MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ccatrn Structured version   Visualization version   GIF version

Theorem ccatrn 13933
Description: The range of a concatenated word. (Contributed by Stefan O'Rear, 15-Aug-2015.)
Assertion
Ref Expression
ccatrn ((𝑆 ∈ Word 𝐵𝑇 ∈ Word 𝐵) → ran (𝑆 ++ 𝑇) = (ran 𝑆 ∪ ran 𝑇))

Proof of Theorem ccatrn
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 ccatvalfn 13925 . . . 4 ((𝑆 ∈ Word 𝐵𝑇 ∈ Word 𝐵) → (𝑆 ++ 𝑇) Fn (0..^((♯‘𝑆) + (♯‘𝑇))))
2 lencl 13873 . . . . . . . . . . . 12 (𝑆 ∈ Word 𝐵 → (♯‘𝑆) ∈ ℕ0)
3 nn0uz 12269 . . . . . . . . . . . 12 0 = (ℤ‘0)
42, 3syl6eleq 2928 . . . . . . . . . . 11 (𝑆 ∈ Word 𝐵 → (♯‘𝑆) ∈ (ℤ‘0))
54adantr 481 . . . . . . . . . 10 ((𝑆 ∈ Word 𝐵𝑇 ∈ Word 𝐵) → (♯‘𝑆) ∈ (ℤ‘0))
62nn0zd 12074 . . . . . . . . . . . 12 (𝑆 ∈ Word 𝐵 → (♯‘𝑆) ∈ ℤ)
76uzidd 12248 . . . . . . . . . . 11 (𝑆 ∈ Word 𝐵 → (♯‘𝑆) ∈ (ℤ‘(♯‘𝑆)))
8 lencl 13873 . . . . . . . . . . 11 (𝑇 ∈ Word 𝐵 → (♯‘𝑇) ∈ ℕ0)
9 uzaddcl 12293 . . . . . . . . . . 11 (((♯‘𝑆) ∈ (ℤ‘(♯‘𝑆)) ∧ (♯‘𝑇) ∈ ℕ0) → ((♯‘𝑆) + (♯‘𝑇)) ∈ (ℤ‘(♯‘𝑆)))
107, 8, 9syl2an 595 . . . . . . . . . 10 ((𝑆 ∈ Word 𝐵𝑇 ∈ Word 𝐵) → ((♯‘𝑆) + (♯‘𝑇)) ∈ (ℤ‘(♯‘𝑆)))
11 elfzuzb 12892 . . . . . . . . . 10 ((♯‘𝑆) ∈ (0...((♯‘𝑆) + (♯‘𝑇))) ↔ ((♯‘𝑆) ∈ (ℤ‘0) ∧ ((♯‘𝑆) + (♯‘𝑇)) ∈ (ℤ‘(♯‘𝑆))))
125, 10, 11sylanbrc 583 . . . . . . . . 9 ((𝑆 ∈ Word 𝐵𝑇 ∈ Word 𝐵) → (♯‘𝑆) ∈ (0...((♯‘𝑆) + (♯‘𝑇))))
13 fzosplit 13060 . . . . . . . . 9 ((♯‘𝑆) ∈ (0...((♯‘𝑆) + (♯‘𝑇))) → (0..^((♯‘𝑆) + (♯‘𝑇))) = ((0..^(♯‘𝑆)) ∪ ((♯‘𝑆)..^((♯‘𝑆) + (♯‘𝑇)))))
1412, 13syl 17 . . . . . . . 8 ((𝑆 ∈ Word 𝐵𝑇 ∈ Word 𝐵) → (0..^((♯‘𝑆) + (♯‘𝑇))) = ((0..^(♯‘𝑆)) ∪ ((♯‘𝑆)..^((♯‘𝑆) + (♯‘𝑇)))))
1514eleq2d 2903 . . . . . . 7 ((𝑆 ∈ Word 𝐵𝑇 ∈ Word 𝐵) → (𝑥 ∈ (0..^((♯‘𝑆) + (♯‘𝑇))) ↔ 𝑥 ∈ ((0..^(♯‘𝑆)) ∪ ((♯‘𝑆)..^((♯‘𝑆) + (♯‘𝑇))))))
