Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ltrncom Structured version   Visualization version   GIF version

Theorem ltrncom 38034
Description: Composition is commutative for translations. Part of proof of Lemma G of [Crawley] p. 116. (Contributed by NM, 5-Jun-2013.)
Hypotheses
Ref Expression
ltrncom.h 𝐻 = (LHyp‘𝐾)
ltrncom.t 𝑇 = ((LTrn‘𝐾)‘𝑊)
Assertion
Ref Expression
ltrncom (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝐺𝑇) → (𝐹𝐺) = (𝐺𝐹))

Proof of Theorem ltrncom
StepHypRef Expression
1 simpl1 1188 . . 3 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝐺𝑇) ∧ 𝐹 = ( I ↾ (Base‘𝐾))) → (𝐾 ∈ HL ∧ 𝑊𝐻))
2 simpl2 1189 . . 3 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝐺𝑇) ∧ 𝐹 = ( I ↾ (Base‘𝐾))) → 𝐹𝑇)
3 simpl3 1190 . . 3 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝐺𝑇) ∧ 𝐹 = ( I ↾ (Base‘𝐾))) → 𝐺𝑇)
4 simpr 488 . . 3 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝐺𝑇) ∧ 𝐹 = ( I ↾ (Base‘𝐾))) → 𝐹 = ( I ↾ (Base‘𝐾)))
5 eqid 2798 . . . 4 (Base‘𝐾) = (Base‘𝐾)
6 ltrncom.h . . . 4 𝐻 = (LHyp‘𝐾)
7 ltrncom.t . . . 4 𝑇 = ((LTrn‘𝐾)‘𝑊)
85, 6, 7cdlemg47a 38030 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝐺𝑇) ∧ 𝐹 = ( I ↾ (Base‘𝐾))) → (𝐹𝐺) = (𝐺𝐹))
91, 2, 3, 4, 8syl121anc 1372 . 2 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝐺𝑇) ∧ 𝐹 = ( I ↾ (Base‘𝐾))) → (𝐹𝐺) = (𝐺𝐹))
10 simpll1 1209 . . . 4 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝐺𝑇) ∧ 𝐹 ≠ ( I ↾ (Base‘𝐾))) ∧ (((trL‘𝐾)‘𝑊)‘𝐹) = (((trL‘𝐾)‘𝑊)‘𝐺)) → (𝐾 ∈ HL ∧ 𝑊𝐻))
11 simpll2 1210 . . . 4 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝐺𝑇) ∧ 𝐹 ≠ ( I ↾ (Base‘𝐾))) ∧ (((trL‘𝐾)‘𝑊)‘𝐹) = (((trL‘𝐾)‘𝑊)‘𝐺)) → 𝐹𝑇)
12 simpll3 1211 . . . 4 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝐺𝑇) ∧ 𝐹 ≠ ( I ↾ (Base‘𝐾))) ∧ (((trL‘𝐾)‘𝑊)‘𝐹) = (((trL‘𝐾)‘𝑊)‘𝐺)) → 𝐺𝑇)
13 simplr 768 . . . 4 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝐺𝑇) ∧ 𝐹 ≠ ( I ↾ (Base‘𝐾))) ∧ (((trL‘𝐾)‘𝑊)‘𝐹) = (((trL‘𝐾)‘𝑊)‘𝐺)) → 𝐹 ≠ ( I ↾ (Base‘𝐾)))
14 simpr 488 . . . 4 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝐺𝑇) ∧ 𝐹 ≠ ( I ↾ (Base‘𝐾))) ∧ (((trL‘𝐾)‘𝑊)‘𝐹) = (((trL‘𝐾)‘𝑊)‘𝐺)) → (((trL‘𝐾)‘𝑊)‘𝐹) = (((trL‘𝐾)‘𝑊)‘𝐺))
15 eqid 2798 . . . . 5 ((trL‘𝐾)‘𝑊) = ((trL‘𝐾)‘𝑊)
165, 6, 7, 15cdlemg48 38033 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝐺𝑇) ∧ (𝐹 ≠ ( I ↾ (Base‘𝐾)) ∧ (((trL‘𝐾)‘𝑊)‘𝐹) = (((trL‘𝐾)‘𝑊)‘𝐺))) → (𝐹𝐺) = (𝐺𝐹))
1710, 11, 12, 13, 14, 16syl122anc 1376 . . 3 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝐺𝑇) ∧ 𝐹 ≠ ( I ↾ (Base‘𝐾))) ∧ (((trL‘𝐾)‘𝑊)‘𝐹) = (((trL‘𝐾)‘𝑊)‘𝐺)) → (𝐹𝐺) = (𝐺𝐹))
18 simpll1 1209 . . . 4 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝐺𝑇) ∧ 𝐹 ≠ ( I ↾ (Base‘𝐾))) ∧ (((trL‘𝐾)‘𝑊)‘𝐹) ≠ (((trL‘𝐾)‘𝑊)‘𝐺)) → (𝐾 ∈ HL ∧ 𝑊𝐻))
19 simpll2 1210 . . . 4 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝐺𝑇) ∧ 𝐹 ≠ ( I ↾ (Base‘𝐾))) ∧ (((trL‘𝐾)‘𝑊)‘𝐹) ≠ (((trL‘𝐾)‘𝑊)‘𝐺)) → 𝐹𝑇)
