| Step | Hyp | Ref
| Expression |
| 1 | | ccatvalfn 14604 |
. . . 4
⊢ ((𝑆 ∈ Word 𝐵 ∧ 𝑇 ∈ Word 𝐵) → (𝑆 ++ 𝑇) Fn (0..^((♯‘𝑆) + (♯‘𝑇)))) |
| 2 | | lencl 14556 |
. . . . . . . . . . . 12
⊢ (𝑆 ∈ Word 𝐵 → (♯‘𝑆) ∈
ℕ0) |
| 3 | | nn0uz 12899 |
. . . . . . . . . . . 12
⊢
ℕ0 = (ℤ≥‘0) |
| 4 | 2, 3 | eleqtrdi 2845 |
. . . . . . . . . . 11
⊢ (𝑆 ∈ Word 𝐵 → (♯‘𝑆) ∈
(ℤ≥‘0)) |
| 5 | 4 | adantr 480 |
. . . . . . . . . 10
⊢ ((𝑆 ∈ Word 𝐵 ∧ 𝑇 ∈ Word 𝐵) → (♯‘𝑆) ∈
(ℤ≥‘0)) |
| 6 | 2 | nn0zd 12619 |
. . . . . . . . . . . 12
⊢ (𝑆 ∈ Word 𝐵 → (♯‘𝑆) ∈ ℤ) |
| 7 | 6 | uzidd 12873 |
. . . . . . . . . . 11
⊢ (𝑆 ∈ Word 𝐵 → (♯‘𝑆) ∈
(ℤ≥‘(♯‘𝑆))) |
| 8 | | lencl 14556 |
. . . . . . . . . . 11
⊢ (𝑇 ∈ Word 𝐵 → (♯‘𝑇) ∈
ℕ0) |
| 9 | | uzaddcl 12925 |
. . . . . . . . . . 11
⊢
(((♯‘𝑆)
∈ (ℤ≥‘(♯‘𝑆)) ∧ (♯‘𝑇) ∈ ℕ0) →
((♯‘𝑆) +
(♯‘𝑇)) ∈
(ℤ≥‘(♯‘𝑆))) |
| 10 | 7, 8, 9 | syl2an 596 |
. . . . . . . . . 10
⊢ ((𝑆 ∈ Word 𝐵 ∧ 𝑇 ∈ Word 𝐵) → ((♯‘𝑆) + (♯‘𝑇)) ∈
(ℤ≥‘(♯‘𝑆))) |
| 11 | | elfzuzb 13540 |
. . . . . . . . . 10
⊢
((♯‘𝑆)
∈ (0...((♯‘𝑆) + (♯‘𝑇))) ↔ ((♯‘𝑆) ∈ (ℤ≥‘0)
∧ ((♯‘𝑆) +
(♯‘𝑇)) ∈
(ℤ≥‘(♯‘𝑆)))) |
| 12 | 5, 10, 11 | sylanbrc 583 |
. . . . . . . . 9
⊢ ((𝑆 ∈ Word 𝐵 ∧ 𝑇 ∈ Word 𝐵) → (♯‘𝑆) ∈ (0...((♯‘𝑆) + (♯‘𝑇)))) |
| 13 | | fzosplit 13714 |
. . . . . . . . 9
⊢
((♯‘𝑆)
∈ (0...((♯‘𝑆) + (♯‘𝑇))) → (0..^((♯‘𝑆) + (♯‘𝑇))) = ((0..^(♯‘𝑆)) ∪ ((♯‘𝑆)..^((♯‘𝑆) + (♯‘𝑇))))) |
| 14 | 12, 13 | syl 17 |
. . . . . . . 8
⊢ ((𝑆 ∈ Word 𝐵 ∧ 𝑇 ∈ Word 𝐵) → (0..^((♯‘𝑆) + (♯‘𝑇))) = ((0..^(♯‘𝑆)) ∪ ((♯‘𝑆)..^((♯‘𝑆) + (♯‘𝑇))))) |
| 15 | 14 | eleq2d 2821 |
. . . . . . 7
⊢ ((𝑆 ∈ Word 𝐵 ∧ 𝑇 ∈ Word 𝐵) → (𝑥 ∈ (0..^((♯‘𝑆) + (♯‘𝑇))) ↔ 𝑥 ∈ ((0..^(♯‘𝑆)) ∪ ((♯‘𝑆)..^((♯‘𝑆) + (♯‘𝑇)))))) |
