MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ccatrn Structured version   Visualization version   GIF version

Theorem ccatrn 14612
Description: The range of a concatenated word. (Contributed by Stefan O'Rear, 15-Aug-2015.)
Assertion
Ref Expression
ccatrn ((𝑆 ∈ Word 𝐵𝑇 ∈ Word 𝐵) → ran (𝑆 ++ 𝑇) = (ran 𝑆 ∪ ran 𝑇))

Proof of Theorem ccatrn
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 ccatvalfn 14604 . . . 4 ((𝑆 ∈ Word 𝐵𝑇 ∈ Word 𝐵) → (𝑆 ++ 𝑇) Fn (0..^((♯‘𝑆) + (♯‘𝑇))))
2 lencl 14556 . . . . . . . . . . . 12 (𝑆 ∈ Word 𝐵 → (♯‘𝑆) ∈ ℕ0)
3 nn0uz 12899 . . . . . . . . . . . 12 0 = (ℤ‘0)
42, 3eleqtrdi 2845 . . . . . . . . . . 11 (𝑆 ∈ Word 𝐵 → (♯‘𝑆) ∈ (ℤ‘0))
54adantr 480 . . . . . . . . . 10 ((𝑆 ∈ Word 𝐵𝑇 ∈ Word 𝐵) → (♯‘𝑆) ∈ (ℤ‘0))
62nn0zd 12619 . . . . . . . . . . . 12 (𝑆 ∈ Word 𝐵 → (♯‘𝑆) ∈ ℤ)
76uzidd 12873 . . . . . . . . . . 11 (𝑆 ∈ Word 𝐵 → (♯‘𝑆) ∈ (ℤ‘(♯‘𝑆)))
8 lencl 14556 . . . . . . . . . . 11 (𝑇 ∈ Word 𝐵 → (♯‘𝑇) ∈ ℕ0)
9 uzaddcl 12925 . . . . . . . . . . 11 (((♯‘𝑆) ∈ (ℤ‘(♯‘𝑆)) ∧ (♯‘𝑇) ∈ ℕ0) → ((♯‘𝑆) + (♯‘𝑇)) ∈ (ℤ‘(♯‘𝑆)))
107, 8, 9syl2an 596 . . . . . . . . . 10 ((𝑆 ∈ Word 𝐵𝑇 ∈ Word 𝐵) → ((♯‘𝑆) + (♯‘𝑇)) ∈ (ℤ‘(♯‘𝑆)))
11 elfzuzb 13540 . . . . . . . . . 10 ((♯‘𝑆) ∈ (0...((♯‘𝑆) + (♯‘𝑇))) ↔ ((♯‘𝑆) ∈ (ℤ‘0) ∧ ((♯‘𝑆) + (♯‘𝑇)) ∈ (ℤ‘(♯‘𝑆))))
125, 10, 11sylanbrc 583 . . . . . . . . 9 ((𝑆 ∈ Word 𝐵𝑇 ∈ Word 𝐵) → (♯‘𝑆) ∈ (0...((♯‘𝑆) + (♯‘𝑇))))
13 fzosplit 13714 . . . . . . . . 9 ((♯‘𝑆) ∈ (0...((♯‘𝑆) + (♯‘𝑇))) → (0..^((♯‘𝑆) + (♯‘𝑇))) = ((0..^(♯‘𝑆)) ∪ ((♯‘𝑆)..^((♯‘𝑆) + (♯‘𝑇)))))
1412, 13syl 17 . . . . . . . 8 ((𝑆 ∈ Word 𝐵𝑇 ∈ Word 𝐵) → (0..^((♯‘𝑆) + (♯‘𝑇))) = ((0..^(♯‘𝑆)) ∪ ((♯‘𝑆)..^((♯‘𝑆) + (♯‘𝑇)))))