16 elun 4129 . . . . . . 7 (𝑥 ∈ ((0..^(♯‘𝑆)) ∪ ((♯‘𝑆)..^((♯‘𝑆) + (♯‘𝑇)))) ↔ (𝑥 ∈ (0..^(♯‘𝑆)) ∨ 𝑥 ∈ ((♯‘𝑆)..^((♯‘𝑆) + (♯‘𝑇)))))
1715, 16syl6bb 288 . . . . . 6 ((𝑆 ∈ Word 𝐵𝑇 ∈ Word 𝐵) → (𝑥 ∈ (0..^((♯‘𝑆) + (♯‘𝑇))) ↔ (𝑥 ∈ (0..^(♯‘𝑆)) ∨ 𝑥 ∈ ((♯‘𝑆)..^((♯‘𝑆) + (♯‘𝑇))))))
18 ccatval1 13920 . . . . . . . . . 10 ((𝑆 ∈ Word 𝐵𝑇 ∈ Word 𝐵𝑥 ∈ (0..^(♯‘𝑆))) → ((𝑆 ++ 𝑇)‘𝑥) = (𝑆𝑥))
19183expa 1112 . . . . . . . . 9 (((𝑆 ∈ Word 𝐵𝑇 ∈ Word 𝐵) ∧ 𝑥 ∈ (0..^(♯‘𝑆))) → ((𝑆 ++ 𝑇)‘𝑥) = (𝑆𝑥))
20 ssun1 4152 . . . . . . . . . 10 ran 𝑆 ⊆ (ran 𝑆 ∪ ran 𝑇)
21 wrdfn 13866 . . . . . . . . . . . 12 (𝑆 ∈ Word 𝐵𝑆 Fn (0..^(♯‘𝑆)))
2221adantr 481 . . . . . . . . . . 11 ((𝑆 ∈ Word 𝐵𝑇 ∈ Word 𝐵) → 𝑆 Fn (0..^(♯‘𝑆)))
23 fnfvelrn 6844 . . . . . . . . . . 11 ((𝑆 Fn (0..^(♯‘𝑆)) ∧ 𝑥 ∈ (0..^(♯‘𝑆))) → (𝑆𝑥) ∈ ran 𝑆)
2422, 23sylan 580 . . . . . . . . . 10 (((𝑆 ∈ Word 𝐵𝑇 ∈ Word 𝐵) ∧ 𝑥 ∈ (0..^(♯‘𝑆))) → (𝑆𝑥) ∈ ran 𝑆)
2520, 24sseldi 3969 . . . . . . . . 9 (((𝑆 ∈ Word 𝐵𝑇 ∈ Word 𝐵) ∧ 𝑥 ∈ (0..^(♯‘𝑆))) → (𝑆𝑥) ∈ (ran 𝑆 ∪ ran 𝑇))
2619, 25eqeltrd 2918 . . . . . . . 8 (((𝑆 ∈ Word 𝐵𝑇 ∈ Word 𝐵) ∧ 𝑥 ∈ (0..^(♯‘𝑆))) → ((𝑆 ++ 𝑇)‘𝑥) ∈ (ran 𝑆 ∪ ran 𝑇))
27 ccatval2 13922 . . . . . . . . . 10 ((𝑆 ∈ Word 𝐵𝑇 ∈ Word 𝐵𝑥 ∈ ((♯‘𝑆)..^((♯‘𝑆) + (♯‘𝑇)))) → ((𝑆 ++ 𝑇)‘𝑥) = (𝑇‘(𝑥 − (♯‘𝑆))))
28273expa 1112 . . . . . . . . 9 (((𝑆 ∈ Word 𝐵𝑇 ∈ Word 𝐵) ∧ 𝑥 ∈ ((♯‘𝑆)..^((♯‘𝑆) + (♯‘𝑇)))) → ((𝑆 ++ 𝑇)‘𝑥) = (𝑇‘(𝑥 − (♯‘𝑆))))
29 ssun2 4153 . . . . . . . . . 10 ran 𝑇 ⊆ (ran 𝑆 ∪ ran 𝑇)
30 wrdfn 13866 . . . . . . . . . . . 12 (𝑇 ∈ Word 𝐵𝑇 Fn (0..^(♯‘𝑇)))
3130adantl 482 . . . . . . . . . . 11 ((𝑆 ∈ Word 𝐵𝑇 ∈ Word 𝐵) → 𝑇 Fn (0..^(♯‘𝑇)))
32 elfzouz 13032 . . . . . . . . . . . . . . 15 (𝑥 ∈ ((♯‘𝑆)..^((♯‘𝑆) + (♯‘𝑇))) → 𝑥 ∈ (ℤ‘(♯‘𝑆)))