| 16 | | elun 4133 |
. . . . . . 7
⊢ (𝑥 ∈
((0..^(♯‘𝑆))
∪ ((♯‘𝑆)..^((♯‘𝑆) + (♯‘𝑇)))) ↔ (𝑥 ∈ (0..^(♯‘𝑆)) ∨ 𝑥 ∈ ((♯‘𝑆)..^((♯‘𝑆) + (♯‘𝑇))))) |
| 17 | 15, 16 | bitrdi 287 |
. . . . . 6
⊢ ((𝑆 ∈ Word 𝐵 ∧ 𝑇 ∈ Word 𝐵) → (𝑥 ∈ (0..^((♯‘𝑆) + (♯‘𝑇))) ↔ (𝑥 ∈ (0..^(♯‘𝑆)) ∨ 𝑥 ∈ ((♯‘𝑆)..^((♯‘𝑆) + (♯‘𝑇)))))) |
| 18 | | ccatval1 14600 |
. . . . . . . . . 10
⊢ ((𝑆 ∈ Word 𝐵 ∧ 𝑇 ∈ Word 𝐵 ∧ 𝑥 ∈ (0..^(♯‘𝑆))) → ((𝑆 ++ 𝑇)‘𝑥) = (𝑆‘𝑥)) |
| 19 | 18 | 3expa 1118 |
. . . . . . . . 9
⊢ (((𝑆 ∈ Word 𝐵 ∧ 𝑇 ∈ Word 𝐵) ∧ 𝑥 ∈ (0..^(♯‘𝑆))) → ((𝑆 ++ 𝑇)‘𝑥) = (𝑆‘𝑥)) |
| 20 | | ssun1 4158 |
. . . . . . . . . 10
⊢ ran 𝑆 ⊆ (ran 𝑆 ∪ ran 𝑇) |
| 21 | | wrdfn 14551 |
. . . . . . . . . . . 12
⊢ (𝑆 ∈ Word 𝐵 → 𝑆 Fn (0..^(♯‘𝑆))) |
| 22 | 21 | adantr 480 |
. . . . . . . . . . 11
⊢ ((𝑆 ∈ Word 𝐵 ∧ 𝑇 ∈ Word 𝐵) → 𝑆 Fn (0..^(♯‘𝑆))) |
| 23 | | fnfvelrn 7075 |
. . . . . . . . . . 11
⊢ ((𝑆 Fn (0..^(♯‘𝑆)) ∧ 𝑥 ∈ (0..^(♯‘𝑆))) → (𝑆‘𝑥) ∈ ran 𝑆) |
| 24 | 22, 23 | sylan 580 |
. . . . . . . . . 10
⊢ (((𝑆 ∈ Word 𝐵 ∧ 𝑇 ∈ Word 𝐵) ∧ 𝑥 ∈ (0..^(♯‘𝑆))) → (𝑆‘𝑥) ∈ ran 𝑆) |
| 25 | 20, 24 | sselid 3961 |
. . . . . . . . 9
⊢ (((𝑆 ∈ Word 𝐵 ∧ 𝑇 ∈ Word 𝐵) ∧ 𝑥 ∈ (0..^(♯‘𝑆))) → (𝑆‘𝑥) ∈ (ran 𝑆 ∪ ran 𝑇)) |
| 26 | 19, 25 | eqeltrd 2835 |
. . . . . . . 8
⊢ (((𝑆 ∈ Word 𝐵 ∧ 𝑇 ∈ Word 𝐵) ∧ 𝑥 ∈ (0..^(♯‘𝑆))) → ((𝑆 ++ 𝑇)‘𝑥) ∈ (ran 𝑆 ∪ ran 𝑇)) |
| 27 | | ccatval2 14601 |
. . . . . . . . . 10
⊢ ((𝑆 ∈ Word 𝐵 ∧ 𝑇 ∈ Word 𝐵 ∧ 𝑥 ∈ ((♯‘𝑆)..^((♯‘𝑆) + (♯‘𝑇)))) → ((𝑆 ++ 𝑇)‘𝑥) = (𝑇‘(𝑥 − (♯‘𝑆)))) |
| 28 | 27 | 3expa 1118 |
. . . . . . . . 9
