![]() |
Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > cdlemg47a | Structured version Visualization version GIF version |
Description: TODO: fix comment. TODO: Use this above in place of (𝐹‘𝑃) = 𝑃 antecedents? (Contributed by NM, 5-Jun-2013.) |
Ref | Expression |
---|---|
cdlemg46.b | ⊢ 𝐵 = (Base‘𝐾) |
cdlemg46.h | ⊢ 𝐻 = (LHyp‘𝐾) |
cdlemg46.t | ⊢ 𝑇 = ((LTrn‘𝐾)‘𝑊) |
Ref | Expression |
---|---|
cdlemg47a | ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇) ∧ 𝐹 = ( I ↾ 𝐵)) → (𝐹 ∘ 𝐺) = (𝐺 ∘ 𝐹)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simp1 1133 | . . . . 5 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇) ∧ 𝐹 = ( I ↾ 𝐵)) → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) | |
2 | simp2r 1197 | . . . . 5 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇) ∧ 𝐹 = ( I ↾ 𝐵)) → 𝐺 ∈ 𝑇) | |
3 | cdlemg46.b | . . . . . 6 ⊢ 𝐵 = (Base‘𝐾) | |
4 | cdlemg46.h | . . . . . 6 ⊢ 𝐻 = (LHyp‘𝐾) | |
5 | cdlemg46.t | . . . . . 6 ⊢ 𝑇 = ((LTrn‘𝐾)‘𝑊) | |
6 | 3, 4, 5 | ltrn1o 39653 | . . . . 5 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐺 ∈ 𝑇) → 𝐺:𝐵–1-1-onto→𝐵) |
7 | 1, 2, 6 | syl2anc 582 | . . . 4 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇) ∧ 𝐹 = ( I ↾ 𝐵)) → 𝐺:𝐵–1-1-onto→𝐵) |
8 | f1of 6834 | . . . 4 ⊢ (𝐺:𝐵–1-1-onto→𝐵 → 𝐺:𝐵⟶𝐵) | |
9 | 7, 8 | syl 17 | . . 3 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇) ∧ 𝐹 = ( I ↾ 𝐵)) → 𝐺:𝐵⟶𝐵) |
10 | fcoi1 6766 | . . 3 ⊢ (𝐺:𝐵⟶𝐵 → (𝐺 ∘ ( I ↾ 𝐵)) = 𝐺) | |
11 | 9, 10 | syl 17 | . 2 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇) ∧ 𝐹 = ( I ↾ 𝐵)) → (𝐺 ∘ ( I ↾ 𝐵)) = 𝐺) |
12 | simp3 1135 | . . 3 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇) ∧ 𝐹 = ( I ↾ 𝐵)) → 𝐹 = ( I ↾ 𝐵)) | |
13 | 12 | coeq2d 5859 | . 2 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇) ∧ 𝐹 = ( I ↾ 𝐵)) → (𝐺 ∘ 𝐹) = (𝐺 ∘ ( I ↾ 𝐵))) |
14 | 12 | coeq1d 5858 | . . 3 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇) ∧ 𝐹 = ( I ↾ 𝐵)) → (𝐹 ∘ 𝐺) = (( I ↾ 𝐵) ∘ 𝐺)) |
15 | fcoi2 6767 | . . . 4 ⊢ (𝐺:𝐵⟶𝐵 → (( I ↾ 𝐵) ∘ 𝐺) = 𝐺) | |
16 | 9, 15 | syl 17 | . . 3 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇) ∧ 𝐹 = ( I ↾ 𝐵)) → (( I ↾ 𝐵) ∘ 𝐺) = 𝐺) |
17 | 14, 16 | eqtrd 2765 | . 2 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇) ∧ 𝐹 = ( I ↾ 𝐵)) → (𝐹 ∘ 𝐺) = 𝐺) |
18 | 11, 13, 17 | 3eqtr4rd 2776 | 1 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇) ∧ 𝐹 = ( I ↾ 𝐵)) → (𝐹 ∘ 𝐺) = (𝐺 ∘ 𝐹)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 394 ∧ w3a 1084 = wceq 1533 ∈ wcel 2098 I cid 5569 ↾ cres 5674 ∘ ccom 5676 ⟶wf 6539 –1-1-onto→wf1o 6542 ‘cfv 6543 Basecbs 17179 HLchlt 38878 LHypclh 39513 LTrncltrn 39630 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2166 ax-ext 2696 ax-rep 5280 ax-sep 5294 ax-nul 5301 ax-pow 5359 ax-pr 5423 ax-un 7738 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2528 df-eu 2557 df-clab 2703 df-cleq 2717 df-clel 2802 df-nfc 2877 df-ne 2931 df-ral 3052 df-rex 3061 df-reu 3365 df-rab 3420 df-v 3465 df-sbc 3769 df-csb 3885 df-dif 3942 df-un 3944 df-in 3946 df-ss 3956 df-nul 4319 df-if 4525 df-pw 4600 df-sn 4625 df-pr 4627 df-op 4631 df-uni 4904 df-iun 4993 df-br 5144 df-opab 5206 df-mpt 5227 df-id 5570 df-xp 5678 df-rel 5679 df-cnv 5680 df-co 5681 df-dm 5682 df-rn 5683 df-res 5684 df-ima 5685 df-iota 6495 df-fun 6545 df-fn 6546 df-f 6547 df-f1 6548 df-fo 6549 df-f1o 6550 df-fv 6551 df-ov 7419 df-oprab 7420 df-mpo 7421 df-map 8845 df-laut 39518 df-ldil 39633 df-ltrn 39634 |
This theorem is referenced by: ltrncom 40267 |
Copyright terms: Public domain | W3C validator |