1514eleq2d 2821 . . . . . . 7 ((𝑆 ∈ Word 𝐵𝑇 ∈ Word 𝐵) → (𝑥 ∈ (0..^((♯‘𝑆) + (♯‘𝑇))) ↔ 𝑥 ∈ ((0..^(♯‘𝑆)) ∪ ((♯‘𝑆)..^((♯‘𝑆) + (♯‘𝑇))))))
16 elun 4133 . . . . . . 7 (𝑥 ∈ ((0..^(♯‘𝑆)) ∪ ((♯‘𝑆)..^((♯‘𝑆) + (♯‘𝑇)))) ↔ (𝑥 ∈ (0..^(♯‘𝑆)) ∨ 𝑥 ∈ ((♯‘𝑆)..^((♯‘𝑆) + (♯‘𝑇)))))
1715, 16bitrdi 287 . . . . . 6 ((𝑆 ∈ Word 𝐵𝑇 ∈ Word 𝐵) → (𝑥 ∈ (0..^((♯‘𝑆) + (♯‘𝑇))) ↔ (𝑥 ∈ (0..^(♯‘𝑆)) ∨ 𝑥 ∈ ((♯‘𝑆)..^((♯‘𝑆) + (♯‘𝑇))))))
18 ccatval1 14600 . . . . . . . . . 10 ((𝑆 ∈ Word 𝐵𝑇 ∈ Word 𝐵𝑥 ∈ (0..^(♯‘𝑆))) → ((𝑆 ++ 𝑇)‘𝑥) = (𝑆𝑥))
19183expa 1118 . . . . . . . . 9 (((𝑆 ∈ Word 𝐵𝑇 ∈ Word 𝐵) ∧ 𝑥 ∈ (0..^(♯‘𝑆))) → ((𝑆 ++ 𝑇)‘𝑥) = (𝑆𝑥))
20 ssun1 4158 . . . . . . . . . 10 ran 𝑆 ⊆ (ran 𝑆 ∪ ran 𝑇)
21 wrdfn 14551 . . . . . . . . . . . 12 (𝑆 ∈ Word 𝐵𝑆 Fn (0..^(♯‘𝑆)))
2221adantr 480 . . . . . . . . . . 11 ((𝑆 ∈ Word 𝐵𝑇 ∈ Word 𝐵) → 𝑆 Fn (0..^(♯‘𝑆)))
23 fnfvelrn 7075 . . . . . . . . . . 11 ((𝑆 Fn (0..^(♯‘𝑆)) ∧ 𝑥 ∈ (0..^(♯‘𝑆))) → (𝑆𝑥) ∈ ran 𝑆)
2422, 23sylan 580 . . . . . . . . . 10 (((𝑆 ∈ Word 𝐵𝑇 ∈ Word 𝐵) ∧ 𝑥 ∈ (0..^(♯‘𝑆))) → (𝑆𝑥) ∈ ran 𝑆)
2520, 24sselid 3961 . . . . . . . . 9 (((𝑆 ∈ Word 𝐵𝑇 ∈ Word 𝐵) ∧ 𝑥 ∈ (0..^(♯‘𝑆))) → (𝑆𝑥) ∈ (ran 𝑆 ∪ ran 𝑇))
2619, 25eqeltrd 2835 . . . . . . . 8 (((𝑆 ∈ Word 𝐵𝑇 ∈ Word 𝐵) ∧ 𝑥 ∈ (0..^(♯‘𝑆))) → ((𝑆 ++ 𝑇)‘𝑥) ∈ (ran 𝑆 ∪ ran 𝑇))
27 ccatval2 14601 . . . . . . . . . 10 ((𝑆 ∈ Word 𝐵𝑇 ∈ Word 𝐵𝑥 ∈ ((♯‘𝑆)..^((♯‘𝑆) + (♯‘𝑇)))) → ((𝑆 ++ 𝑇)‘𝑥) = (𝑇‘(𝑥 − (♯‘𝑆))))
28273expa 1118 . . . . . . . . 9 (((𝑆 ∈ Word 𝐵𝑇 ∈ Word 𝐵) ∧ 𝑥 ∈ ((♯‘𝑆)..^((♯‘𝑆) + (♯‘𝑇)))) → ((𝑆 ++ 𝑇)‘𝑥) = (𝑇‘(𝑥 − (♯‘𝑆))))
29 ssun2 4159 . . . . . . . . . 10 ran 𝑇 ⊆ (ran 𝑆 ∪ ran 𝑇)
30 wrdfn 14551 . . . . . . . . . . . 12 (𝑇 ∈ Word 𝐵𝑇 Fn (0..^(♯‘𝑇)))
3130adantl 481 . . . . . . . . . . 11 ((𝑆 ∈ Word 𝐵𝑇 ∈ Word 𝐵) → 𝑇 Fn (0..^(♯‘𝑇)))
32 elfzouz 13685 . . . . . . . . . . . . . . 15 (𝑥 ∈ ((♯‘𝑆)..^((♯‘𝑆) + (♯‘𝑇))) → 𝑥 ∈ (ℤ‘(♯‘𝑆)))