33 uznn0sub 12266 . . . . . . . . . . . . . . 15 (𝑥 ∈ (ℤ‘(♯‘𝑆)) → (𝑥 − (♯‘𝑆)) ∈ ℕ0)
3432, 33syl 17 . . . . . . . . . . . . . 14 (𝑥 ∈ ((♯‘𝑆)..^((♯‘𝑆) + (♯‘𝑇))) → (𝑥 − (♯‘𝑆)) ∈ ℕ0)
3534, 3syl6eleq 2928 . . . . . . . . . . . . 13 (𝑥 ∈ ((♯‘𝑆)..^((♯‘𝑆) + (♯‘𝑇))) → (𝑥 − (♯‘𝑆)) ∈ (ℤ‘0))
3635adantl 482 . . . . . . . . . . . 12 (((𝑆 ∈ Word 𝐵𝑇 ∈ Word 𝐵) ∧ 𝑥 ∈ ((♯‘𝑆)..^((♯‘𝑆) + (♯‘𝑇)))) → (𝑥 − (♯‘𝑆)) ∈ (ℤ‘0))
378nn0zd 12074 . . . . . . . . . . . . 13 (𝑇 ∈ Word 𝐵 → (♯‘𝑇) ∈ ℤ)
3837ad2antlr 723 . . . . . . . . . . . 12 (((𝑆 ∈ Word 𝐵𝑇 ∈ Word 𝐵) ∧ 𝑥 ∈ ((♯‘𝑆)..^((♯‘𝑆) + (♯‘𝑇)))) → (♯‘𝑇) ∈ ℤ)
39 elfzolt2 13037 . . . . . . . . . . . . . 14 (𝑥 ∈ ((♯‘𝑆)..^((♯‘𝑆) + (♯‘𝑇))) → 𝑥 < ((♯‘𝑆) + (♯‘𝑇)))
4039adantl 482 . . . . . . . . . . . . 13 (((𝑆 ∈ Word 𝐵𝑇 ∈ Word 𝐵) ∧ 𝑥 ∈ ((♯‘𝑆)..^((♯‘𝑆) + (♯‘𝑇)))) → 𝑥 < ((♯‘𝑆) + (♯‘𝑇)))
41 elfzoelz 13028 . . . . . . . . . . . . . . . 16 (𝑥 ∈ ((♯‘𝑆)..^((♯‘𝑆) + (♯‘𝑇))) → 𝑥 ∈ ℤ)
4241zred 12076 . . . . . . . . . . . . . . 15 (𝑥 ∈ ((♯‘𝑆)..^((♯‘𝑆) + (♯‘𝑇))) → 𝑥 ∈ ℝ)
4342adantl 482 . . . . . . . . . . . . . 14 (((𝑆 ∈ Word 𝐵𝑇 ∈ Word 𝐵) ∧ 𝑥 ∈ ((♯‘𝑆)..^((♯‘𝑆) + (♯‘𝑇)))) → 𝑥 ∈ ℝ)
442nn0red 11945 . . . . . . . . . . . . . . 15 (𝑆 ∈ Word 𝐵 → (♯‘𝑆) ∈ ℝ)
4544ad2antrr 722 . . . . . . . . . . . . . 14 (((𝑆 ∈ Word 𝐵𝑇 ∈ Word 𝐵) ∧ 𝑥 ∈ ((♯‘𝑆)..^((♯‘𝑆) + (♯‘𝑇)))) → (♯‘𝑆) ∈ ℝ)
468nn0red 11945 . . . . . . . . . . . . . . 15 (𝑇 ∈ Word 𝐵 → (♯‘𝑇) ∈ ℝ)
4746ad2antlr 723 . . . . . . . . . . . . . 14 (((𝑆 ∈ Word 𝐵𝑇 ∈ Word 𝐵) ∧ 𝑥 ∈ ((♯‘𝑆)..^((♯‘𝑆) + (♯‘𝑇)))) → (♯‘𝑇) ∈ ℝ)
4843, 45, 47ltsubadd2d 11227 . . . . . . . . . . . . 13 (((𝑆 ∈ Word 𝐵𝑇 ∈ Word 𝐵) ∧ 𝑥 ∈ ((♯‘𝑆)..^((♯‘𝑆) + (♯‘𝑇)))) → ((𝑥 − (♯‘𝑆)) < (♯‘𝑇) ↔ 𝑥 < ((♯‘𝑆) + (♯‘𝑇))))
4940, 48mpbird 258 . . . . . . . . . . . 12 (((𝑆 ∈ Word 𝐵𝑇 ∈ Word 𝐵) ∧ 𝑥 ∈ ((♯‘𝑆)..^((♯‘𝑆) + (♯‘𝑇)))) → (𝑥 − (♯‘𝑆)) < (♯‘𝑇))