20 simpll3 1211 . . . 4 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝐺𝑇) ∧ 𝐹 ≠ ( I ↾ (Base‘𝐾))) ∧ (((trL‘𝐾)‘𝑊)‘𝐹) ≠ (((trL‘𝐾)‘𝑊)‘𝐺)) → 𝐺𝑇)
21 simpr 488 . . . 4 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝐺𝑇) ∧ 𝐹 ≠ ( I ↾ (Base‘𝐾))) ∧ (((trL‘𝐾)‘𝑊)‘𝐹) ≠ (((trL‘𝐾)‘𝑊)‘𝐺)) → (((trL‘𝐾)‘𝑊)‘𝐹) ≠ (((trL‘𝐾)‘𝑊)‘𝐺))
226, 7, 15cdlemg44 38029 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝐺𝑇) ∧ (((trL‘𝐾)‘𝑊)‘𝐹) ≠ (((trL‘𝐾)‘𝑊)‘𝐺)) → (𝐹𝐺) = (𝐺𝐹))
2318, 19, 20, 21, 22syl121anc 1372 . . 3 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝐺𝑇) ∧ 𝐹 ≠ ( I ↾ (Base‘𝐾))) ∧ (((trL‘𝐾)‘𝑊)‘𝐹) ≠ (((trL‘𝐾)‘𝑊)‘𝐺)) → (𝐹𝐺) = (𝐺𝐹))
2417, 23pm2.61dane 3074 . 2 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝐺𝑇) ∧ 𝐹 ≠ ( I ↾ (Base‘𝐾))) → (𝐹𝐺) = (𝐺𝐹))
259, 24pm2.61dane 3074 1 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝐺𝑇) → (𝐹𝐺) = (𝐺𝐹))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 399  w3a 1084   = wceq 1538  wcel 2111  wne 2987   I cid 5424  cres 5521  ccom 5523  cfv 6324  Basecbs 16475  HLchlt 36646  LHypclh 37280  LTrncltrn 37397  trLctrl 37454
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2770  ax-rep 5154  ax-sep 5167  ax-nul 5174  ax-pow 5231  ax-pr 5295  ax-un 7441  ax-riotaBAD 36249
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2598  df-eu 2629  df-clab 2777  df-cleq 2791  df-clel 2870  df-nfc 2938  df-ne 2988  df-ral 3111  df-rex 3112  df-reu 3113  df-rmo 3114  df-rab 3115  df-v 3443  df-sbc 3721  df-csb 3829  df-dif 3884  df-un 3886  df-in 3888  df-ss 3898  df-nul 4244  df-if 4426  df-pw 4499  df-sn 4526  df-pr 4528  df-op 4532  df-uni 4801  df-iun 4883  df-iin 4884  df-br 5031  df-opab 5093  df-mpt 5111  df-id 5425  df-xp 5525  df-rel 5526  df-cnv 5527  df-co 5528  df-dm 5529  df-rn 5530  df-res 5531  df-ima 5532  df-iota 6283  df-fun 6326  df-fn 6327  df-f 6328  df-f1 6329  df-fo 6330  df-f1o 6331  df-fv 6332  df-riota 7093  df-ov 7138  df-oprab 7139  df-mpo 7140  df-1st 7671  df-2nd 7672  df-undef 7922  df-map 8391  df-proset 17530  df-poset 17548  df-plt 17560  df-lub 17576  df-glb 17577  df-join 17578  df-meet 17579  df-p0 17641  df-p1 17642  df-lat 17648  df-clat 17710  df-oposet 36472  df-ol 36474  df-oml 36475  df-covers 36562  df-ats 36563  df-atl 36594  df-cvlat 36618  df-hlat 36647  df-llines 36794  df-lplanes 36795  df-lvols 36796  df-lines 36797  df-psubsp 36799  df-pmap 36800  df-padd 37092  df-lhyp 37284  df-laut 37285  df-ldil 37400  df-ltrn 37401  df-trl 37455
This theorem is referenced by:  ltrnco4  38035  trljco2  38037  tgrpabl  38047  tendoplcom  38078  tendoicl  38092  cdlemk3  38129  cdlemk12  38146  cdlemk12u  38168  cdlemk46  38244  cdlemk49  38247  dvhvaddcomN  38392  cdlemn4  38494  cdlemn8  38500  dihopelvalcpre  38544
  Copyright terms: Public domain W3C validator