⊢ (((𝑆 ∈ Word 𝐵 ∧ 𝑇 ∈ Word 𝐵) ∧ 𝑥 ∈ ((♯‘𝑆)..^((♯‘𝑆) + (♯‘𝑇)))) → ((𝑆 ++ 𝑇)‘𝑥) = (𝑇‘(𝑥 − (♯‘𝑆)))) |
| 29 | | ssun2 4159 |
. . . . . . . . . 10
⊢ ran 𝑇 ⊆ (ran 𝑆 ∪ ran 𝑇) |
| 30 | | wrdfn 14551 |
. . . . . . . . . . . 12
⊢ (𝑇 ∈ Word 𝐵 → 𝑇 Fn (0..^(♯‘𝑇))) |
| 31 | 30 | adantl 481 |
. . . . . . . . . . 11
⊢ ((𝑆 ∈ Word 𝐵 ∧ 𝑇 ∈ Word 𝐵) → 𝑇 Fn (0..^(♯‘𝑇))) |
| 32 | | elfzouz 13685 |
. . . . . . . . . . . . . . 15
⊢ (𝑥 ∈ ((♯‘𝑆)..^((♯‘𝑆) + (♯‘𝑇))) → 𝑥 ∈
(ℤ≥‘(♯‘𝑆))) |
| 33 | | uznn0sub 12896 |
. . . . . . . . . . . . . . 15
⊢ (𝑥 ∈
(ℤ≥‘(♯‘𝑆)) → (𝑥 − (♯‘𝑆)) ∈
ℕ0) |
| 34 | 32, 33 | syl 17 |
. . . . . . . . . . . . . 14
⊢ (𝑥 ∈ ((♯‘𝑆)..^((♯‘𝑆) + (♯‘𝑇))) → (𝑥 − (♯‘𝑆)) ∈
ℕ0) |
| 35 | 34, 3 | eleqtrdi 2845 |
. . . . . . . . . . . . 13
⊢ (𝑥 ∈ ((♯‘𝑆)..^((♯‘𝑆) + (♯‘𝑇))) → (𝑥 − (♯‘𝑆)) ∈
(ℤ≥‘0)) |
| 36 | 35 | adantl 481 |
. . . . . . . . . . . 12
⊢ (((𝑆 ∈ Word 𝐵 ∧ 𝑇 ∈ Word 𝐵) ∧ 𝑥 ∈ ((♯‘𝑆)..^((♯‘𝑆) + (♯‘𝑇)))) → (𝑥 − (♯‘𝑆)) ∈
(ℤ≥‘0)) |
| 37 | 8 | nn0zd 12619 |
. . . . . . . . . . . . 13
⊢ (𝑇 ∈ Word 𝐵 → (♯‘𝑇) ∈ ℤ) |
| 38 | 37 | ad2antlr 727 |
. . . . . . . . . . . 12
⊢ (((𝑆 ∈ Word 𝐵 ∧ 𝑇 ∈ Word 𝐵) ∧ 𝑥 ∈ ((♯‘𝑆)..^((♯‘𝑆) + (♯‘𝑇)))) → (♯‘𝑇) ∈ ℤ) |
| 39 | | elfzolt2 13690 |
. . . . . . . . . . . . . 14
⊢ (𝑥 ∈ ((♯‘𝑆)..^((♯‘𝑆) + (♯‘𝑇))) → 𝑥 < ((♯‘𝑆) + (♯‘𝑇))) |
| 40 | 39 | adantl 481 |
. . . . . . . . . . . . 13
⊢ (((𝑆 ∈ Word 𝐵 ∧ 𝑇 ∈ Word 𝐵) ∧ 𝑥 ∈ ((♯‘𝑆)..^((♯‘𝑆) + (♯‘𝑇)))) → 𝑥 < ((♯‘𝑆) + (♯‘𝑇))) |
| 41 | | elfzoelz 13681 |
. . . . . . . . . . . . . . . 16
⊢ (𝑥 ∈ ((♯‘𝑆)..^((♯‘𝑆) + (♯‘𝑇))) → 𝑥 ∈ ℤ) |
| 42 | 41 | zred 12702 |
. . . . . . . . . . . . . . 15
⊢ (𝑥 ∈ ((♯‘𝑆)..^((♯‘𝑆) + (♯‘𝑇))) → 𝑥 ∈ ℝ) |
| 43 | 42 | adantl 481 |