33 uznn0sub 12896 . . . . . . . . . . . . . . 15 (𝑥 ∈ (ℤ‘(♯‘𝑆)) → (𝑥 − (♯‘𝑆)) ∈ ℕ0)
3432, 33syl 17 . . . . . . . . . . . . . 14 (𝑥 ∈ ((♯‘𝑆)..^((♯‘𝑆) + (♯‘𝑇))) → (𝑥 − (♯‘𝑆)) ∈ ℕ0)
3534, 3eleqtrdi 2845 . . . . . . . . . . . . 13 (𝑥 ∈ ((♯‘𝑆)..^((♯‘𝑆) + (♯‘𝑇))) → (𝑥 − (♯‘𝑆)) ∈ (ℤ‘0))
3635adantl 481 . . . . . . . . . . . 12 (((𝑆 ∈ Word 𝐵𝑇 ∈ Word 𝐵) ∧ 𝑥 ∈ ((♯‘𝑆)..^((♯‘𝑆) + (♯‘𝑇)))) → (𝑥 − (♯‘𝑆)) ∈ (ℤ‘0))
378nn0zd 12619 . . . . . . . . . . . . 13 (𝑇 ∈ Word 𝐵 → (♯‘𝑇) ∈ ℤ)
3837ad2antlr 727 . . . . . . . . . . . 12 (((𝑆 ∈ Word 𝐵𝑇 ∈ Word 𝐵) ∧ 𝑥 ∈ ((♯‘𝑆)..^((♯‘𝑆) + (♯‘𝑇)))) → (♯‘𝑇) ∈ ℤ)
39 elfzolt2 13690 . . . . . . . . . . . . . 14 (𝑥 ∈ ((♯‘𝑆)..^((♯‘𝑆) + (♯‘𝑇))) → 𝑥 < ((♯‘𝑆) + (♯‘𝑇)))
4039adantl 481 . . . . . . . . . . . . 13 (((𝑆 ∈ Word 𝐵𝑇 ∈ Word 𝐵) ∧ 𝑥 ∈ ((♯‘𝑆)..^((♯‘𝑆) + (♯‘𝑇)))) → 𝑥 < ((♯‘𝑆) + (♯‘𝑇)))
41 elfzoelz 13681 . . . . . . . . . . . . . . . 16 (𝑥 ∈ ((♯‘𝑆)..^((♯‘𝑆) + (♯‘𝑇))) → 𝑥 ∈ ℤ)
4241zred 12702 . . . . . . . . . . . . . . 15 (𝑥 ∈ ((♯‘𝑆)..^((♯‘𝑆) + (♯‘𝑇))) → 𝑥 ∈ ℝ)
4342adantl 481 . . . . . . . . . . . . . 14 (((𝑆 ∈ Word 𝐵𝑇 ∈ Word 𝐵) ∧ 𝑥 ∈ ((♯‘𝑆)..^((♯‘𝑆) + (♯‘𝑇)))) → 𝑥 ∈ ℝ)
442nn0red 12568 . . . . . . . . . . . . . . 15 (𝑆 ∈ Word 𝐵 → (♯‘𝑆) ∈ ℝ)
4544ad2antrr 726 . . . . . . . . . . . . . 14 (((𝑆 ∈ Word 𝐵𝑇 ∈ Word 𝐵) ∧ 𝑥 ∈ ((♯‘𝑆)..^((♯‘𝑆) + (♯‘𝑇)))) → (♯‘𝑆) ∈ ℝ)
468nn0red 12568 . . . . . . . . . . . . . . 15 (𝑇 ∈ Word 𝐵 → (♯‘𝑇) ∈ ℝ)
4746ad2antlr 727 . . . . . . . . . . . . . 14 (((𝑆 ∈ Word 𝐵𝑇 ∈ Word 𝐵) ∧ 𝑥 ∈ ((♯‘𝑆)..^((♯‘𝑆) + (♯‘𝑇)))) → (♯‘𝑇) ∈ ℝ)
4843, 45, 47ltsubadd2d 11840 . . . . . . . . . . . . 13 (((𝑆 ∈ Word 𝐵𝑇 ∈ Word 𝐵) ∧ 𝑥 ∈ ((♯‘𝑆)..^((♯‘𝑆) + (♯‘𝑇)))) → ((𝑥 − (♯‘𝑆)) < (♯‘𝑇) ↔ 𝑥 < ((♯‘𝑆) + (♯‘𝑇))))
