Proof of Theorem ltrncom
| Step | Hyp | Ref
| Expression |
| 1 | | simpl1 1192 |
. . 3
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇) ∧ 𝐹 = ( I ↾ (Base‘𝐾))) → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) |
| 2 | | simpl2 1193 |
. . 3
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇) ∧ 𝐹 = ( I ↾ (Base‘𝐾))) → 𝐹 ∈ 𝑇) |
| 3 | | simpl3 1194 |
. . 3
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇) ∧ 𝐹 = ( I ↾ (Base‘𝐾))) → 𝐺 ∈ 𝑇) |
| 4 | | simpr 484 |
. . 3
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇) ∧ 𝐹 = ( I ↾ (Base‘𝐾))) → 𝐹 = ( I ↾ (Base‘𝐾))) |
| 5 | | eqid 2737 |
. . . 4
⊢
(Base‘𝐾) =
(Base‘𝐾) |
| 6 | | ltrncom.h |
. . . 4
⊢ 𝐻 = (LHyp‘𝐾) |
| 7 | | ltrncom.t |
. . . 4
⊢ 𝑇 = ((LTrn‘𝐾)‘𝑊) |
| 8 | 5, 6, 7 | cdlemg47a 40736 |
. . 3
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇) ∧ 𝐹 = ( I ↾ (Base‘𝐾))) → (𝐹 ∘ 𝐺) = (𝐺 ∘ 𝐹)) |
| 9 | 1, 2, 3, 4, 8 | syl121anc 1377 |
. 2
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇) ∧ 𝐹 = ( I ↾ (Base‘𝐾))) → (𝐹 ∘ 𝐺) = (𝐺 ∘ 𝐹)) |
| 10 | | simpll1 1213 |
. . . 4
⊢
(((((𝐾 ∈ HL
∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇) ∧ 𝐹 ≠ ( I ↾ (Base‘𝐾))) ∧ (((trL‘𝐾)‘𝑊)‘𝐹) = (((trL‘𝐾)‘𝑊)‘𝐺)) → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) |
| 11 | | simpll2 1214 |
. . . 4
⊢
(((((𝐾 ∈ HL
∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇) ∧ 𝐹 ≠ ( I ↾ (Base‘𝐾))) ∧ (((trL‘𝐾)‘𝑊)‘𝐹) = (((trL‘𝐾)‘𝑊)‘𝐺)) → 𝐹 ∈ 𝑇) |
| 12 | | simpll3 1215 |
. . . 4
⊢
(((((𝐾 ∈ HL
∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇) ∧ 𝐹 ≠ ( I ↾ (Base‘𝐾))) ∧ (((trL‘𝐾)‘𝑊)‘𝐹) = (((trL‘𝐾)‘𝑊)‘𝐺)) → 𝐺 ∈ 𝑇) |
| 13 | | simplr 769 |
. . . 4
⊢
(((((𝐾 ∈ HL
∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇) ∧ 𝐹 ≠ ( I ↾ (Base‘𝐾))) ∧ (((trL‘𝐾)‘𝑊)‘𝐹) = (((trL‘𝐾)‘𝑊)‘𝐺)) → 𝐹 ≠ ( I ↾ (Base‘𝐾))) |
| 14 | | simpr 484 |
. . . 4
⊢
(((((𝐾 ∈ HL
∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇) ∧ 𝐹 ≠ ( I ↾ (Base‘𝐾))) ∧ (((trL‘𝐾)‘𝑊)‘𝐹) = (((trL‘𝐾)‘𝑊)‘𝐺)) → (((trL‘𝐾)‘𝑊)‘𝐹) = (((trL‘𝐾)‘𝑊)‘𝐺)) |
| 15 | | eqid 2737 |
. . . . 5
⊢
((trL‘𝐾)‘𝑊) = ((trL‘𝐾)‘𝑊) |
| 16 | 5, 6, 7, 15 | cdlemg48 40739 |
. . . 4
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇) ∧ (𝐹 ≠ ( I ↾ (Base‘𝐾)) ∧ (((trL‘𝐾)‘𝑊)‘𝐹) = (((trL‘𝐾)‘𝑊)‘𝐺))) → (𝐹 ∘ 𝐺) = (𝐺 ∘ 𝐹)) |
| 17 | 10, 11, 12, 13, 14, 16 | syl122anc 1381 |
. . 3
⊢
(((((𝐾 ∈ HL
∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇) ∧ 𝐹 ≠ ( I ↾ (Base‘𝐾))) ∧ (((trL‘𝐾)‘𝑊)‘𝐹) = (((trL‘𝐾)‘𝑊)‘𝐺)) → (𝐹 ∘ 𝐺) = (𝐺 ∘ 𝐹)) |
| 18 | | simpll1 1213 |
. . . 4
⊢
(((((𝐾 ∈ HL
∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇) ∧ 𝐹 ≠ ( I ↾ (Base‘𝐾))) ∧ (((trL‘𝐾)‘𝑊)‘𝐹) ≠ (((trL‘𝐾)‘𝑊)‘𝐺)) → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) |
| 19 | | simpll2 1214 |
. . . 4
⊢
(((((𝐾 ∈ HL
∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇) ∧ 𝐹 ≠ ( I ↾ (Base‘𝐾))) ∧ (((trL‘𝐾)‘𝑊)‘𝐹) ≠ (((trL‘𝐾)‘𝑊)‘𝐺)) → 𝐹 ∈ 𝑇) |
| 20 | | simpll3 1215 |
. . . 4
⊢
(((((𝐾 ∈ HL
∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇) ∧ 𝐹 ≠ ( I ↾ (Base‘𝐾))) ∧ (((trL‘𝐾)‘𝑊)‘𝐹) ≠ (((trL‘𝐾)‘𝑊)‘𝐺)) → 𝐺 ∈ 𝑇) |
| 21 | | simpr 484 |
. . . 4
⊢
(((((𝐾 ∈ HL
∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇) ∧ 𝐹 ≠ ( I ↾ (Base‘𝐾))) ∧ (((trL‘𝐾)‘𝑊)‘𝐹) ≠ (((trL‘𝐾)‘𝑊)‘𝐺)) → (((trL‘𝐾)‘𝑊)‘𝐹) ≠ (((trL‘𝐾)‘𝑊)‘𝐺)) |
| 22 | 6, 7, 15 | cdlemg44 40735 |
. . . 4
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇) ∧ (((trL‘𝐾)‘𝑊)‘𝐹) ≠ (((trL‘𝐾)‘𝑊)‘𝐺)) → (𝐹 ∘ 𝐺) = (𝐺 ∘ 𝐹)) |
| 23 | 18, 19, 20, 21, 22 | syl121anc 1377 |
. . 3
⊢
(((((𝐾 ∈ HL
∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇) ∧ 𝐹 ≠ ( I ↾ (Base‘𝐾))) ∧ (((trL‘𝐾)‘𝑊)‘𝐹) ≠ (((trL‘𝐾)‘𝑊)‘𝐺)) → (𝐹 ∘ 𝐺) = (𝐺 ∘ 𝐹)) |
| 24 | 17, 23 | pm2.61dane 3029 |
. 2
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇) ∧ 𝐹 ≠ ( I ↾ (Base‘𝐾))) → (𝐹 ∘ 𝐺) = (𝐺 ∘ 𝐹)) |
| 25 | 9, 24 | pm2.61dane 3029 |
1
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇) → (𝐹 ∘ 𝐺) = (𝐺 ∘ 𝐹)) |