. . . . . . . . . . . . . 14
⊢ (((𝑆 ∈ Word 𝐵 ∧ 𝑇 ∈ Word 𝐵) ∧ 𝑥 ∈ ((♯‘𝑆)..^((♯‘𝑆) + (♯‘𝑇)))) → 𝑥 ∈ ℝ) |
| 44 | 2 | nn0red 12568 |
. . . . . . . . . . . . . . 15
⊢ (𝑆 ∈ Word 𝐵 → (♯‘𝑆) ∈ ℝ) |
| 45 | 44 | ad2antrr 726 |
. . . . . . . . . . . . . 14
⊢ (((𝑆 ∈ Word 𝐵 ∧ 𝑇 ∈ Word 𝐵) ∧ 𝑥 ∈ ((♯‘𝑆)..^((♯‘𝑆) + (♯‘𝑇)))) → (♯‘𝑆) ∈ ℝ) |
| 46 | 8 | nn0red 12568 |
. . . . . . . . . . . . . . 15
⊢ (𝑇 ∈ Word 𝐵 → (♯‘𝑇) ∈ ℝ) |
| 47 | 46 | ad2antlr 727 |
. . . . . . . . . . . . . 14
⊢ (((𝑆 ∈ Word 𝐵 ∧ 𝑇 ∈ Word 𝐵) ∧ 𝑥 ∈ ((♯‘𝑆)..^((♯‘𝑆) + (♯‘𝑇)))) → (♯‘𝑇) ∈ ℝ) |
| 48 | 43, 45, 47 | ltsubadd2d 11840 |
. . . . . . . . . . . . 13
⊢ (((𝑆 ∈ Word 𝐵 ∧ 𝑇 ∈ Word 𝐵) ∧ 𝑥 ∈ ((♯‘𝑆)..^((♯‘𝑆) + (♯‘𝑇)))) → ((𝑥 − (♯‘𝑆)) < (♯‘𝑇) ↔ 𝑥 < ((♯‘𝑆) + (♯‘𝑇)))) |
| 49 | 40, 48 | mpbird 257 |
. . . . . . . . . . . 12
⊢ (((𝑆 ∈ Word 𝐵 ∧ 𝑇 ∈ Word 𝐵) ∧ 𝑥 ∈ ((♯‘𝑆)..^((♯‘𝑆) + (♯‘𝑇)))) → (𝑥 − (♯‘𝑆)) < (♯‘𝑇)) |
| 50 | | elfzo2 13684 |
. . . . . . . . . . . 12
⊢ ((𝑥 − (♯‘𝑆)) ∈
(0..^(♯‘𝑇))
↔ ((𝑥 −
(♯‘𝑆)) ∈
(ℤ≥‘0) ∧ (♯‘𝑇) ∈ ℤ ∧ (𝑥 − (♯‘𝑆)) < (♯‘𝑇))) |
| 51 | 36, 38, 49, 50 | syl3anbrc 1344 |
. . . . . . . . . . 11
⊢ (((𝑆 ∈ Word 𝐵 ∧ 𝑇 ∈ Word 𝐵) ∧ 𝑥 ∈ ((♯‘𝑆)..^((♯‘𝑆) + (♯‘𝑇)))) → (𝑥 − (♯‘𝑆)) ∈ (0..^(♯‘𝑇))) |
| 52 | | fnfvelrn 7075 |
. . . . . . . . . . 11
⊢ ((𝑇 Fn (0..^(♯‘𝑇)) ∧ (𝑥 − (♯‘𝑆)) ∈ (0..^(♯‘𝑇))) → (𝑇‘(𝑥 − (♯‘𝑆))) ∈ ran 𝑇) |
| 53 | 31, 51, 52 | syl2an2r 685 |
. . . . . . . . . 10
⊢ (((𝑆 ∈ Word 𝐵 ∧ 𝑇 ∈ Word 𝐵) ∧ 𝑥 ∈ ((♯‘𝑆)..^((♯‘𝑆) + (♯‘𝑇)))) → (𝑇‘(𝑥 − (♯‘𝑆))) ∈ ran 𝑇) |
| 54 | 29, 53 | sselid 3961 |
. . . . . . . . 9
⊢ (((𝑆 ∈ Word 𝐵 ∧ 𝑇 ∈ Word 𝐵) ∧ 𝑥 ∈ ((♯‘𝑆)..^((♯‘𝑆) + (♯‘𝑇)))) → (𝑇‘(𝑥 − (♯‘𝑆))) ∈ (ran 𝑆 ∪ ran 𝑇)) |