4940, 48mpbird 257 . . . . . . . . . . . 12 (((𝑆 ∈ Word 𝐵𝑇 ∈ Word 𝐵) ∧ 𝑥 ∈ ((♯‘𝑆)..^((♯‘𝑆) + (♯‘𝑇)))) → (𝑥 − (♯‘𝑆)) < (♯‘𝑇))
50 elfzo2 13684 . . . . . . . . . . . 12 ((𝑥 − (♯‘𝑆)) ∈ (0..^(♯‘𝑇)) ↔ ((𝑥 − (♯‘𝑆)) ∈ (ℤ‘0) ∧ (♯‘𝑇) ∈ ℤ ∧ (𝑥 − (♯‘𝑆)) < (♯‘𝑇)))
5136, 38, 49, 50syl3anbrc 1344 . . . . . . . . . . 11 (((𝑆 ∈ Word 𝐵𝑇 ∈ Word 𝐵) ∧ 𝑥 ∈ ((♯‘𝑆)..^((♯‘𝑆) + (♯‘𝑇)))) → (𝑥 − (♯‘𝑆)) ∈ (0..^(♯‘𝑇)))
52 fnfvelrn 7075 . . . . . . . . . . 11 ((𝑇 Fn (0..^(♯‘𝑇)) ∧ (𝑥 − (♯‘𝑆)) ∈ (0..^(♯‘𝑇))) → (𝑇‘(𝑥 − (♯‘𝑆))) ∈ ran 𝑇)
5331, 51, 52syl2an2r 685 . . . . . . . . . 10 (((𝑆 ∈ Word 𝐵𝑇 ∈ Word 𝐵) ∧ 𝑥 ∈ ((♯‘𝑆)..^((♯‘𝑆) + (♯‘𝑇)))) → (𝑇‘(𝑥 − (♯‘𝑆))) ∈ ran 𝑇)
5429, 53sselid 3961 . . . . . . . . 9 (((𝑆 ∈ Word 𝐵𝑇 ∈ Word 𝐵) ∧ 𝑥 ∈ ((♯‘𝑆)..^((♯‘𝑆) + (♯‘𝑇)))) → (𝑇‘(𝑥 − (♯‘𝑆))) ∈ (ran 𝑆 ∪ ran 𝑇))
5528, 54eqeltrd 2835 . . . . . . . 8 (((𝑆 ∈ Word 𝐵𝑇 ∈ Word 𝐵) ∧ 𝑥 ∈ ((♯‘𝑆)..^((♯‘𝑆) + (♯‘𝑇)))) → ((𝑆 ++ 𝑇)‘𝑥) ∈ (ran 𝑆 ∪ ran 𝑇))
5626, 55jaodan 959 . . . . . . 7 (((𝑆 ∈ Word 𝐵𝑇 ∈ Word 𝐵) ∧ (𝑥 ∈ (0..^(♯‘𝑆)) ∨ 𝑥 ∈ ((♯‘𝑆)..^((♯‘𝑆) + (♯‘𝑇))))) → ((𝑆 ++ 𝑇)‘𝑥) ∈ (ran 𝑆 ∪ ran 𝑇))
5756ex 412 . . . . . 6 ((𝑆 ∈ Word 𝐵𝑇 ∈ Word 𝐵) → ((𝑥 ∈ (0..^(♯‘𝑆)) ∨ 𝑥 ∈ ((♯‘𝑆)..^((♯‘𝑆) + (♯‘𝑇)))) → ((𝑆 ++ 𝑇)‘𝑥) ∈ (ran 𝑆 ∪ ran 𝑇)))
5817, 57sylbid 240 . . . . 5 ((𝑆 ∈ Word 𝐵𝑇 ∈ Word 𝐵) → (𝑥 ∈ (0..^((♯‘𝑆) + (♯‘𝑇))) → ((𝑆 ++ 𝑇)‘𝑥) ∈ (ran 𝑆 ∪ ran 𝑇)))
5958ralrimiv 3132 . . . 4 ((𝑆 ∈ Word 𝐵𝑇 ∈ Word 𝐵) → ∀𝑥 ∈ (0..^((♯‘𝑆) + (♯‘𝑇)))((𝑆 ++ 𝑇)‘𝑥) ∈ (ran 𝑆 ∪ ran 𝑇))
60 ffnfv 7114 . . . 4 ((𝑆 ++ 𝑇):(0..^((♯‘𝑆) + (♯‘𝑇)))⟶(ran 𝑆 ∪ ran 𝑇) ↔ ((𝑆 ++ 𝑇) Fn (0..^((♯‘𝑆) + (♯‘𝑇))) ∧ ∀𝑥 ∈ (0..^((♯‘𝑆) + (♯‘𝑇)))((𝑆 ++ 𝑇)‘𝑥) ∈ (ran 𝑆 ∪ ran 𝑇)))
611, 59, 60sylanbrc 583 . . 3 ((𝑆 ∈ Word 𝐵𝑇 ∈ Word 𝐵) → (𝑆 ++ 𝑇):(0..^((♯‘𝑆) + (♯‘𝑇)))⟶(ran 𝑆 ∪ ran 𝑇))
