| Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > cdlemg47a | Structured version Visualization version GIF version | ||
| Description: TODO: fix comment. TODO: Use this above in place of (𝐹‘𝑃) = 𝑃 antecedents? (Contributed by NM, 5-Jun-2013.) |
| Ref | Expression |
|---|---|
| cdlemg46.b | ⊢ 𝐵 = (Base‘𝐾) |
| cdlemg46.h | ⊢ 𝐻 = (LHyp‘𝐾) |
| cdlemg46.t | ⊢ 𝑇 = ((LTrn‘𝐾)‘𝑊) |
| Ref | Expression |
|---|---|
| cdlemg47a | ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇) ∧ 𝐹 = ( I ↾ 𝐵)) → (𝐹 ∘ 𝐺) = (𝐺 ∘ 𝐹)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simp1 1136 | . . . . 5 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇) ∧ 𝐹 = ( I ↾ 𝐵)) → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) | |
| 2 | simp2r 1200 | . . . . 5 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇) ∧ 𝐹 = ( I ↾ 𝐵)) → 𝐺 ∈ 𝑇) | |
| 3 | cdlemg46.b | . . . . . 6 ⊢ 𝐵 = (Base‘𝐾) | |
| 4 | cdlemg46.h | . . . . . 6 ⊢ 𝐻 = (LHyp‘𝐾) | |
| 5 | cdlemg46.t | . . . . . 6 ⊢ 𝑇 = ((LTrn‘𝐾)‘𝑊) | |
| 6 | 3, 4, 5 | ltrn1o 40085 | . . . . 5 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐺 ∈ 𝑇) → 𝐺:𝐵–1-1-onto→𝐵) |
| 7 | 1, 2, 6 | syl2anc 584 | . . . 4 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇) ∧ 𝐹 = ( I ↾ 𝐵)) → 𝐺:𝐵–1-1-onto→𝐵) |
| 8 | f1of 6828 | . . . 4 ⊢ (𝐺:𝐵–1-1-onto→𝐵 → 𝐺:𝐵⟶𝐵) | |
| 9 | 7, 8 | syl 17 | . . 3 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇) ∧ 𝐹 = ( I ↾ 𝐵)) → 𝐺:𝐵⟶𝐵) |
| 10 | fcoi1 6762 | . . 3 ⊢ (𝐺:𝐵⟶𝐵 → (𝐺 ∘ ( I ↾ 𝐵)) = 𝐺) | |
| 11 | 9, 10 | syl 17 | . 2 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇) ∧ 𝐹 = ( I ↾ 𝐵)) → (𝐺 ∘ ( I ↾ 𝐵)) = 𝐺) |
| 12 | simp3 1138 | . . 3 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇) ∧ 𝐹 = ( I ↾ 𝐵)) → 𝐹 = ( I ↾ 𝐵)) | |
| 13 | 12 | coeq2d 5853 | . 2 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇) ∧ 𝐹 = ( I ↾ 𝐵)) → (𝐺 ∘ 𝐹) = (𝐺 ∘ ( I ↾ 𝐵))) |
| 14 | 12 | coeq1d 5852 | . . 3 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇) ∧ 𝐹 = ( I ↾ 𝐵)) → (𝐹 ∘ 𝐺) = (( I ↾ 𝐵) ∘ 𝐺)) |
| 15 | fcoi2 6763 | . . . 4 ⊢ (𝐺:𝐵⟶𝐵 → (( I ↾ 𝐵) ∘ 𝐺) = 𝐺) | |
| 16 | 9, 15 | syl 17 | . . 3 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇) ∧ 𝐹 = ( I ↾ 𝐵)) → (( I ↾ 𝐵) ∘ 𝐺) = 𝐺) |
| 17 | 14, 16 | eqtrd 2769 | . 2 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇) ∧ 𝐹 = ( I ↾ 𝐵)) → (𝐹 ∘ 𝐺) = 𝐺) |
| 18 | 11, 13, 17 | 3eqtr4rd 2780 | 1 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇) ∧ 𝐹 = ( I ↾ 𝐵)) → (𝐹 ∘ 𝐺) = (𝐺 ∘ 𝐹)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 = wceq 1539 ∈ wcel 2107 I cid 5557 ↾ cres 5667 ∘ ccom 5669 ⟶wf 6537 –1-1-onto→wf1o 6540 ‘cfv 6541 Basecbs 17229 HLchlt 39310 LHypclh 39945 LTrncltrn 40062 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-11 2156 ax-12 2176 ax-ext 2706 ax-rep 5259 ax-sep 5276 ax-nul 5286 ax-pow 5345 ax-pr 5412 ax-un 7737 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2064 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2726 df-clel 2808 df-nfc 2884 df-ne 2932 df-ral 3051 df-rex 3060 df-reu 3364 df-rab 3420 df-v 3465 df-sbc 3771 df-csb 3880 df-dif 3934 df-un 3936 df-in 3938 df-ss 3948 df-nul 4314 df-if 4506 df-pw 4582 df-sn 4607 df-pr 4609 df-op 4613 df-uni 4888 df-iun 4973 df-br 5124 df-opab 5186 df-mpt 5206 df-id 5558 df-xp 5671 df-rel 5672 df-cnv 5673 df-co 5674 df-dm 5675 df-rn 5676 df-res 5677 df-ima 5678 df-iota 6494 df-fun 6543 df-fn 6544 df-f 6545 df-f1 6546 df-fo 6547 df-f1o 6548 df-fv 6549 df-ov 7416 df-oprab 7417 df-mpo 7418 df-map 8850 df-laut 39950 df-ldil 40065 df-ltrn 40066 |
| This theorem is referenced by: ltrncom 40699 |
| Copyright terms: Public domain | W3C validator |