Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ltrncom Structured version   Visualization version   GIF version

Theorem ltrncom 40785
Description: Composition is commutative for translations. Part of proof of Lemma G of [Crawley] p. 116. (Contributed by NM, 5-Jun-2013.)
Hypotheses
Ref Expression
ltrncom.h 𝐻 = (LHyp‘𝐾)
ltrncom.t 𝑇 = ((LTrn‘𝐾)‘𝑊)
Assertion
Ref Expression
ltrncom (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝐺𝑇) → (𝐹𝐺) = (𝐺𝐹))

Proof of Theorem ltrncom
StepHypRef Expression
1 simpl1 1192 . . 3 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝐺𝑇) ∧ 𝐹 = ( I ↾ (Base‘𝐾))) → (𝐾 ∈ HL ∧ 𝑊𝐻))
2 simpl2 1193 . . 3 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝐺𝑇) ∧ 𝐹 = ( I ↾ (Base‘𝐾))) → 𝐹𝑇)
3 simpl3 1194 . . 3 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝐺𝑇) ∧ 𝐹 = ( I ↾ (Base‘𝐾))) → 𝐺𝑇)
4 simpr 484 . . 3 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝐺𝑇) ∧ 𝐹 = ( I ↾ (Base‘𝐾))) → 𝐹 = ( I ↾ (Base‘𝐾)))
5 eqid 2731 . . . 4 (Base‘𝐾) = (Base‘𝐾)
6 ltrncom.h . . . 4 𝐻 = (LHyp‘𝐾)
7 ltrncom.t . . . 4 𝑇 = ((LTrn‘𝐾)‘𝑊)
85, 6, 7cdlemg47a 40781 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝐺𝑇) ∧ 𝐹 = ( I ↾ (Base‘𝐾))) → (𝐹𝐺) = (𝐺𝐹))
91, 2, 3, 4, 8syl121anc 1377 . 2 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝐺𝑇) ∧ 𝐹 = ( I ↾ (Base‘𝐾))) → (𝐹𝐺) = (𝐺𝐹))
10 simpll1 1213 . . . 4 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝐺𝑇) ∧ 𝐹 ≠ ( I ↾ (Base‘𝐾))) ∧ (((trL‘𝐾)‘𝑊)‘𝐹) = (((trL‘𝐾)‘𝑊)‘𝐺)) → (𝐾 ∈ HL ∧ 𝑊𝐻))
11 simpll2 1214 . . . 4 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝐺𝑇) ∧ 𝐹 ≠ ( I ↾ (Base‘𝐾))) ∧ (((trL‘𝐾)‘𝑊)‘𝐹) = (((trL‘𝐾)‘𝑊)‘𝐺)) → 𝐹𝑇)
12 simpll3 1215 . . . 4 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝐺𝑇) ∧ 𝐹 ≠ ( I ↾ (Base‘𝐾))) ∧ (((trL‘𝐾)‘𝑊)‘𝐹) = (((trL‘𝐾)‘𝑊)‘𝐺)) → 𝐺𝑇)
13 simplr 768 . . . 4 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝐺𝑇) ∧ 𝐹 ≠ ( I ↾ (Base‘𝐾))) ∧ (((trL‘𝐾)‘𝑊)‘𝐹) = (((trL‘𝐾)‘𝑊)‘𝐺)) → 𝐹 ≠ ( I ↾ (Base‘𝐾)))
14 simpr 484 . . . 4 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝐺𝑇) ∧ 𝐹 ≠ ( I ↾ (Base‘𝐾))) ∧ (((trL‘𝐾)‘𝑊)‘𝐹) = (((trL‘𝐾)‘𝑊)‘𝐺)) → (((trL‘𝐾)‘𝑊)‘𝐹) = (((trL‘𝐾)‘𝑊)‘𝐺))
15 eqid 2731 . . . . 5 ((trL‘𝐾)‘𝑊) = ((trL‘𝐾)‘𝑊)
165, 6, 7, 15cdlemg48 40784 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝐺𝑇) ∧ (𝐹 ≠ ( I ↾ (Base‘𝐾)) ∧ (((trL‘𝐾)‘𝑊)‘𝐹) = (((trL‘𝐾)‘𝑊)‘𝐺))) → (𝐹𝐺) = (𝐺𝐹))
1710, 11, 12, 13, 14, 16syl122anc 1381 . . 3 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝐺𝑇) ∧ 𝐹 ≠ ( I ↾ (Base‘𝐾))) ∧ (((trL‘𝐾)‘𝑊)‘𝐹) = (((trL‘𝐾)‘𝑊)‘𝐺)) → (𝐹𝐺) = (𝐺𝐹))
18 simpll1 1213 . . . 4 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝐺𝑇) ∧ 𝐹 ≠ ( I ↾ (Base‘𝐾))) ∧ (((trL‘𝐾)‘𝑊)‘𝐹) ≠ (((trL‘𝐾)‘𝑊)‘𝐺)) → (𝐾 ∈ HL ∧ 𝑊𝐻))
