Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ltrncom Structured version   Visualization version   GIF version

Theorem ltrncom 40739
Description: Composition is commutative for translations. Part of proof of Lemma G of [Crawley] p. 116. (Contributed by NM, 5-Jun-2013.)
Hypotheses
Ref Expression
ltrncom.h 𝐻 = (LHyp‘𝐾)
ltrncom.t 𝑇 = ((LTrn‘𝐾)‘𝑊)
Assertion
Ref Expression
ltrncom (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝐺𝑇) → (𝐹𝐺) = (𝐺𝐹))

Proof of Theorem ltrncom
StepHypRef Expression
1 simpl1 1192 . . 3 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝐺𝑇) ∧ 𝐹 = ( I ↾ (Base‘𝐾))) → (𝐾 ∈ HL ∧ 𝑊𝐻))
2 simpl2 1193 . . 3 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝐺𝑇) ∧ 𝐹 = ( I ↾ (Base‘𝐾))) → 𝐹𝑇)
3 simpl3 1194 . . 3 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝐺𝑇) ∧ 𝐹 = ( I ↾ (Base‘𝐾))) → 𝐺𝑇)
4 simpr 484 . . 3 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝐺𝑇) ∧ 𝐹 = ( I ↾ (Base‘𝐾))) → 𝐹 = ( I ↾ (Base‘𝐾)))
5 eqid 2730 . . . 4 (Base‘𝐾) = (Base‘𝐾)
6 ltrncom.h . . . 4 𝐻 = (LHyp‘𝐾)
7 ltrncom.t . . . 4 𝑇 = ((LTrn‘𝐾)‘𝑊)
85, 6, 7cdlemg47a 40735 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝐺𝑇) ∧ 𝐹 = ( I ↾ (Base‘𝐾))) → (𝐹𝐺) = (𝐺𝐹))
91, 2, 3, 4, 8syl121anc 1377 . 2 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝐺𝑇) ∧ 𝐹 = ( I ↾ (Base‘𝐾))) → (𝐹𝐺) = (𝐺𝐹))
10 simpll1 1213 . . . 4 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝐺𝑇) ∧ 𝐹 ≠ ( I ↾ (Base‘𝐾))) ∧ (((trL‘𝐾)‘𝑊)‘𝐹) = (((trL‘𝐾)‘𝑊)‘𝐺)) → (𝐾 ∈ HL ∧ 𝑊𝐻))
11 simpll2 1214 . . . 4 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝐺𝑇) ∧ 𝐹 ≠ ( I ↾ (Base‘𝐾))) ∧ (((trL‘𝐾)‘𝑊)‘𝐹) = (((trL‘𝐾)‘𝑊)‘𝐺)) → 𝐹𝑇)
12 simpll3 1215 . . . 4 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝐺𝑇) ∧ 𝐹 ≠ ( I ↾ (Base‘𝐾))) ∧ (((trL‘𝐾)‘𝑊)‘𝐹) = (((trL‘𝐾)‘𝑊)‘𝐺)) → 𝐺𝑇)
13 simplr 768 . . . 4 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝐺𝑇) ∧ 𝐹 ≠ ( I ↾ (Base‘𝐾))) ∧ (((trL‘𝐾)‘𝑊)‘𝐹) = (((trL‘𝐾)‘𝑊)‘𝐺)) → 𝐹 ≠ ( I ↾ (Base‘𝐾)))
14 simpr 484 . . . 4 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝐺𝑇) ∧ 𝐹 ≠ ( I ↾ (Base‘𝐾))) ∧ (((trL‘𝐾)‘𝑊)‘𝐹) = (((trL‘𝐾)‘𝑊)‘𝐺)) → (((trL‘𝐾)‘𝑊)‘𝐹) = (((trL‘𝐾)‘𝑊)‘𝐺))
15 eqid 2730 . . . . 5 ((trL‘𝐾)‘𝑊) = ((trL‘𝐾)‘𝑊)
165, 6, 7, 15cdlemg48 40738 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝐺𝑇) ∧ (𝐹 ≠ ( I ↾ (Base‘𝐾)) ∧ (((trL‘𝐾)‘𝑊)‘𝐹) = (((trL‘𝐾)‘𝑊)‘𝐺))) → (𝐹𝐺) = (𝐺𝐹))
1710, 11, 12, 13, 14, 16syl122anc 1381 . . 3 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝐺𝑇) ∧ 𝐹 ≠ ( I ↾ (Base‘𝐾))) ∧ (((trL‘𝐾)‘𝑊)‘𝐹) = (((trL‘𝐾)‘𝑊)‘𝐺)) → (𝐹𝐺) = (𝐺𝐹))
18 simpll1 1213 . . . 4 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝐺𝑇) ∧ 𝐹 ≠ ( I ↾ (Base‘𝐾))) ∧ (((trL‘𝐾)‘𝑊)‘𝐹) ≠ (((trL‘𝐾)‘𝑊)‘𝐺)) → (𝐾 ∈ HL ∧ 𝑊𝐻))
