  ..^cfzo 13576  chash 14256  Word cword 14439   ++ cconcat 14496
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5221  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374  ax-un 7675  ax-cnex 11084  ax-resscn 11085  ax-1cn 11086  ax-icn 11087  ax-addcl 11088  ax-addrcl 11089  ax-mulcl 11090  ax-mulrcl 11091  ax-mulcom 11092  ax-addass 11093  ax-mulass 11094  ax-distr 11095  ax-i2m1 11096  ax-1ne0 11097  ax-1rid 11098  ax-rnegex 11099  ax-rrecex 11100  ax-cnre 11101  ax-pre-lttri 11102  ax-pre-lttrn 11103  ax-pre-ltadd 11104  ax-pre-mulgt0 11105
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-reu 3346  df-rab 3397  df-v 3440  df-sbc 3745  df-csb 3854  df-dif 3908  df-un 3910  df-in 3912  df-ss 3922  df-pss 3925  df-nul 4287  df-if 4479  df-pw 4555  df-sn 4580  df-pr 4582  df-op 4586  df-uni 4862  df-int 4900  df-iun 4946  df-br 5096  df-opab 5158  df-mpt 5177  df-tr 5203  df-id 5518  df-eprel 5523  df-po 5531  df-so 5532  df-fr 5576  df-we 5578  df-xp 5629  df-rel 5630  df-cnv 5631  df-co 5632  df-dm 5633  df-rn 5634  df-res 5635  df-ima 5636  df-pred 6253  df-ord 6314  df-on 6315  df-lim 6316  df-suc 6317  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-f1 6491  df-fo 6492  df-f1o 6493  df-fv 6494  df-riota 7310  df-ov 7356  df-oprab 7357  df-mpo 7358  df-om 7807  df-1st 7931  df-2nd 7932  df-frecs 8221  df-wrecs 8252  df-recs 8301  df-rdg 8339  df-1o 8395  df-er 8632  df-en 8880  df-dom 8881  df-sdom 8882  df-fin 8883  df-card 9854  df-pnf 11170  df-mnf 11171  df-xr 11172  df-ltxr 11173  df-le 11174  df-sub 11368  df-neg 11369  df-nn 12148  df-n0 12404  df-z 12491  df-uz 12755  df-fz 13430  df-fzo 13577  df-hash 14257  df-word 14440  df-concat 14497
This theorem is referenced by:  s2rn  14889  s3rn  14890  s7rn  14891  cycpmco2f1  33085  cycpmco2rn  33086  unitprodclb  33345  mrsubvrs  35514
  Copyright terms: Public domain W3C validator