| 55 | 28, 54 | eqeltrd 2835 |
. . . . . . . 8
⊢ (((𝑆 ∈ Word 𝐵 ∧ 𝑇 ∈ Word 𝐵) ∧ 𝑥 ∈ ((♯‘𝑆)..^((♯‘𝑆) + (♯‘𝑇)))) → ((𝑆 ++ 𝑇)‘𝑥) ∈ (ran 𝑆 ∪ ran 𝑇)) |
| 56 | 26, 55 | jaodan 959 |
. . . . . . 7
⊢ (((𝑆 ∈ Word 𝐵 ∧ 𝑇 ∈ Word 𝐵) ∧ (𝑥 ∈ (0..^(♯‘𝑆)) ∨ 𝑥 ∈ ((♯‘𝑆)..^((♯‘𝑆) + (♯‘𝑇))))) → ((𝑆 ++ 𝑇)‘𝑥) ∈ (ran 𝑆 ∪ ran 𝑇)) |
| 57 | 56 | ex 412 |
. . . . . 6
⊢ ((𝑆 ∈ Word 𝐵 ∧ 𝑇 ∈ Word 𝐵) → ((𝑥 ∈ (0..^(♯‘𝑆)) ∨ 𝑥 ∈ ((♯‘𝑆)..^((♯‘𝑆) + (♯‘𝑇)))) → ((𝑆 ++ 𝑇)‘𝑥) ∈ (ran 𝑆 ∪ ran 𝑇))) |
| 58 | 17, 57 | sylbid 240 |
. . . . 5
⊢ ((𝑆 ∈ Word 𝐵 ∧ 𝑇 ∈ Word 𝐵) → (𝑥 ∈ (0..^((♯‘𝑆) + (♯‘𝑇))) → ((𝑆 ++ 𝑇)‘𝑥) ∈ (ran 𝑆 ∪ ran 𝑇))) |
| 59 | 58 | ralrimiv 3132 |
. . . 4
⊢ ((𝑆 ∈ Word 𝐵 ∧ 𝑇 ∈ Word 𝐵) → ∀𝑥 ∈ (0..^((♯‘𝑆) + (♯‘𝑇)))((𝑆 ++ 𝑇)‘𝑥) ∈ (ran 𝑆 ∪ ran 𝑇)) |
| 60 | | ffnfv 7114 |
. . . 4
⊢ ((𝑆 ++ 𝑇):(0..^((♯‘𝑆) + (♯‘𝑇)))⟶(ran 𝑆 ∪ ran 𝑇) ↔ ((𝑆 ++ 𝑇) Fn (0..^((♯‘𝑆) + (♯‘𝑇))) ∧ ∀𝑥 ∈ (0..^((♯‘𝑆) + (♯‘𝑇)))((𝑆 ++ 𝑇)‘𝑥) ∈ (ran 𝑆 ∪ ran 𝑇))) |
| 61 | 1, 59, 60 | sylanbrc 583 |
. . 3
⊢ ((𝑆 ∈ Word 𝐵 ∧ 𝑇 ∈ Word 𝐵) → (𝑆 ++ 𝑇):(0..^((♯‘𝑆) + (♯‘𝑇)))⟶(ran 𝑆 ∪ ran 𝑇)) |
| 62 | 61 | frnd 6719 |
. 2
⊢ ((𝑆 ∈ Word 𝐵 ∧ 𝑇 ∈ Word 𝐵) → ran (𝑆 ++ 𝑇) ⊆ (ran 𝑆 ∪ ran 𝑇)) |
| 63 | | fzoss2 13709 |
. . . . . . . . . 10
⊢
(((♯‘𝑆)
+ (♯‘𝑇)) ∈
(ℤ≥‘(♯‘𝑆)) → (0..^(♯‘𝑆)) ⊆
(0..^((♯‘𝑆) +
(♯‘𝑇)))) |
| 64 | 10, 63 | syl 17 |
. . . . . . . . 9
⊢ ((𝑆 ∈ Word 𝐵 ∧ 𝑇 ∈ Word 𝐵) → (0..^(♯‘𝑆)) ⊆
(0..^((♯‘𝑆) +
(♯‘𝑇)))) |
| 65 | 64 | sselda 3963 |
. . . . . . . 8
⊢ (((𝑆 ∈ Word 𝐵 ∧ 𝑇 ∈ Word 𝐵) ∧ 𝑥 ∈ (0..^(♯‘𝑆))) → 𝑥 ∈ (0..^((♯‘𝑆) + (♯‘𝑇)))) |
| 66 | | fnfvelrn 7075 |
. . . . . . . 8
