Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ltrncom Structured version   Visualization version   GIF version

Theorem ltrncom 39547
Description: Composition is commutative for translations. Part of proof of Lemma G of [Crawley] p. 116. (Contributed by NM, 5-Jun-2013.)
Hypotheses
Ref Expression
ltrncom.h 𝐻 = (LHyp‘𝐾)
ltrncom.t 𝑇 = ((LTrn‘𝐾)‘𝑊)
Assertion
Ref Expression
ltrncom (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝐺𝑇) → (𝐹𝐺) = (𝐺𝐹))

Proof of Theorem ltrncom
StepHypRef Expression
1 simpl1 1192 . . 3 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝐺𝑇) ∧ 𝐹 = ( I ↾ (Base‘𝐾))) → (𝐾 ∈ HL ∧ 𝑊𝐻))
2 simpl2 1193 . . 3 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝐺𝑇) ∧ 𝐹 = ( I ↾ (Base‘𝐾))) → 𝐹𝑇)
3 simpl3 1194 . . 3 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝐺𝑇) ∧ 𝐹 = ( I ↾ (Base‘𝐾))) → 𝐺𝑇)
4 simpr 486 . . 3 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝐺𝑇) ∧ 𝐹 = ( I ↾ (Base‘𝐾))) → 𝐹 = ( I ↾ (Base‘𝐾)))
5 eqid 2733 . . . 4 (Base‘𝐾) = (Base‘𝐾)
6 ltrncom.h . . . 4 𝐻 = (LHyp‘𝐾)
7 ltrncom.t . . . 4 𝑇 = ((LTrn‘𝐾)‘𝑊)
85, 6, 7cdlemg47a 39543 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝐺𝑇) ∧ 𝐹 = ( I ↾ (Base‘𝐾))) → (𝐹𝐺) = (𝐺𝐹))
91, 2, 3, 4, 8syl121anc 1376 . 2 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝐺𝑇) ∧ 𝐹 = ( I ↾ (Base‘𝐾))) → (𝐹𝐺) = (𝐺𝐹))
10 simpll1 1213 . . . 4 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝐺𝑇) ∧ 𝐹 ≠ ( I ↾ (Base‘𝐾))) ∧ (((trL‘𝐾)‘𝑊)‘𝐹) = (((trL‘𝐾)‘𝑊)‘𝐺)) → (𝐾 ∈ HL ∧ 𝑊𝐻))
11 simpll2 1214 . . . 4 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝐺𝑇) ∧ 𝐹 ≠ ( I ↾ (Base‘𝐾))) ∧ (((trL‘𝐾)‘𝑊)‘𝐹) = (((trL‘𝐾)‘𝑊)‘𝐺)) → 𝐹𝑇)
12 simpll3 1215 . . . 4 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝐺𝑇) ∧ 𝐹 ≠ ( I ↾ (Base‘𝐾))) ∧ (((trL‘𝐾)‘𝑊)‘𝐹) = (((trL‘𝐾)‘𝑊)‘𝐺)) → 𝐺𝑇)
13 simplr 768 . . . 4 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝐺𝑇) ∧ 𝐹 ≠ ( I ↾ (Base‘𝐾))) ∧ (((trL‘𝐾)‘𝑊)‘𝐹) = (((trL‘𝐾)‘𝑊)‘𝐺)) → 𝐹 ≠ ( I ↾ (Base‘𝐾)))
14 simpr 486 . . . 4 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝐺𝑇) ∧ 𝐹 ≠ ( I ↾ (Base‘𝐾))) ∧ (((trL‘𝐾)‘𝑊)‘𝐹) = (((trL‘𝐾)‘𝑊)‘𝐺)) → (((trL‘𝐾)‘𝑊)‘𝐹) = (((trL‘𝐾)‘𝑊)‘𝐺))
15 eqid 2733 . . . . 5 ((trL‘𝐾)‘𝑊) = ((trL‘𝐾)‘𝑊)
165, 6, 7, 15cdlemg48 39546 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝐺𝑇) ∧ (𝐹 ≠ ( I ↾ (Base‘𝐾)) ∧ (((trL‘𝐾)‘𝑊)‘𝐹) = (((trL‘𝐾)‘𝑊)‘𝐺))) → (𝐹𝐺) = (𝐺𝐹))
1710, 11, 12, 13, 14, 16syl122anc 1380 . . 3 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝐺𝑇) ∧ 𝐹 ≠ ( I ↾ (Base‘𝐾))) ∧ (((trL‘𝐾)‘𝑊)‘𝐹) = (((trL‘𝐾)‘𝑊)‘𝐺)) → (𝐹𝐺) = (𝐺𝐹))
18 simpll1 1213 . . . 4 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝐺𝑇) ∧ 𝐹 ≠ ( I ↾ (Base‘𝐾))) ∧ (((trL‘𝐾)‘𝑊)‘𝐹) ≠ (((trL‘𝐾)‘𝑊)‘𝐺)) → (𝐾 ∈ HL ∧ 𝑊𝐻))
19 simpll2 1214 . . . 4 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝐺𝑇) ∧ 𝐹 ≠ ( I ↾ (Base‘𝐾))) ∧ (((trL‘𝐾)‘𝑊)‘𝐹) ≠ (((trL‘𝐾)‘𝑊)‘𝐺)) → 𝐹𝑇)