6261frnd 6719 . 2 ((𝑆 ∈ Word 𝐵𝑇 ∈ Word 𝐵) → ran (𝑆 ++ 𝑇) ⊆ (ran 𝑆 ∪ ran 𝑇))
63 fzoss2 13709 . . . . . . . . . 10 (((♯‘𝑆) + (♯‘𝑇)) ∈ (ℤ‘(♯‘𝑆)) → (0..^(♯‘𝑆)) ⊆ (0..^((♯‘𝑆) + (♯‘𝑇))))
6410, 63syl 17 . . . . . . . . 9 ((𝑆 ∈ Word 𝐵𝑇 ∈ Word 𝐵) → (0..^(♯‘𝑆)) ⊆ (0..^((♯‘𝑆) + (♯‘𝑇))))
6564sselda 3963 . . . . . . . 8 (((𝑆 ∈ Word 𝐵𝑇 ∈ Word 𝐵) ∧ 𝑥 ∈ (0..^(♯‘𝑆))) → 𝑥 ∈ (0..^((♯‘𝑆) + (♯‘𝑇))))
66 fnfvelrn 7075 . . . . . . . 8 (((𝑆 ++ 𝑇) Fn (0..^((♯‘𝑆) + (♯‘𝑇))) ∧ 𝑥 ∈ (0..^((♯‘𝑆) + (♯‘𝑇)))) → ((𝑆 ++ 𝑇)‘𝑥) ∈ ran (𝑆 ++ 𝑇))
671, 65, 66syl2an2r 685 . . . . . . 7 (((𝑆 ∈ Word 𝐵𝑇 ∈ Word 𝐵) ∧ 𝑥 ∈ (0..^(♯‘𝑆))) → ((𝑆 ++ 𝑇)‘𝑥) ∈ ran (𝑆 ++ 𝑇))
6819, 67eqeltrrd 2836 . . . . . 6 (((𝑆 ∈ Word 𝐵𝑇 ∈ Word 𝐵) ∧ 𝑥 ∈ (0..^(♯‘𝑆))) → (𝑆𝑥) ∈ ran (𝑆 ++ 𝑇))
6968ralrimiva 3133 . . . . 5 ((𝑆 ∈ Word 𝐵𝑇 ∈ Word 𝐵) → ∀𝑥 ∈ (0..^(♯‘𝑆))(𝑆𝑥) ∈ ran (𝑆 ++ 𝑇))
70 ffnfv 7114 . . . . 5 (𝑆:(0..^(♯‘𝑆))⟶ran (𝑆 ++ 𝑇) ↔ (𝑆 Fn (0..^(♯‘𝑆)) ∧ ∀𝑥 ∈ (0..^(♯‘𝑆))(𝑆𝑥) ∈ ran (𝑆 ++ 𝑇)))
7122, 69, 70sylanbrc 583 . . . 4 ((𝑆 ∈ Word 𝐵𝑇 ∈ Word 𝐵) → 𝑆:(0..^(♯‘𝑆))⟶ran (𝑆 ++ 𝑇))
7271frnd 6719 . . 3 ((𝑆 ∈ Word 𝐵𝑇 ∈ Word 𝐵) → ran 𝑆 ⊆ ran (𝑆 ++ 𝑇))
73 ccatval3 14602 . . . . . . . 8 ((𝑆 ∈ Word 𝐵𝑇 ∈ Word 𝐵𝑥 ∈ (0..^(♯‘𝑇))) → ((𝑆 ++ 𝑇)‘(𝑥 + (♯‘𝑆))) = (𝑇𝑥))
74733expa 1118 . . . . . . 7 (((𝑆 ∈ Word 𝐵𝑇 ∈ Word 𝐵) ∧ 𝑥 ∈ (0..^(♯‘𝑇))) → ((𝑆 ++ 𝑇)‘(𝑥 + (♯‘𝑆))) = (𝑇𝑥))
75 elfzouz 13685 . . . . . . . . . 10 (𝑥 ∈ (0..^(♯‘𝑇)) → 𝑥 ∈ (ℤ‘0))
762adantr 480 . . . . . . . . . 10 ((𝑆 ∈ Word 𝐵𝑇 ∈ Word 𝐵) → (♯‘𝑆) ∈ ℕ0)
77 uzaddcl 12925 . . . . . . . . . 10 ((𝑥 ∈ (ℤ‘0) ∧ (♯‘𝑆) ∈ ℕ0) → (𝑥 + (♯‘𝑆)) ∈ (ℤ‘0))
7875, 76, 77syl2anr 597 . . . . . . . . 9 (((𝑆 ∈ Word 𝐵𝑇 ∈ Word 𝐵) ∧ 𝑥 ∈ (0..^(♯‘𝑇))) → (𝑥 + (♯‘𝑆)) ∈ (ℤ‘0))
79 nn0addcl 12541 . . . . . . . . . . . 12 (((♯‘𝑆) ∈ ℕ0 ∧ (♯‘𝑇) ∈ ℕ0) → ((♯‘𝑆) + (♯‘𝑇)) ∈ ℕ0)