⊢ (((𝑆 ++ 𝑇) Fn (0..^((♯‘𝑆) + (♯‘𝑇))) ∧ 𝑥 ∈ (0..^((♯‘𝑆) + (♯‘𝑇)))) → ((𝑆 ++ 𝑇)‘𝑥) ∈ ran (𝑆 ++ 𝑇)) |
| 67 | 1, 65, 66 | syl2an2r 685 |
. . . . . . 7
⊢ (((𝑆 ∈ Word 𝐵 ∧ 𝑇 ∈ Word 𝐵) ∧ 𝑥 ∈ (0..^(♯‘𝑆))) → ((𝑆 ++ 𝑇)‘𝑥) ∈ ran (𝑆 ++ 𝑇)) |
| 68 | 19, 67 | eqeltrrd 2836 |
. . . . . 6
⊢ (((𝑆 ∈ Word 𝐵 ∧ 𝑇 ∈ Word 𝐵) ∧ 𝑥 ∈ (0..^(♯‘𝑆))) → (𝑆‘𝑥) ∈ ran (𝑆 ++ 𝑇)) |
| 69 | 68 | ralrimiva 3133 |
. . . . 5
⊢ ((𝑆 ∈ Word 𝐵 ∧ 𝑇 ∈ Word 𝐵) → ∀𝑥 ∈ (0..^(♯‘𝑆))(𝑆‘𝑥) ∈ ran (𝑆 ++ 𝑇)) |
| 70 | | ffnfv 7114 |
. . . . 5
⊢ (𝑆:(0..^(♯‘𝑆))⟶ran (𝑆 ++ 𝑇) ↔ (𝑆 Fn (0..^(♯‘𝑆)) ∧ ∀𝑥 ∈ (0..^(♯‘𝑆))(𝑆‘𝑥) ∈ ran (𝑆 ++ 𝑇))) |
| 71 | 22, 69, 70 | sylanbrc 583 |
. . . 4
⊢ ((𝑆 ∈ Word 𝐵 ∧ 𝑇 ∈ Word 𝐵) → 𝑆:(0..^(♯‘𝑆))⟶ran (𝑆 ++ 𝑇)) |
| 72 | 71 | frnd 6719 |
. . 3
⊢ ((𝑆 ∈ Word 𝐵 ∧ 𝑇 ∈ Word 𝐵) → ran 𝑆 ⊆ ran (𝑆 ++ 𝑇)) |
| 73 | | ccatval3 14602 |
. . . . . . . 8
⊢ ((𝑆 ∈ Word 𝐵 ∧ 𝑇 ∈ Word 𝐵 ∧ 𝑥 ∈ (0..^(♯‘𝑇))) → ((𝑆 ++ 𝑇)‘(𝑥 + (♯‘𝑆))) = (𝑇‘𝑥)) |
| 74 | 73 | 3expa 1118 |
. . . . . . 7
⊢ (((𝑆 ∈ Word 𝐵 ∧ 𝑇 ∈ Word 𝐵) ∧ 𝑥 ∈ (0..^(♯‘𝑇))) → ((𝑆 ++ 𝑇)‘(𝑥 + (♯‘𝑆))) = (𝑇‘𝑥)) |
| 75 | | elfzouz 13685 |
. . . . . . . . . 10
⊢ (𝑥 ∈
(0..^(♯‘𝑇))
→ 𝑥 ∈
(ℤ≥‘0)) |
| 76 | 2 | adantr 480 |
. . . . . . . . . 10
⊢ ((𝑆 ∈ Word 𝐵 ∧ 𝑇 ∈ Word 𝐵) → (♯‘𝑆) ∈
ℕ0) |
| 77 | | uzaddcl 12925 |
. . . . . . . . . 10
⊢ ((𝑥 ∈
(ℤ≥‘0) ∧ (♯‘𝑆) ∈ ℕ0) → (𝑥 + (♯‘𝑆)) ∈
(ℤ≥‘0)) |
| 78 | 75, 76, 77 | syl2anr 597 |
. . . . . . . . 9
⊢ (((𝑆 ∈ Word 𝐵 ∧ 𝑇 ∈ Word 𝐵) ∧ 𝑥 ∈ (0..^(♯‘𝑇))) → (𝑥 + (♯‘𝑆)) ∈
(ℤ≥‘0)) |
| 79 | | nn0addcl 12541 |
. . . . . . . . . . . 12
⊢
(((♯‘𝑆)
∈ ℕ0 ∧ (♯‘𝑇) ∈ ℕ0) →
((♯‘𝑆) +
(♯‘𝑇)) ∈
ℕ0) |
| 80 | 2, 8, 79 | syl2an 596 |