50 elfzo2 13031 . . . . . . . . . . . 12 ((𝑥 − (♯‘𝑆)) ∈ (0..^(♯‘𝑇)) ↔ ((𝑥 − (♯‘𝑆)) ∈ (ℤ‘0) ∧ (♯‘𝑇) ∈ ℤ ∧ (𝑥 − (♯‘𝑆)) < (♯‘𝑇)))
5136, 38, 49, 50syl3anbrc 1337 . . . . . . . . . . 11 (((𝑆 ∈ Word 𝐵𝑇 ∈ Word 𝐵) ∧ 𝑥 ∈ ((♯‘𝑆)..^((♯‘𝑆) + (♯‘𝑇)))) → (𝑥 − (♯‘𝑆)) ∈ (0..^(♯‘𝑇)))
52 fnfvelrn 6844 . . . . . . . . . . 11 ((𝑇 Fn (0..^(♯‘𝑇)) ∧ (𝑥 − (♯‘𝑆)) ∈ (0..^(♯‘𝑇))) → (𝑇‘(𝑥 − (♯‘𝑆))) ∈ ran 𝑇)
5331, 51, 52syl2an2r 681 . . . . . . . . . 10 (((𝑆 ∈ Word 𝐵𝑇 ∈ Word 𝐵) ∧ 𝑥 ∈ ((♯‘𝑆)..^((♯‘𝑆) + (♯‘𝑇)))) → (𝑇‘(𝑥 − (♯‘𝑆))) ∈ ran 𝑇)
5429, 53sseldi 3969 . . . . . . . . 9 (((𝑆 ∈ Word 𝐵𝑇 ∈ Word 𝐵) ∧ 𝑥 ∈ ((♯‘𝑆)..^((♯‘𝑆) + (♯‘𝑇)))) → (𝑇‘(𝑥 − (♯‘𝑆))) ∈ (ran 𝑆 ∪ ran 𝑇))
5528, 54eqeltrd 2918 . . . . . . . 8 (((𝑆 ∈ Word 𝐵𝑇 ∈ Word 𝐵) ∧ 𝑥 ∈ ((♯‘𝑆)..^((♯‘𝑆) + (♯‘𝑇)))) → ((𝑆 ++ 𝑇)‘𝑥) ∈ (ran 𝑆 ∪ ran 𝑇))
5626, 55jaodan 953 . . . . . . 7 (((𝑆 ∈ Word 𝐵𝑇 ∈ Word 𝐵) ∧ (𝑥 ∈ (0..^(♯‘𝑆)) ∨ 𝑥 ∈ ((♯‘𝑆)..^((♯‘𝑆) + (♯‘𝑇))))) → ((𝑆 ++ 𝑇)‘𝑥) ∈ (ran 𝑆 ∪ ran 𝑇))
5756ex 413 . . . . . 6 ((𝑆 ∈ Word 𝐵𝑇 ∈ Word 𝐵) → ((𝑥 ∈ (0..^(♯‘𝑆)) ∨ 𝑥 ∈ ((♯‘𝑆)..^((♯‘𝑆) + (♯‘𝑇)))) → ((𝑆 ++ 𝑇)‘𝑥) ∈ (ran 𝑆 ∪ ran 𝑇)))
5817, 57sylbid 241 . . . . 5 ((𝑆 ∈ Word 𝐵𝑇 ∈ Word 𝐵) → (𝑥 ∈ (0..^((♯‘𝑆) + (♯‘𝑇))) → ((𝑆 ++ 𝑇)‘𝑥) ∈ (ran 𝑆 ∪ ran 𝑇)))
5958ralrimiv 3186 . . . 4 ((𝑆 ∈ Word 𝐵𝑇 ∈ Word 𝐵) → ∀𝑥 ∈ (0..^((♯‘𝑆) + (♯‘𝑇)))((𝑆 ++ 𝑇)‘𝑥) ∈ (ran 𝑆 ∪ ran 𝑇))
60 ffnfv 6878 . . . 4 ((𝑆 ++ 𝑇):(0..^((♯‘𝑆) + (♯‘𝑇)))⟶(ran 𝑆 ∪ ran 𝑇) ↔ ((𝑆 ++ 𝑇) Fn (0..^((♯‘𝑆) + (♯‘𝑇))) ∧ ∀𝑥 ∈ (0..^((♯‘𝑆) + (♯‘𝑇)))((𝑆 ++ 𝑇)‘𝑥) ∈ (ran 𝑆 ∪ ran 𝑇)))
611, 59, 60sylanbrc 583 . . 3 ((𝑆 ∈ Word 𝐵𝑇 ∈ Word 𝐵) → (𝑆 ++ 𝑇):(0..^((♯‘𝑆) + (♯‘𝑇)))⟶(ran 𝑆 ∪ ran 𝑇))
6261frnd 6518 . 2 ((𝑆 ∈ Word 𝐵𝑇 ∈ Word 𝐵) → ran (𝑆 ++ 𝑇) ⊆ (ran 𝑆 ∪ ran 𝑇))