802, 8, 79syl2an 596 . . . . . . . . . . 11 ((𝑆 ∈ Word 𝐵𝑇 ∈ Word 𝐵) → ((♯‘𝑆) + (♯‘𝑇)) ∈ ℕ0)
8180nn0zd 12619 . . . . . . . . . 10 ((𝑆 ∈ Word 𝐵𝑇 ∈ Word 𝐵) → ((♯‘𝑆) + (♯‘𝑇)) ∈ ℤ)
8281adantr 480 . . . . . . . . 9 (((𝑆 ∈ Word 𝐵𝑇 ∈ Word 𝐵) ∧ 𝑥 ∈ (0..^(♯‘𝑇))) → ((♯‘𝑆) + (♯‘𝑇)) ∈ ℤ)
83 elfzonn0 13729 . . . . . . . . . . . 12 (𝑥 ∈ (0..^(♯‘𝑇)) → 𝑥 ∈ ℕ0)
8483nn0cnd 12569 . . . . . . . . . . 11 (𝑥 ∈ (0..^(♯‘𝑇)) → 𝑥 ∈ ℂ)
852nn0cnd 12569 . . . . . . . . . . . 12 (𝑆 ∈ Word 𝐵 → (♯‘𝑆) ∈ ℂ)
8685adantr 480 . . . . . . . . . . 11 ((𝑆 ∈ Word 𝐵𝑇 ∈ Word 𝐵) → (♯‘𝑆) ∈ ℂ)
87 addcom 11426 . . . . . . . . . . 11 ((𝑥 ∈ ℂ ∧ (♯‘𝑆) ∈ ℂ) → (𝑥 + (♯‘𝑆)) = ((♯‘𝑆) + 𝑥))
8884, 86, 87syl2anr 597 . . . . . . . . . 10 (((𝑆 ∈ Word 𝐵𝑇 ∈ Word 𝐵) ∧ 𝑥 ∈ (0..^(♯‘𝑇))) → (𝑥 + (♯‘𝑆)) = ((♯‘𝑆) + 𝑥))
8983nn0red 12568 . . . . . . . . . . . 12 (𝑥 ∈ (0..^(♯‘𝑇)) → 𝑥 ∈ ℝ)
9089adantl 481 . . . . . . . . . . 11 (((𝑆 ∈ Word 𝐵𝑇 ∈ Word 𝐵) ∧ 𝑥 ∈ (0..^(♯‘𝑇))) → 𝑥 ∈ ℝ)
9146ad2antlr 727 . . . . . . . . . . 11 (((𝑆 ∈ Word 𝐵𝑇 ∈ Word 𝐵) ∧ 𝑥 ∈ (0..^(♯‘𝑇))) → (♯‘𝑇) ∈ ℝ)
9244ad2antrr 726 . . . . . . . . . . 11 (((𝑆 ∈ Word 𝐵𝑇 ∈ Word 𝐵) ∧ 𝑥 ∈ (0..^(♯‘𝑇))) → (♯‘𝑆) ∈ ℝ)
93 elfzolt2 13690 . . . . . . . . . . . 12 (𝑥 ∈ (0..^(♯‘𝑇)) → 𝑥 < (♯‘𝑇))
9493adantl 481 . . . . . . . . . . 11 (((𝑆 ∈ Word 𝐵𝑇 ∈ Word 𝐵) ∧ 𝑥 ∈ (0..^(♯‘𝑇))) → 𝑥 < (♯‘𝑇))
9590, 91, 92, 94ltadd2dd 11399 . . . . . . . . . 10 (((𝑆 ∈ Word 𝐵𝑇 ∈ Word 𝐵) ∧ 𝑥 ∈ (0..^(♯‘𝑇))) → ((♯‘𝑆) + 𝑥) < ((♯‘𝑆) + (♯‘𝑇)))
9688, 95eqbrtrd 5146 . . . . . . . . 9 (((𝑆 ∈ Word 𝐵𝑇 ∈ Word 𝐵) ∧ 𝑥 ∈ (0..^(♯‘𝑇))) → (𝑥 + (♯‘𝑆)) < ((♯‘𝑆) + (♯‘𝑇)))
97 elfzo2 13684 . . . . . . . . 9 ((𝑥 + (♯‘𝑆)) ∈ (0..^((♯‘𝑆) + (♯‘𝑇))) ↔ ((𝑥 + (♯‘𝑆)) ∈ (ℤ‘0) ∧ ((♯‘𝑆) + (♯‘𝑇)) ∈ ℤ ∧ (𝑥 + (♯‘𝑆)) < ((♯‘𝑆) + (♯‘𝑇))))
