![]() |
Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > ltrn1o | Structured version Visualization version GIF version |
Description: A lattice translation is a one-to-one onto function. (Contributed by NM, 20-May-2012.) |
Ref | Expression |
---|---|
ltrn1o.b | ⊢ 𝐵 = (Base‘𝐾) |
ltrn1o.h | ⊢ 𝐻 = (LHyp‘𝐾) |
ltrn1o.t | ⊢ 𝑇 = ((LTrn‘𝐾)‘𝑊) |
Ref | Expression |
---|---|
ltrn1o | ⊢ (((𝐾 ∈ 𝑉 ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇) → 𝐹:𝐵–1-1-onto→𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simpll 766 | . 2 ⊢ (((𝐾 ∈ 𝑉 ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇) → 𝐾 ∈ 𝑉) | |
2 | ltrn1o.h | . . 3 ⊢ 𝐻 = (LHyp‘𝐾) | |
3 | eqid 2740 | . . 3 ⊢ (LAut‘𝐾) = (LAut‘𝐾) | |
4 | ltrn1o.t | . . 3 ⊢ 𝑇 = ((LTrn‘𝐾)‘𝑊) | |
5 | 2, 3, 4 | ltrnlaut 40080 | . 2 ⊢ (((𝐾 ∈ 𝑉 ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇) → 𝐹 ∈ (LAut‘𝐾)) |
6 | ltrn1o.b | . . 3 ⊢ 𝐵 = (Base‘𝐾) | |
7 | 6, 3 | laut1o 40042 | . 2 ⊢ ((𝐾 ∈ 𝑉 ∧ 𝐹 ∈ (LAut‘𝐾)) → 𝐹:𝐵–1-1-onto→𝐵) |
8 | 1, 5, 7 | syl2anc 583 | 1 ⊢ (((𝐾 ∈ 𝑉 ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇) → 𝐹:𝐵–1-1-onto→𝐵) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1537 ∈ wcel 2108 –1-1-onto→wf1o 6572 ‘cfv 6573 Basecbs 17258 LHypclh 39941 LAutclaut 39942 LTrncltrn 40058 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-rep 5303 ax-sep 5317 ax-nul 5324 ax-pow 5383 ax-pr 5447 ax-un 7770 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-ral 3068 df-rex 3077 df-reu 3389 df-rab 3444 df-v 3490 df-sbc 3805 df-csb 3922 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-nul 4353 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-iun 5017 df-br 5167 df-opab 5229 df-mpt 5250 df-id 5593 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-res 5712 df-ima 5713 df-iota 6525 df-fun 6575 df-fn 6576 df-f 6577 df-f1 6578 df-fo 6579 df-f1o 6580 df-fv 6581 df-ov 7451 df-oprab 7452 df-mpo 7453 df-map 8886 df-laut 39946 df-ldil 40061 df-ltrn 40062 |
This theorem is referenced by: ltrncnvnid 40084 ltrncoidN 40085 ltrnid 40092 ltrncnvatb 40095 ltrncnvel 40099 ltrncoval 40102 ltrncnv 40103 ltrneq2 40105 trlcnv 40122 ltrniotacnvval 40539 cdlemg17h 40625 trlcoabs2N 40679 trlcoat 40680 trlcone 40685 cdlemg47a 40691 cdlemg46 40692 cdlemg47 40693 trljco 40697 tgrpgrplem 40706 tendo0pl 40748 tendoipl 40754 cdlemi2 40776 cdlemk2 40789 cdlemk4 40791 cdlemk8 40795 cdlemkid2 40881 cdlemk45 40904 cdlemk53b 40913 cdlemk53 40914 cdlemk55a 40916 tendocnv 40978 dvhgrp 41064 dvhopN 41073 cdlemn3 41154 cdlemn8 41161 cdlemn9 41162 dihordlem7b 41172 dihopelvalcpre 41205 dihmeetlem1N 41247 dihglblem5apreN 41248 |
Copyright terms: Public domain | W3C validator |