Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cdlemg47a Structured version   Visualization version   GIF version

Theorem cdlemg47a 36808
Description: TODO: fix comment. TODO: Use this above in place of (𝐹𝑃) = 𝑃 antecedents? (Contributed by NM, 5-Jun-2013.)
Hypotheses
Ref Expression
cdlemg46.b 𝐵 = (Base‘𝐾)
cdlemg46.h 𝐻 = (LHyp‘𝐾)
cdlemg46.t 𝑇 = ((LTrn‘𝐾)‘𝑊)
Assertion
Ref Expression
cdlemg47a (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝐺𝑇) ∧ 𝐹 = ( I ↾ 𝐵)) → (𝐹𝐺) = (𝐺𝐹))

Proof of Theorem cdlemg47a
StepHypRef Expression
1 simp1 1170 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝐺𝑇) ∧ 𝐹 = ( I ↾ 𝐵)) → (𝐾 ∈ HL ∧ 𝑊𝐻))
2 simp2r 1261 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝐺𝑇) ∧ 𝐹 = ( I ↾ 𝐵)) → 𝐺𝑇)
3 cdlemg46.b . . . . . 6 𝐵 = (Base‘𝐾)
4 cdlemg46.h . . . . . 6 𝐻 = (LHyp‘𝐾)
5 cdlemg46.t . . . . . 6 𝑇 = ((LTrn‘𝐾)‘𝑊)
63, 4, 5ltrn1o 36198 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐺𝑇) → 𝐺:𝐵1-1-onto𝐵)
71, 2, 6syl2anc 579 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝐺𝑇) ∧ 𝐹 = ( I ↾ 𝐵)) → 𝐺:𝐵1-1-onto𝐵)
8 f1of 6382 . . . 4 (𝐺:𝐵1-1-onto𝐵𝐺:𝐵𝐵)
97, 8syl 17 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝐺𝑇) ∧ 𝐹 = ( I ↾ 𝐵)) → 𝐺:𝐵𝐵)
10 fcoi1 6319 . . 3 (𝐺:𝐵𝐵 → (𝐺 ∘ ( I ↾ 𝐵)) = 𝐺)
119, 10syl 17 . 2 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝐺𝑇) ∧ 𝐹 = ( I ↾ 𝐵)) → (𝐺 ∘ ( I ↾ 𝐵)) = 𝐺)
12 simp3 1172 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝐺𝑇) ∧ 𝐹 = ( I ↾ 𝐵)) → 𝐹 = ( I ↾ 𝐵))
1312coeq2d 5521 . 2 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝐺𝑇) ∧ 𝐹 = ( I ↾ 𝐵)) → (𝐺𝐹) = (𝐺 ∘ ( I ↾ 𝐵)))
1412coeq1d 5520 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝐺𝑇) ∧ 𝐹 = ( I ↾ 𝐵)) → (𝐹𝐺) = (( I ↾ 𝐵) ∘ 𝐺))
15 fcoi2 6320 . . . 4 (𝐺:𝐵𝐵 → (( I ↾ 𝐵) ∘ 𝐺) = 𝐺)
169, 15syl 17 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝐺𝑇) ∧ 𝐹 = ( I ↾ 𝐵)) → (( I ↾ 𝐵) ∘ 𝐺) = 𝐺)
1714, 16eqtrd 2861 . 2 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝐺𝑇) ∧ 𝐹 = ( I ↾ 𝐵)) → (𝐹𝐺) = 𝐺)
1811, 13, 173eqtr4rd 2872 1 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝐺𝑇) ∧ 𝐹 = ( I ↾ 𝐵)) → (𝐹𝐺) = (𝐺𝐹))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 386  w3a 1111   = wceq 1656  wcel 2164   I cid 5251  cres 5348  ccom 5350  wf 6123  1-1-ontowf1o 6126  cfv 6127  Basecbs 16229  HLchlt 35424  LHypclh 36058  LTrncltrn 36175
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1894  ax-4 1908  ax-5 2009  ax-6 2075  ax-7 2112  ax-8 2166  ax-9 2173  ax-10 2192  ax-11 2207  ax-12 2220  ax-13 2389  ax-ext 2803  ax-rep 4996  ax-sep 5007  ax-nul 5015  ax-pow 5067  ax-pr 5129  ax-un 7214
This theorem depends on definitions:  df-bi 199  df-an 387  df-or 879  df-3an 1113  df-tru 1660  df-ex 1879  df-nf 1883  df-sb 2068  df-mo 2605  df-eu 2640  df-clab 2812  df-cleq 2818  df-clel 2821  df-nfc 2958  df-ne 3000  df-ral 3122  df-rex 3123  df-reu 3124  df-rab 3126  df-v 3416  df-sbc 3663  df-csb 3758  df-dif 3801  df-un 3803  df-in 3805  df-ss 3812  df-nul 4147  df-if 4309  df-pw 4382  df-sn 4400  df-pr 4402  df-op 4406  df-uni 4661  df-iun 4744  df-br 4876  df-opab 4938  df-mpt 4955  df-id 5252  df-xp 5352  df-rel 5353  df-cnv 5354  df-co 5355  df-dm 5356  df-rn 5357  df-res 5358  df-ima 5359  df-iota 6090  df-fun 6129  df-fn 6130  df-f 6131  df-f1 6132  df-fo 6133  df-f1o 6134  df-fv 6135  df-ov 6913  df-oprab 6914  df-mpt2 6915  df-map 8129  df-laut 36063  df-ldil 36178  df-ltrn 36179
This theorem is referenced by:  ltrncom  36812
  Copyright terms: Public domain W3C validator