63 fzoss2 13055 . . . . . . . . . 10 (((♯‘𝑆) + (♯‘𝑇)) ∈ (ℤ‘(♯‘𝑆)) → (0..^(♯‘𝑆)) ⊆ (0..^((♯‘𝑆) + (♯‘𝑇))))
6410, 63syl 17 . . . . . . . . 9 ((𝑆 ∈ Word 𝐵𝑇 ∈ Word 𝐵) → (0..^(♯‘𝑆)) ⊆ (0..^((♯‘𝑆) + (♯‘𝑇))))
6564sselda 3971 . . . . . . . 8 (((𝑆 ∈ Word 𝐵𝑇 ∈ Word 𝐵) ∧ 𝑥 ∈ (0..^(♯‘𝑆))) → 𝑥 ∈ (0..^((♯‘𝑆) + (♯‘𝑇))))
66 fnfvelrn 6844 . . . . . . . 8 (((𝑆 ++ 𝑇) Fn (0..^((♯‘𝑆) + (♯‘𝑇))) ∧ 𝑥 ∈ (0..^((♯‘𝑆) + (♯‘𝑇)))) → ((𝑆 ++ 𝑇)‘𝑥) ∈ ran (𝑆 ++ 𝑇))
671, 65, 66syl2an2r 681 . . . . . . 7 (((𝑆 ∈ Word 𝐵𝑇 ∈ Word 𝐵) ∧ 𝑥 ∈ (0..^(♯‘𝑆))) → ((𝑆 ++ 𝑇)‘𝑥) ∈ ran (𝑆 ++ 𝑇))
6819, 67eqeltrrd 2919 . . . . . 6 (((𝑆 ∈ Word 𝐵𝑇 ∈ Word 𝐵) ∧ 𝑥 ∈ (0..^(♯‘𝑆))) → (𝑆𝑥) ∈ ran (𝑆 ++ 𝑇))
6968ralrimiva 3187 . . . . 5 ((𝑆 ∈ Word 𝐵𝑇 ∈ Word 𝐵) → ∀𝑥 ∈ (0..^(♯‘𝑆))(𝑆𝑥) ∈ ran (𝑆 ++ 𝑇))
70 ffnfv 6878 . . . . 5 (𝑆:(0..^(♯‘𝑆))⟶ran (𝑆 ++ 𝑇) ↔ (𝑆 Fn (0..^(♯‘𝑆)) ∧ ∀𝑥 ∈ (0..^(♯‘𝑆))(𝑆𝑥) ∈ ran (𝑆 ++ 𝑇)))
7122, 69, 70sylanbrc 583 . . . 4 ((𝑆 ∈ Word 𝐵𝑇 ∈ Word 𝐵) → 𝑆:(0..^(♯‘𝑆))⟶ran (𝑆 ++ 𝑇))
7271frnd 6518 . . 3 ((𝑆 ∈ Word 𝐵𝑇 ∈ Word 𝐵) → ran 𝑆 ⊆ ran (𝑆 ++ 𝑇))
73 ccatval3 13923 . . . . . . . 8 ((𝑆 ∈ Word 𝐵𝑇 ∈ Word 𝐵𝑥 ∈ (0..^(♯‘𝑇))) → ((𝑆 ++ 𝑇)‘(𝑥 + (♯‘𝑆))) = (𝑇𝑥))
74733expa 1112 . . . . . . 7 (((𝑆 ∈ Word 𝐵𝑇 ∈ Word 𝐵) ∧ 𝑥 ∈ (0..^(♯‘𝑇))) → ((𝑆 ++ 𝑇)‘(𝑥 + (♯‘𝑆))) = (𝑇𝑥))
75 elfzouz 13032 . . . . . . . . . 10 (𝑥 ∈ (0..^(♯‘𝑇)) → 𝑥 ∈ (ℤ‘0))
762adantr 481 . . . . . . . . . 10 ((𝑆 ∈ Word 𝐵𝑇 ∈ Word 𝐵) → (♯‘𝑆) ∈ ℕ0)
77 uzaddcl 12293 . . . . . . . . . 10 ((𝑥 ∈ (ℤ‘0) ∧ (♯‘𝑆) ∈ ℕ0) → (𝑥 + (♯‘𝑆)) ∈ (ℤ‘0))
7875, 76, 77syl2anr 596 . . . . . . . . 9 (((𝑆 ∈ Word 𝐵𝑇 ∈ Word 𝐵) ∧ 𝑥 ∈ (0..^(♯‘𝑇))) → (𝑥 + (♯‘𝑆)) ∈ (ℤ‘0))
79 nn0addcl 11921 . . . . . . . . . . . 12 (((♯‘𝑆) ∈ ℕ0 ∧ (♯‘𝑇) ∈ ℕ0) → ((♯‘𝑆) + (♯‘𝑇)) ∈ ℕ0)
802, 8, 79syl2an 595 . . . . . . . . . . 11 ((𝑆 ∈ Word 𝐵𝑇 ∈ Word 𝐵) → ((♯‘𝑆) + (♯‘𝑇)) ∈ ℕ0)
