Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cdlemg47a Structured version   Visualization version   GIF version

Theorem cdlemg47a 40701
Description: TODO: fix comment. TODO: Use this above in place of (𝐹𝑃) = 𝑃 antecedents? (Contributed by NM, 5-Jun-2013.)
Hypotheses
Ref Expression
cdlemg46.b 𝐵 = (Base‘𝐾)
cdlemg46.h 𝐻 = (LHyp‘𝐾)
cdlemg46.t 𝑇 = ((LTrn‘𝐾)‘𝑊)
Assertion
Ref Expression
cdlemg47a (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝐺𝑇) ∧ 𝐹 = ( I ↾ 𝐵)) → (𝐹𝐺) = (𝐺𝐹))

Proof of Theorem cdlemg47a
StepHypRef Expression
1 simp1 1136 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝐺𝑇) ∧ 𝐹 = ( I ↾ 𝐵)) → (𝐾 ∈ HL ∧ 𝑊𝐻))
2 simp2r 1201 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝐺𝑇) ∧ 𝐹 = ( I ↾ 𝐵)) → 𝐺𝑇)
3 cdlemg46.b . . . . . 6 𝐵 = (Base‘𝐾)
4 cdlemg46.h . . . . . 6 𝐻 = (LHyp‘𝐾)
5 cdlemg46.t . . . . . 6 𝑇 = ((LTrn‘𝐾)‘𝑊)
63, 4, 5ltrn1o 40091 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐺𝑇) → 𝐺:𝐵1-1-onto𝐵)
71, 2, 6syl2anc 584 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝐺𝑇) ∧ 𝐹 = ( I ↾ 𝐵)) → 𝐺:𝐵1-1-onto𝐵)
8 f1of 6782 . . . 4 (𝐺:𝐵1-1-onto𝐵𝐺:𝐵𝐵)
97, 8syl 17 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝐺𝑇) ∧ 𝐹 = ( I ↾ 𝐵)) → 𝐺:𝐵𝐵)
10 fcoi1 6716 . . 3 (𝐺:𝐵𝐵 → (𝐺 ∘ ( I ↾ 𝐵)) = 𝐺)
119, 10syl 17 . 2 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝐺𝑇) ∧ 𝐹 = ( I ↾ 𝐵)) → (𝐺 ∘ ( I ↾ 𝐵)) = 𝐺)
12 simp3 1138 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝐺𝑇) ∧ 𝐹 = ( I ↾ 𝐵)) → 𝐹 = ( I ↾ 𝐵))
1312coeq2d 5816 . 2 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝐺𝑇) ∧ 𝐹 = ( I ↾ 𝐵)) → (𝐺𝐹) = (𝐺 ∘ ( I ↾ 𝐵)))
1412coeq1d 5815 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝐺𝑇) ∧ 𝐹 = ( I ↾ 𝐵)) → (𝐹𝐺) = (( I ↾ 𝐵) ∘ 𝐺))
15 fcoi2 6717 . . . 4 (𝐺:𝐵𝐵 → (( I ↾ 𝐵) ∘ 𝐺) = 𝐺)
169, 15syl 17 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝐺𝑇) ∧ 𝐹 = ( I ↾ 𝐵)) → (( I ↾ 𝐵) ∘ 𝐺) = 𝐺)
1714, 16eqtrd 2764 . 2 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝐺𝑇) ∧ 𝐹 = ( I ↾ 𝐵)) → (𝐹𝐺) = 𝐺)
1811, 13, 173eqtr4rd 2775 1 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝐺𝑇) ∧ 𝐹 = ( I ↾ 𝐵)) → (𝐹𝐺) = (𝐺𝐹))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086   = wceq 1540  wcel 2109   I cid 5525  cres 5633  ccom 5635  wf 6495  1-1-ontowf1o 6498  cfv 6499  Basecbs 17155  HLchlt 39316  LHypclh 39951  LTrncltrn 40068
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5229  ax-sep 5246  ax-nul 5256  ax-pow 5315  ax-pr 5382  ax-un 7691
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-reu 3352  df-rab 3403  df-v 3446  df-sbc 3751  df-csb 3860  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-nul 4293  df-if 4485  df-pw 4561  df-sn 4586  df-pr 4588  df-op 4592  df-uni 4868  df-iun 4953  df-br 5103  df-opab 5165  df-mpt 5184  df-id 5526  df-xp 5637  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-rn 5642  df-res 5643  df-ima 5644  df-iota 6452  df-fun 6501  df-fn 6502  df-f 6503  df-f1 6504  df-fo 6505  df-f1o 6506  df-fv 6507  df-ov 7372  df-oprab 7373  df-mpo 7374  df-map 8778  df-laut 39956  df-ldil 40071  df-ltrn 40072
This theorem is referenced by:  ltrncom  40705
  Copyright terms: Public domain W3C validator