19 simpll2 1214 . . . 4 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝐺𝑇) ∧ 𝐹 ≠ ( I ↾ (Base‘𝐾))) ∧ (((trL‘𝐾)‘𝑊)‘𝐹) ≠ (((trL‘𝐾)‘𝑊)‘𝐺)) → 𝐹𝑇)
20 simpll3 1215 . . . 4 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝐺𝑇) ∧ 𝐹 ≠ ( I ↾ (Base‘𝐾))) ∧ (((trL‘𝐾)‘𝑊)‘𝐹) ≠ (((trL‘𝐾)‘𝑊)‘𝐺)) → 𝐺𝑇)
21 simpr 484 . . . 4 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝐺𝑇) ∧ 𝐹 ≠ ( I ↾ (Base‘𝐾))) ∧ (((trL‘𝐾)‘𝑊)‘𝐹) ≠ (((trL‘𝐾)‘𝑊)‘𝐺)) → (((trL‘𝐾)‘𝑊)‘𝐹) ≠ (((trL‘𝐾)‘𝑊)‘𝐺))
226, 7, 15cdlemg44 40780 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝐺𝑇) ∧ (((trL‘𝐾)‘𝑊)‘𝐹) ≠ (((trL‘𝐾)‘𝑊)‘𝐺)) → (𝐹𝐺) = (𝐺𝐹))
2318, 19, 20, 21, 22syl121anc 1377 . . 3 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝐺𝑇) ∧ 𝐹 ≠ ( I ↾ (Base‘𝐾))) ∧ (((trL‘𝐾)‘𝑊)‘𝐹) ≠ (((trL‘𝐾)‘𝑊)‘𝐺)) → (𝐹𝐺) = (𝐺𝐹))
2417, 23pm2.61dane 3015 . 2 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝐺𝑇) ∧ 𝐹 ≠ ( I ↾ (Base‘𝐾))) → (𝐹𝐺) = (𝐺𝐹))
259, 24pm2.61dane 3015 1 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝐺𝑇) → (𝐹𝐺) = (𝐺𝐹))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086   = wceq 1541  wcel 2111  wne 2928   I cid 5508  cres 5616  ccom 5618  cfv 6481  Basecbs 17120  HLchlt 39397  LHypclh 40031  LTrncltrn 40148  trLctrl 40205
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-rep 5215  ax-sep 5232  ax-nul 5242  ax-pow 5301  ax-pr 5368  ax-un 7668  ax-riotaBAD 39000
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-ral 3048  df-rex 3057  df-rmo 3346  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3737  df-csb 3846  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-nul 4281  df-if 4473  df-pw 4549  df-sn 4574  df-pr 4576  df-op 4580  df-uni 4857  df-iun 4941  df-iin 4942  df-br 5090  df-opab 5152  df-mpt 5171  df-id 5509  df-xp 5620  df-rel 5621  df-cnv 5622  df-co 5623  df-dm 5624  df-rn 5625  df-res 5626  df-ima 5627  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489  df-riota 7303  df-ov 7349  df-oprab 7350  df-mpo 7351  df-1st 7921  df-2nd 7922  df-undef 8203  df-map 8752  df-proset 18200  df-poset 18219  df-plt 18234  df-lub 18250  df-glb 18251  df-join 18252  df-meet 18253  df-p0 18329  df-p1 18330  df-lat 18338  df-clat 18405  df-oposet 39223  df-ol 39225  df-oml 39226  df-covers 39313  df-ats 39314  df-atl 39345  df-cvlat 39369  df-hlat 39398  df-llines 39545  df-lplanes 39546  df-lvols 39547  df-lines 39548  df-psubsp 39550  df-pmap 39551  df-padd 39843  df-lhyp 40035  df-laut 40036  df-ldil 40151  df-ltrn 40152  df-trl 40206
This theorem is referenced by:  ltrnco4  40786  trljco2  40788  tgrpabl  40798  tendoplcom  40829  tendoicl  40843  cdlemk3  40880  cdlemk12  40897  cdlemk12u  40919  cdlemk46  40995  cdlemk49  40998  dvhvaddcomN  41143  cdlemn4  41245  cdlemn8  41251  dihopelvalcpre  41295
  Copyright terms: Public domain W3C validator