. . . . . . . . . . 11
⊢ ((𝑆 ∈ Word 𝐵 ∧ 𝑇 ∈ Word 𝐵) → ((♯‘𝑆) + (♯‘𝑇)) ∈
ℕ0) |
| 81 | 80 | nn0zd 12619 |
. . . . . . . . . 10
⊢ ((𝑆 ∈ Word 𝐵 ∧ 𝑇 ∈ Word 𝐵) → ((♯‘𝑆) + (♯‘𝑇)) ∈ ℤ) |
| 82 | 81 | adantr 480 |
. . . . . . . . 9
⊢ (((𝑆 ∈ Word 𝐵 ∧ 𝑇 ∈ Word 𝐵) ∧ 𝑥 ∈ (0..^(♯‘𝑇))) → ((♯‘𝑆) + (♯‘𝑇)) ∈ ℤ) |
| 83 | | elfzonn0 13729 |
. . . . . . . . . . . 12
⊢ (𝑥 ∈
(0..^(♯‘𝑇))
→ 𝑥 ∈
ℕ0) |
| 84 | 83 | nn0cnd 12569 |
. . . . . . . . . . 11
⊢ (𝑥 ∈
(0..^(♯‘𝑇))
→ 𝑥 ∈
ℂ) |
| 85 | 2 | nn0cnd 12569 |
. . . . . . . . . . . 12
⊢ (𝑆 ∈ Word 𝐵 → (♯‘𝑆) ∈ ℂ) |
| 86 | 85 | adantr 480 |
. . . . . . . . . . 11
⊢ ((𝑆 ∈ Word 𝐵 ∧ 𝑇 ∈ Word 𝐵) → (♯‘𝑆) ∈ ℂ) |
| 87 | | addcom 11426 |
. . . . . . . . . . 11
⊢ ((𝑥 ∈ ℂ ∧
(♯‘𝑆) ∈
ℂ) → (𝑥 +
(♯‘𝑆)) =
((♯‘𝑆) + 𝑥)) |
| 88 | 84, 86, 87 | syl2anr 597 |
. . . . . . . . . 10
⊢ (((𝑆 ∈ Word 𝐵 ∧ 𝑇 ∈ Word 𝐵) ∧ 𝑥 ∈ (0..^(♯‘𝑇))) → (𝑥 + (♯‘𝑆)) = ((♯‘𝑆) + 𝑥)) |
| 89 | 83 | nn0red 12568 |
. . . . . . . . . . . 12
⊢ (𝑥 ∈
(0..^(♯‘𝑇))
→ 𝑥 ∈
ℝ) |
| 90 | 89 | adantl 481 |
. . . . . . . . . . 11
⊢ (((𝑆 ∈ Word 𝐵 ∧ 𝑇 ∈ Word 𝐵) ∧ 𝑥 ∈ (0..^(♯‘𝑇))) → 𝑥 ∈ ℝ) |
| 91 | 46 | ad2antlr 727 |
. . . . . . . . . . 11
⊢ (((𝑆 ∈ Word 𝐵 ∧ 𝑇 ∈ Word 𝐵) ∧ 𝑥 ∈ (0..^(♯‘𝑇))) → (♯‘𝑇) ∈ ℝ) |
| 92 | 44 | ad2antrr 726 |
. . . . . . . . . . 11
⊢ (((𝑆 ∈ Word 𝐵 ∧ 𝑇 ∈ Word 𝐵) ∧ 𝑥 ∈ (0..^(♯‘𝑇))) → (♯‘𝑆) ∈ ℝ) |
| 93 | | elfzolt2 13690 |
. . . . . . . . . . . 12
⊢ (𝑥 ∈
(0..^(♯‘𝑇))
→ 𝑥 <
(♯‘𝑇)) |
| 94 | 93 | adantl 481 |
. . . . . . . . . . 11
⊢ (((𝑆 ∈ Word 𝐵 ∧ 𝑇 ∈ Word 𝐵) ∧ 𝑥 ∈ (0..^(♯‘𝑇))) → 𝑥 < (♯‘𝑇)) |
| 95 | 90, 91, 92, 94 | ltadd2dd 11399 |
. . . . . . . . . 10