20 simpll3 1215 . . . 4 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝐺𝑇) ∧ 𝐹 ≠ ( I ↾ (Base‘𝐾))) ∧ (((trL‘𝐾)‘𝑊)‘𝐹) ≠ (((trL‘𝐾)‘𝑊)‘𝐺)) → 𝐺𝑇)
21 simpr 486 . . . 4 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝐺𝑇) ∧ 𝐹 ≠ ( I ↾ (Base‘𝐾))) ∧ (((trL‘𝐾)‘𝑊)‘𝐹) ≠ (((trL‘𝐾)‘𝑊)‘𝐺)) → (((trL‘𝐾)‘𝑊)‘𝐹) ≠ (((trL‘𝐾)‘𝑊)‘𝐺))
226, 7, 15cdlemg44 39542 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝐺𝑇) ∧ (((trL‘𝐾)‘𝑊)‘𝐹) ≠ (((trL‘𝐾)‘𝑊)‘𝐺)) → (𝐹𝐺) = (𝐺𝐹))
2318, 19, 20, 21, 22syl121anc 1376 . . 3 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝐺𝑇) ∧ 𝐹 ≠ ( I ↾ (Base‘𝐾))) ∧ (((trL‘𝐾)‘𝑊)‘𝐹) ≠ (((trL‘𝐾)‘𝑊)‘𝐺)) → (𝐹𝐺) = (𝐺𝐹))
2417, 23pm2.61dane 3030 . 2 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝐺𝑇) ∧ 𝐹 ≠ ( I ↾ (Base‘𝐾))) → (𝐹𝐺) = (𝐺𝐹))
259, 24pm2.61dane 3030 1 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝐺𝑇) → (𝐹𝐺) = (𝐺𝐹))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 397  w3a 1088   = wceq 1542  wcel 2107  wne 2941   I cid 5572  cres 5677  ccom 5679  cfv 6540  Basecbs 17140  HLchlt 38158  LHypclh 38793  LTrncltrn 38910  trLctrl 38967
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2155  ax-12 2172  ax-ext 2704  ax-rep 5284  ax-sep 5298  ax-nul 5305  ax-pow 5362  ax-pr 5426  ax-un 7720  ax-riotaBAD 37761
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3or 1089  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-nf 1787  df-sb 2069  df-mo 2535  df-eu 2564  df-clab 2711  df-cleq 2725  df-clel 2811  df-nfc 2886  df-ne 2942  df-ral 3063  df-rex 3072  df-rmo 3377  df-reu 3378  df-rab 3434  df-v 3477  df-sbc 3777  df-csb 3893  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-nul 4322  df-if 4528  df-pw 4603  df-sn 4628  df-pr 4630  df-op 4634  df-uni 4908  df-iun 4998  df-iin 4999  df-br 5148  df-opab 5210  df-mpt 5231  df-id 5573  df-xp 5681  df-rel 5682  df-cnv 5683  df-co 5684  df-dm 5685  df-rn 5686  df-res 5687  df-ima 5688  df-iota 6492  df-fun 6542  df-fn 6543  df-f 6544  df-f1 6545  df-fo 6546  df-f1o 6547  df-fv 6548  df-riota 7360  df-ov 7407  df-oprab 7408  df-mpo 7409  df-1st 7970  df-2nd 7971  df-undef 8253  df-map 8818  df-proset 18244  df-poset 18262  df-plt 18279  df-lub 18295  df-glb 18296  df-join 18297  df-meet 18298  df-p0 18374  df-p1 18375  df-lat 18381  df-clat 18448  df-oposet 37984  df-ol 37986  df-oml 37987  df-covers 38074  df-ats 38075  df-atl 38106  df-cvlat 38130  df-hlat 38159  df-llines 38307  df-lplanes 38308  df-lvols 38309  df-lines 38310  df-psubsp 38312  df-pmap 38313  df-padd 38605  df-lhyp 38797  df-laut 38798  df-ldil 38913  df-ltrn 38914  df-trl 38968
This theorem is referenced by:  ltrnco4  39548  trljco2  39550  tgrpabl  39560  tendoplcom  39591  tendoicl  39605  cdlemk3  39642  cdlemk12  39659  cdlemk12u  39681  cdlemk46  39757  cdlemk49  39760  dvhvaddcomN  39905  cdlemn4  40007  cdlemn8  40013  dihopelvalcpre  40057
  Copyright terms: Public domain W3C validator