8180nn0zd 12074 . . . . . . . . . 10 ((𝑆 ∈ Word 𝐵𝑇 ∈ Word 𝐵) → ((♯‘𝑆) + (♯‘𝑇)) ∈ ℤ)
8281adantr 481 . . . . . . . . 9 (((𝑆 ∈ Word 𝐵𝑇 ∈ Word 𝐵) ∧ 𝑥 ∈ (0..^(♯‘𝑇))) → ((♯‘𝑆) + (♯‘𝑇)) ∈ ℤ)
83 elfzonn0 13072 . . . . . . . . . . . 12 (𝑥 ∈ (0..^(♯‘𝑇)) → 𝑥 ∈ ℕ0)
8483nn0cnd 11946 . . . . . . . . . . 11 (𝑥 ∈ (0..^(♯‘𝑇)) → 𝑥 ∈ ℂ)
852nn0cnd 11946 . . . . . . . . . . . 12 (𝑆 ∈ Word 𝐵 → (♯‘𝑆) ∈ ℂ)
8685adantr 481 . . . . . . . . . . 11 ((𝑆 ∈ Word 𝐵𝑇 ∈ Word 𝐵) → (♯‘𝑆) ∈ ℂ)
87 addcom 10815 . . . . . . . . . . 11 ((𝑥 ∈ ℂ ∧ (♯‘𝑆) ∈ ℂ) → (𝑥 + (♯‘𝑆)) = ((♯‘𝑆) + 𝑥))
8884, 86, 87syl2anr 596 . . . . . . . . . 10 (((𝑆 ∈ Word 𝐵𝑇 ∈ Word 𝐵) ∧ 𝑥 ∈ (0..^(♯‘𝑇))) → (𝑥 + (♯‘𝑆)) = ((♯‘𝑆) + 𝑥))
8983nn0red 11945 . . . . . . . . . . . 12 (𝑥 ∈ (0..^(♯‘𝑇)) → 𝑥 ∈ ℝ)
9089adantl 482 . . . . . . . . . . 11 (((𝑆 ∈ Word 𝐵𝑇 ∈ Word 𝐵) ∧ 𝑥 ∈ (0..^(♯‘𝑇))) → 𝑥 ∈ ℝ)
9146ad2antlr 723 . . . . . . . . . . 11 (((𝑆 ∈ Word 𝐵𝑇 ∈ Word 𝐵) ∧ 𝑥 ∈ (0..^(♯‘𝑇))) → (♯‘𝑇) ∈ ℝ)
9244ad2antrr 722 . . . . . . . . . . 11 (((𝑆 ∈ Word 𝐵𝑇 ∈ Word 𝐵) ∧ 𝑥 ∈ (0..^(♯‘𝑇))) → (♯‘𝑆) ∈ ℝ)
93 elfzolt2 13037 . . . . . . . . . . . 12 (𝑥 ∈ (0..^(♯‘𝑇)) → 𝑥 < (♯‘𝑇))
9493adantl 482 . . . . . . . . . . 11 (((𝑆 ∈ Word 𝐵𝑇 ∈ Word 𝐵) ∧ 𝑥 ∈ (0..^(♯‘𝑇))) → 𝑥 < (♯‘𝑇))
9590, 91, 92, 94ltadd2dd 10788 . . . . . . . . . 10 (((𝑆 ∈ Word 𝐵𝑇 ∈ Word 𝐵) ∧ 𝑥 ∈ (0..^(♯‘𝑇))) → ((♯‘𝑆) + 𝑥) < ((♯‘𝑆) + (♯‘𝑇)))
9688, 95eqbrtrd 5085 . . . . . . . . 9 (((𝑆 ∈ Word 𝐵𝑇 ∈ Word 𝐵) ∧ 𝑥 ∈ (0..^(♯‘𝑇))) → (𝑥 + (♯‘𝑆)) < ((♯‘𝑆) + (♯‘𝑇)))
97 elfzo2 13031 . . . . . . . . 9 ((𝑥 + (♯‘𝑆)) ∈ (0..^((♯‘𝑆) + (♯‘𝑇))) ↔ ((𝑥 + (♯‘𝑆)) ∈ (ℤ‘0) ∧ ((♯‘𝑆) + (♯‘𝑇)) ∈ ℤ ∧ (𝑥 + (♯‘𝑆)) < ((♯‘𝑆) + (♯‘𝑇))))
9878, 82, 96, 97syl3anbrc 1337 . . . . . . . 8 (((𝑆 ∈ Word 𝐵𝑇 ∈ Word 𝐵) ∧ 𝑥 ∈ (0..^(♯‘𝑇))) → (𝑥 + (♯‘𝑆)) ∈ (0..^((♯‘𝑆) + (♯‘𝑇))))