⊢ (((𝑆 ∈ Word 𝐵 ∧ 𝑇 ∈ Word 𝐵) ∧ 𝑥 ∈ (0..^(♯‘𝑇))) → ((♯‘𝑆) + 𝑥) < ((♯‘𝑆) + (♯‘𝑇))) |
| 96 | 88, 95 | eqbrtrd 5146 |
. . . . . . . . 9
⊢ (((𝑆 ∈ Word 𝐵 ∧ 𝑇 ∈ Word 𝐵) ∧ 𝑥 ∈ (0..^(♯‘𝑇))) → (𝑥 + (♯‘𝑆)) < ((♯‘𝑆) + (♯‘𝑇))) |
| 97 | | elfzo2 13684 |
. . . . . . . . 9
⊢ ((𝑥 + (♯‘𝑆)) ∈
(0..^((♯‘𝑆) +
(♯‘𝑇))) ↔
((𝑥 + (♯‘𝑆)) ∈
(ℤ≥‘0) ∧ ((♯‘𝑆) + (♯‘𝑇)) ∈ ℤ ∧ (𝑥 + (♯‘𝑆)) < ((♯‘𝑆) + (♯‘𝑇)))) |
| 98 | 78, 82, 96, 97 | syl3anbrc 1344 |
. . . . . . . 8
⊢ (((𝑆 ∈ Word 𝐵 ∧ 𝑇 ∈ Word 𝐵) ∧ 𝑥 ∈ (0..^(♯‘𝑇))) → (𝑥 + (♯‘𝑆)) ∈ (0..^((♯‘𝑆) + (♯‘𝑇)))) |
| 99 | | fnfvelrn 7075 |
. . . . . . . 8
⊢ (((𝑆 ++ 𝑇) Fn (0..^((♯‘𝑆) + (♯‘𝑇))) ∧ (𝑥 + (♯‘𝑆)) ∈ (0..^((♯‘𝑆) + (♯‘𝑇)))) → ((𝑆 ++ 𝑇)‘(𝑥 + (♯‘𝑆))) ∈ ran (𝑆 ++ 𝑇)) |
| 100 | 1, 98, 99 | syl2an2r 685 |
. . . . . . 7
⊢ (((𝑆 ∈ Word 𝐵 ∧ 𝑇 ∈ Word 𝐵) ∧ 𝑥 ∈ (0..^(♯‘𝑇))) → ((𝑆 ++ 𝑇)‘(𝑥 + (♯‘𝑆))) ∈ ran (𝑆 ++ 𝑇)) |
| 101 | 74, 100 | eqeltrrd 2836 |
. . . . . 6
⊢ (((𝑆 ∈ Word 𝐵 ∧ 𝑇 ∈ Word 𝐵) ∧ 𝑥 ∈ (0..^(♯‘𝑇))) → (𝑇‘𝑥) ∈ ran (𝑆 ++ 𝑇)) |
| 102 | 101 | ralrimiva 3133 |
. . . . 5
⊢ ((𝑆 ∈ Word 𝐵 ∧ 𝑇 ∈ Word 𝐵) → ∀𝑥 ∈ (0..^(♯‘𝑇))(𝑇‘𝑥) ∈ ran (𝑆 ++ 𝑇)) |
| 103 | | ffnfv 7114 |
. . . . 5
⊢ (𝑇:(0..^(♯‘𝑇))⟶ran (𝑆 ++ 𝑇) ↔ (𝑇 Fn (0..^(♯‘𝑇)) ∧ ∀𝑥 ∈ (0..^(♯‘𝑇))(𝑇‘𝑥) ∈ ran (𝑆 ++ 𝑇))) |
| 104 | 31, 102, 103 | sylanbrc 583 |
. . . 4
⊢ ((𝑆 ∈ Word 𝐵 ∧ 𝑇 ∈ Word 𝐵) → 𝑇:(0..^(♯‘𝑇))⟶ran (𝑆 ++ 𝑇)) |
| 105 | 104 | frnd 6719 |
. . 3
⊢ ((𝑆 ∈ Word 𝐵 ∧ 𝑇 ∈ Word 𝐵) → ran 𝑇 ⊆ ran (𝑆 ++ 𝑇)) |
| 106 | 72, 105 | unssd 4172 |
. 2
⊢ ((𝑆 ∈ Word 𝐵 ∧ 𝑇 ∈ Word 𝐵) → (ran 𝑆 ∪ ran 𝑇) ⊆ ran (𝑆 ++ 𝑇)) |
| 107 | 62, 106 | eqssd 3981 |
1
⊢ ((𝑆 ∈ Word 𝐵 ∧ 𝑇 ∈ Word 𝐵) → ran (𝑆 ++ 𝑇) = (ran 𝑆 ∪ ran 𝑇)) |