19 simpll2 1214 . . . 4 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝐺𝑇) ∧ 𝐹 ≠ ( I ↾ (Base‘𝐾))) ∧ (((trL‘𝐾)‘𝑊)‘𝐹) ≠ (((trL‘𝐾)‘𝑊)‘𝐺)) → 𝐹𝑇)
20 simpll3 1215 . . . 4 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝐺𝑇) ∧ 𝐹 ≠ ( I ↾ (Base‘𝐾))) ∧ (((trL‘𝐾)‘𝑊)‘𝐹) ≠ (((trL‘𝐾)‘𝑊)‘𝐺)) → 𝐺𝑇)
21 simpr 484 . . . 4 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝐺𝑇) ∧ 𝐹 ≠ ( I ↾ (Base‘𝐾))) ∧ (((trL‘𝐾)‘𝑊)‘𝐹) ≠ (((trL‘𝐾)‘𝑊)‘𝐺)) → (((trL‘𝐾)‘𝑊)‘𝐹) ≠ (((trL‘𝐾)‘𝑊)‘𝐺))
226, 7, 15cdlemg44 40734 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝐺𝑇) ∧ (((trL‘𝐾)‘𝑊)‘𝐹) ≠ (((trL‘𝐾)‘𝑊)‘𝐺)) → (𝐹𝐺) = (𝐺𝐹))
2318, 19, 20, 21, 22syl121anc 1377 . . 3 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝐺𝑇) ∧ 𝐹 ≠ ( I ↾ (Base‘𝐾))) ∧ (((trL‘𝐾)‘𝑊)‘𝐹) ≠ (((trL‘𝐾)‘𝑊)‘𝐺)) → (𝐹𝐺) = (𝐺𝐹))
2417, 23pm2.61dane 3013 . 2 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝐺𝑇) ∧ 𝐹 ≠ ( I ↾ (Base‘𝐾))) → (𝐹𝐺) = (𝐺𝐹))
259, 24pm2.61dane 3013 1 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝐺𝑇) → (𝐹𝐺) = (𝐺𝐹))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086   = wceq 1540  wcel 2109  wne 2926   I cid 5535  cres 5643  ccom 5645  cfv 6514  Basecbs 17186  HLchlt 39350  LHypclh 39985  LTrncltrn 40102  trLctrl 40159
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-rep 5237  ax-sep 5254  ax-nul 5264  ax-pow 5323  ax-pr 5390  ax-un 7714  ax-riotaBAD 38953
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-ral 3046  df-rex 3055  df-rmo 3356  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3757  df-csb 3866  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-op 4599  df-uni 4875  df-iun 4960  df-iin 4961  df-br 5111  df-opab 5173  df-mpt 5192  df-id 5536  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-f1 6519  df-fo 6520  df-f1o 6521  df-fv 6522  df-riota 7347  df-ov 7393  df-oprab 7394  df-mpo 7395  df-1st 7971  df-2nd 7972  df-undef 8255  df-map 8804  df-proset 18262  df-poset 18281  df-plt 18296  df-lub 18312  df-glb 18313  df-join 18314  df-meet 18315  df-p0 18391  df-p1 18392  df-lat 18398  df-clat 18465  df-oposet 39176  df-ol 39178  df-oml 39179  df-covers 39266  df-ats 39267  df-atl 39298  df-cvlat 39322  df-hlat 39351  df-llines 39499  df-lplanes 39500  df-lvols 39501  df-lines 39502  df-psubsp 39504  df-pmap 39505  df-padd 39797  df-lhyp 39989  df-laut 39990  df-ldil 40105  df-ltrn 40106  df-trl 40160
This theorem is referenced by:  ltrnco4  40740  trljco2  40742  tgrpabl  40752  tendoplcom  40783  tendoicl  40797  cdlemk3  40834  cdlemk12  40851  cdlemk12u  40873  cdlemk46  40949  cdlemk49  40952  dvhvaddcomN  41097  cdlemn4  41199  cdlemn8  41205  dihopelvalcpre  41249
  Copyright terms: Public domain W3C validator