99 fnfvelrn 6844 . . . . . . . 8 (((𝑆 ++ 𝑇) Fn (0..^((♯‘𝑆) + (♯‘𝑇))) ∧ (𝑥 + (♯‘𝑆)) ∈ (0..^((♯‘𝑆) + (♯‘𝑇)))) → ((𝑆 ++ 𝑇)‘(𝑥 + (♯‘𝑆))) ∈ ran (𝑆 ++ 𝑇))
1001, 98, 99syl2an2r 681 . . . . . . 7 (((𝑆 ∈ Word 𝐵𝑇 ∈ Word 𝐵) ∧ 𝑥 ∈ (0..^(♯‘𝑇))) → ((𝑆 ++ 𝑇)‘(𝑥 + (♯‘𝑆))) ∈ ran (𝑆 ++ 𝑇))
10174, 100eqeltrrd 2919 . . . . . 6 (((𝑆 ∈ Word 𝐵𝑇 ∈ Word 𝐵) ∧ 𝑥 ∈ (0..^(♯‘𝑇))) → (𝑇𝑥) ∈ ran (𝑆 ++ 𝑇))
102101ralrimiva 3187 . . . . 5 ((𝑆 ∈ Word 𝐵𝑇 ∈ Word 𝐵) → ∀𝑥 ∈ (0..^(♯‘𝑇))(𝑇𝑥) ∈ ran (𝑆 ++ 𝑇))
103 ffnfv 6878 . . . . 5 (𝑇:(0..^(♯‘𝑇))⟶ran (𝑆 ++ 𝑇) ↔ (𝑇 Fn (0..^(♯‘𝑇)) ∧ ∀𝑥 ∈ (0..^(♯‘𝑇))(𝑇𝑥) ∈ ran (𝑆 ++ 𝑇)))
10431, 102, 103sylanbrc 583 . . . 4 ((𝑆 ∈ Word 𝐵𝑇 ∈ Word 𝐵) → 𝑇:(0..^(♯‘𝑇))⟶ran (𝑆 ++ 𝑇))
105104frnd 6518 . . 3 ((𝑆 ∈ Word 𝐵𝑇 ∈ Word 𝐵) → ran 𝑇 ⊆ ran (𝑆 ++ 𝑇))
10672, 105unssd 4166 . 2 ((𝑆 ∈ Word 𝐵𝑇 ∈ Word 𝐵) → (ran 𝑆 ∪ ran 𝑇) ⊆ ran (𝑆 ++ 𝑇))
10762, 106eqssd 3988 1 ((𝑆 ∈ Word 𝐵𝑇 ∈ Word 𝐵) → ran (𝑆 ++ 𝑇) = (ran 𝑆 ∪ ran 𝑇))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396  wo 843   = wceq 1530  wcel 2107  wral 3143  cun 3938  wss 3940   class class class wbr 5063  ran crn 5555   Fn wfn 6347  wf 6348  cfv 6352  (class class class)co 7148  cc 10524  cr 10525  0cc0 10526   + caddc 10529   < clt 10664  cmin 10859  0cn0 11886  cz 11970  cuz 12232  ...cfz 12882  ..^cfzo 13023  chash 13680  Word cword 13851   ++ cconcat 13912
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1904  ax-6 1963  ax-7 2008  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2153  ax-12 2169  ax-ext 2798  ax-rep 5187  ax-sep 5200  ax-nul 5207  ax-pow 5263  ax-pr 5326  ax-un 7451  ax-cnex 10582  ax-resscn 10583  ax-1cn 10584  ax-icn 10585  ax-addcl 10586  ax-addrcl 10587  ax-mulcl 10588  ax-mulrcl 10589  ax-mulcom 10590  ax-addass 10591  ax-mulass 10592  ax-distr 10593  ax-i2m1 10594  ax-1ne0 10595  ax-1rid 10596  ax-rnegex 10597  ax-rrecex 10598  ax-cnre 10599  ax-pre-lttri 10600  ax-pre-lttrn 10601  ax-pre-ltadd 10602  ax-pre-mulgt0 10603