9878, 82, 96, 97syl3anbrc 1344 . . . . . . . 8 (((𝑆 ∈ Word 𝐵𝑇 ∈ Word 𝐵) ∧ 𝑥 ∈ (0..^(♯‘𝑇))) → (𝑥 + (♯‘𝑆)) ∈ (0..^((♯‘𝑆) + (♯‘𝑇))))
99 fnfvelrn 7075 . . . . . . . 8 (((𝑆 ++ 𝑇) Fn (0..^((♯‘𝑆) + (♯‘𝑇))) ∧ (𝑥 + (♯‘𝑆)) ∈ (0..^((♯‘𝑆) + (♯‘𝑇)))) → ((𝑆 ++ 𝑇)‘(𝑥 + (♯‘𝑆))) ∈ ran (𝑆 ++ 𝑇))
1001, 98, 99syl2an2r 685 . . . . . . 7 (((𝑆 ∈ Word 𝐵𝑇 ∈ Word 𝐵) ∧ 𝑥 ∈ (0..^(♯‘𝑇))) → ((𝑆 ++ 𝑇)‘(𝑥 + (♯‘𝑆))) ∈ ran (𝑆 ++ 𝑇))
10174, 100eqeltrrd 2836 . . . . . 6 (((𝑆 ∈ Word 𝐵𝑇 ∈ Word 𝐵) ∧ 𝑥 ∈ (0..^(♯‘𝑇))) → (𝑇𝑥) ∈ ran (𝑆 ++ 𝑇))
102101ralrimiva 3133 . . . . 5 ((𝑆 ∈ Word 𝐵𝑇 ∈ Word 𝐵) → ∀𝑥 ∈ (0..^(♯‘𝑇))(𝑇𝑥) ∈ ran (𝑆 ++ 𝑇))
103 ffnfv 7114 . . . . 5 (𝑇:(0..^(♯‘𝑇))⟶ran (𝑆 ++ 𝑇) ↔ (𝑇 Fn (0..^(♯‘𝑇)) ∧ ∀𝑥 ∈ (0..^(♯‘𝑇))(𝑇𝑥) ∈ ran (𝑆 ++ 𝑇)))
10431, 102, 103sylanbrc 583 . . . 4 ((𝑆 ∈ Word 𝐵𝑇 ∈ Word 𝐵) → 𝑇:(0..^(♯‘𝑇))⟶ran (𝑆 ++ 𝑇))
105104frnd 6719 . . 3 ((𝑆 ∈ Word 𝐵𝑇 ∈ Word 𝐵) → ran 𝑇 ⊆ ran (𝑆 ++ 𝑇))
10672, 105unssd 4172 . 2 ((𝑆 ∈ Word 𝐵𝑇 ∈ Word 𝐵) → (ran 𝑆 ∪ ran 𝑇) ⊆ ran (𝑆 ++ 𝑇))
10762, 106eqssd 3981 1 ((𝑆 ∈ Word 𝐵𝑇 ∈ Word 𝐵) → ran (𝑆 ++ 𝑇) = (ran 𝑆 ∪ ran 𝑇))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  wo 847   = wceq 1540  wcel 2109  wral 3052  cun 3929  wss 3931   class class class wbr 5124  ran crn 5660   Fn wfn 6531  wf 6532  cfv 6536  (class class class)co 7410  cc 11132  cr 11133  0cc0 11134   + caddc 11137   < clt 11274  cmin 11471  0cn0 12506  cz 12593  cuz 12857  ...cfz 13529  ..^cfzo 13676  chash 14353  Word cword 14536   ++ cconcat 14593
