![]() |
Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > cdlemg47a | Structured version Visualization version GIF version |
Description: TODO: fix comment. TODO: Use this above in place of (𝐹‘𝑃) = 𝑃 antecedents? (Contributed by NM, 5-Jun-2013.) |
Ref | Expression |
---|---|
cdlemg46.b | ⊢ 𝐵 = (Base‘𝐾) |
cdlemg46.h | ⊢ 𝐻 = (LHyp‘𝐾) |
cdlemg46.t | ⊢ 𝑇 = ((LTrn‘𝐾)‘𝑊) |
Ref | Expression |
---|---|
cdlemg47a | ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇) ∧ 𝐹 = ( I ↾ 𝐵)) → (𝐹 ∘ 𝐺) = (𝐺 ∘ 𝐹)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simp1 1137 | . . . . 5 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇) ∧ 𝐹 = ( I ↾ 𝐵)) → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) | |
2 | simp2r 1201 | . . . . 5 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇) ∧ 𝐹 = ( I ↾ 𝐵)) → 𝐺 ∈ 𝑇) | |
3 | cdlemg46.b | . . . . . 6 ⊢ 𝐵 = (Base‘𝐾) | |
4 | cdlemg46.h | . . . . . 6 ⊢ 𝐻 = (LHyp‘𝐾) | |
5 | cdlemg46.t | . . . . . 6 ⊢ 𝑇 = ((LTrn‘𝐾)‘𝑊) | |
6 | 3, 4, 5 | ltrn1o 40121 | . . . . 5 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐺 ∈ 𝑇) → 𝐺:𝐵–1-1-onto→𝐵) |
7 | 1, 2, 6 | syl2anc 584 | . . . 4 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇) ∧ 𝐹 = ( I ↾ 𝐵)) → 𝐺:𝐵–1-1-onto→𝐵) |
8 | f1of 6856 | . . . 4 ⊢ (𝐺:𝐵–1-1-onto→𝐵 → 𝐺:𝐵⟶𝐵) | |
9 | 7, 8 | syl 17 | . . 3 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇) ∧ 𝐹 = ( I ↾ 𝐵)) → 𝐺:𝐵⟶𝐵) |
10 | fcoi1 6790 | . . 3 ⊢ (𝐺:𝐵⟶𝐵 → (𝐺 ∘ ( I ↾ 𝐵)) = 𝐺) | |
11 | 9, 10 | syl 17 | . 2 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇) ∧ 𝐹 = ( I ↾ 𝐵)) → (𝐺 ∘ ( I ↾ 𝐵)) = 𝐺) |
12 | simp3 1139 | . . 3 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇) ∧ 𝐹 = ( I ↾ 𝐵)) → 𝐹 = ( I ↾ 𝐵)) | |
13 | 12 | coeq2d 5880 | . 2 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇) ∧ 𝐹 = ( I ↾ 𝐵)) → (𝐺 ∘ 𝐹) = (𝐺 ∘ ( I ↾ 𝐵))) |
14 | 12 | coeq1d 5879 | . . 3 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇) ∧ 𝐹 = ( I ↾ 𝐵)) → (𝐹 ∘ 𝐺) = (( I ↾ 𝐵) ∘ 𝐺)) |
15 | fcoi2 6791 | . . . 4 ⊢ (𝐺:𝐵⟶𝐵 → (( I ↾ 𝐵) ∘ 𝐺) = 𝐺) | |
16 | 9, 15 | syl 17 | . . 3 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇) ∧ 𝐹 = ( I ↾ 𝐵)) → (( I ↾ 𝐵) ∘ 𝐺) = 𝐺) |
17 | 14, 16 | eqtrd 2777 | . 2 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇) ∧ 𝐹 = ( I ↾ 𝐵)) → (𝐹 ∘ 𝐺) = 𝐺) |
18 | 11, 13, 17 | 3eqtr4rd 2788 | 1 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇) ∧ 𝐹 = ( I ↾ 𝐵)) → (𝐹 ∘ 𝐺) = (𝐺 ∘ 𝐹)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1087 = wceq 1539 ∈ wcel 2108 I cid 5586 ↾ cres 5695 ∘ ccom 5697 ⟶wf 6565 –1-1-onto→wf1o 6568 ‘cfv 6569 Basecbs 17254 HLchlt 39346 LHypclh 39981 LTrncltrn 40098 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2708 ax-rep 5288 ax-sep 5305 ax-nul 5315 ax-pow 5374 ax-pr 5441 ax-un 7761 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 849 df-3an 1089 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2065 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2729 df-clel 2816 df-nfc 2892 df-ne 2941 df-ral 3062 df-rex 3071 df-reu 3381 df-rab 3437 df-v 3483 df-sbc 3795 df-csb 3912 df-dif 3969 df-un 3971 df-in 3973 df-ss 3983 df-nul 4343 df-if 4535 df-pw 4610 df-sn 4635 df-pr 4637 df-op 4641 df-uni 4916 df-iun 5001 df-br 5152 df-opab 5214 df-mpt 5235 df-id 5587 df-xp 5699 df-rel 5700 df-cnv 5701 df-co 5702 df-dm 5703 df-rn 5704 df-res 5705 df-ima 5706 df-iota 6522 df-fun 6571 df-fn 6572 df-f 6573 df-f1 6574 df-fo 6575 df-f1o 6576 df-fv 6577 df-ov 7441 df-oprab 7442 df-mpo 7443 df-map 8876 df-laut 39986 df-ldil 40101 df-ltrn 40102 |
This theorem is referenced by: ltrncom 40735 |
Copyright terms: Public domain | W3C validator |