This theorem depends on definitions:  df-bi 208  df-an 397  df-or 844  df-3or 1082  df-3an 1083  df-tru 1533  df-ex 1774  df-nf 1778  df-sb 2063  df-mo 2620  df-eu 2652  df-clab 2805  df-cleq 2819  df-clel 2898  df-nfc 2968  df-ne 3022  df-nel 3129  df-ral 3148  df-rex 3149  df-reu 3150  df-rab 3152  df-v 3502  df-sbc 3777  df-csb 3888  df-dif 3943  df-un 3945  df-in 3947  df-ss 3956  df-pss 3958  df-nul 4296  df-if 4471  df-pw 4544  df-sn 4565  df-pr 4567  df-tp 4569  df-op 4571  df-uni 4838  df-int 4875  df-iun 4919  df-br 5064  df-opab 5126  df-mpt 5144  df-tr 5170  df-id 5459  df-eprel 5464  df-po 5473  df-so 5474  df-fr 5513  df-we 5515  df-xp 5560  df-rel 5561  df-cnv 5562  df-co 5563  df-dm 5564  df-rn 5565  df-res 5566  df-ima 5567  df-pred 6146  df-ord 6192  df-on 6193  df-lim 6194  df-suc 6195  df-iota 6312  df-fun 6354  df-fn 6355  df-f 6356  df-f1 6357  df-fo 6358  df-f1o 6359  df-fv 6360  df-riota 7106  df-ov 7151  df-oprab 7152  df-mpo 7153  df-om 7569  df-1st 7680  df-2nd 7681  df-wrecs 7938  df-recs 7999  df-rdg 8037  df-1o 8093  df-oadd 8097  df-er 8279  df-en 8499  df-dom 8500  df-sdom 8501  df-fin 8502  df-card 9357  df-pnf 10666  df-mnf 10667  df-xr 10668  df-ltxr 10669  df-le 10670  df-sub 10861  df-neg 10862  df-nn 11628  df-n0 11887  df-z 11971  df-uz 12233  df-fz 12883  df-fzo 13024  df-hash 13681  df-word 13852  df-concat 13913
This theorem is referenced by:  cycpmco2f1  30680  cycpmco2rn  30681  mrsubvrs  32653
  Copyright terms: Public domain W3C validator