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2708  ax-rep 5254  ax-sep 5271  ax-nul 5281  ax-pow 5340  ax-pr 5407  ax-un 7734  ax-cnex 11190  ax-resscn 11191  ax-1cn 11192  ax-icn 11193  ax-addcl 11194  ax-addrcl 11195  ax-mulcl 11196  ax-mulrcl 11197  ax-mulcom 11198  ax-addass 11199  ax-mulass 11200  ax-distr 11201  ax-i2m1 11202  ax-1ne0 11203  ax-1rid 11204  ax-rnegex 11205  ax-rrecex 11206  ax-cnre 11207  ax-pre-lttri 11208  ax-pre-lttrn 11209  ax-pre-ltadd 11210  ax-pre-mulgt0 11211
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2728  df-clel 2810  df-nfc 2886  df-ne 2934  df-nel 3038  df-ral 3053  df-rex 3062  df-reu 3365  df-rab 3421  df-v 3466  df-sbc 3771  df-csb 3880  df-dif 3934  df-un 3936  df-in 3938  df-ss 3948  df-pss 3951  df-nul 4314  df-if 4506  df-pw 4582  df-sn 4607  df-pr 4609  df-op 4613  df-uni 4889  df-int 4928  df-iun 4974  df-br 5125  df-opab 5187  df-mpt 5207  df-tr 5235  df-id 5553  df-eprel 5558  df-po 5566  df-so 5567  df-fr 5611  df-we 5613  df-xp 5665  df-rel 5666  df-cnv 5667  df-co 5668  df-dm 5669  df-rn 5670  df-res 5671  df-ima 5672  df-pred 6295  df-ord 6360  df-on 6361  df-lim 6362  df-suc 6363  df-iota 6489  df-fun 6538  df-fn 6539  df-f 6540  df-f1 6541  df-fo 6542  df-f1o 6543  df-fv 6544  df-riota 7367  df-ov 7413  df-oprab 7414  df-mpo 7415  df-om 7867  df-1st 7993  df-2nd 7994  df-frecs 8285  df-wrecs 8316  df-recs 8390  df-rdg 8429  df-1o 8485  df-er 8724  df-en 8965  df-dom 8966  df-sdom 8967  df-fin 8968  df-card 9958  df-pnf 11276  df-mnf 11277  df-xr 11278  df-ltxr 11279  df-le 11280  df-sub 11473  df-neg 11474  df-nn 12246  df-n0 12507  df-z 12594  df-uz 12858  df-fz 13530  df-fzo 13677  df-hash 14354  df-word 14537  df-concat 14594
This theorem is referenced by:  s2rn  14987  s3rn  14988  s7rn  14989  cycpmco2f1  33140  cycpmco2rn  33141  unitprodclb  33409  mrsubvrs  35549
  Copyright terms: Public domain W3C validator