![]() |
Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > ltrn1o | Structured version Visualization version GIF version |
Description: A lattice translation is a one-to-one onto function. (Contributed by NM, 20-May-2012.) |
Ref | Expression |
---|---|
ltrn1o.b | ⊢ 𝐵 = (Base‘𝐾) |
ltrn1o.h | ⊢ 𝐻 = (LHyp‘𝐾) |
ltrn1o.t | ⊢ 𝑇 = ((LTrn‘𝐾)‘𝑊) |
Ref | Expression |
---|---|
ltrn1o | ⊢ (((𝐾 ∈ 𝑉 ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇) → 𝐹:𝐵–1-1-onto→𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simpll 767 | . 2 ⊢ (((𝐾 ∈ 𝑉 ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇) → 𝐾 ∈ 𝑉) | |
2 | ltrn1o.h | . . 3 ⊢ 𝐻 = (LHyp‘𝐾) | |
3 | eqid 2734 | . . 3 ⊢ (LAut‘𝐾) = (LAut‘𝐾) | |
4 | ltrn1o.t | . . 3 ⊢ 𝑇 = ((LTrn‘𝐾)‘𝑊) | |
5 | 2, 3, 4 | ltrnlaut 40105 | . 2 ⊢ (((𝐾 ∈ 𝑉 ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇) → 𝐹 ∈ (LAut‘𝐾)) |
6 | ltrn1o.b | . . 3 ⊢ 𝐵 = (Base‘𝐾) | |
7 | 6, 3 | laut1o 40067 | . 2 ⊢ ((𝐾 ∈ 𝑉 ∧ 𝐹 ∈ (LAut‘𝐾)) → 𝐹:𝐵–1-1-onto→𝐵) |
8 | 1, 5, 7 | syl2anc 584 | 1 ⊢ (((𝐾 ∈ 𝑉 ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇) → 𝐹:𝐵–1-1-onto→𝐵) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1536 ∈ wcel 2105 –1-1-onto→wf1o 6561 ‘cfv 6562 Basecbs 17244 LHypclh 39966 LAutclaut 39967 LTrncltrn 40083 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1791 ax-4 1805 ax-5 1907 ax-6 1964 ax-7 2004 ax-8 2107 ax-9 2115 ax-10 2138 ax-11 2154 ax-12 2174 ax-ext 2705 ax-rep 5284 ax-sep 5301 ax-nul 5311 ax-pow 5370 ax-pr 5437 ax-un 7753 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1539 df-fal 1549 df-ex 1776 df-nf 1780 df-sb 2062 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2726 df-clel 2813 df-nfc 2889 df-ne 2938 df-ral 3059 df-rex 3068 df-reu 3378 df-rab 3433 df-v 3479 df-sbc 3791 df-csb 3908 df-dif 3965 df-un 3967 df-in 3969 df-ss 3979 df-nul 4339 df-if 4531 df-pw 4606 df-sn 4631 df-pr 4633 df-op 4637 df-uni 4912 df-iun 4997 df-br 5148 df-opab 5210 df-mpt 5231 df-id 5582 df-xp 5694 df-rel 5695 df-cnv 5696 df-co 5697 df-dm 5698 df-rn 5699 df-res 5700 df-ima 5701 df-iota 6515 df-fun 6564 df-fn 6565 df-f 6566 df-f1 6567 df-fo 6568 df-f1o 6569 df-fv 6570 df-ov 7433 df-oprab 7434 df-mpo 7435 df-map 8866 df-laut 39971 df-ldil 40086 df-ltrn 40087 |
This theorem is referenced by: ltrncnvnid 40109 ltrncoidN 40110 ltrnid 40117 ltrncnvatb 40120 ltrncnvel 40124 ltrncoval 40127 ltrncnv 40128 ltrneq2 40130 trlcnv 40147 ltrniotacnvval 40564 cdlemg17h 40650 trlcoabs2N 40704 trlcoat 40705 trlcone 40710 cdlemg47a 40716 cdlemg46 40717 cdlemg47 40718 trljco 40722 tgrpgrplem 40731 tendo0pl 40773 tendoipl 40779 cdlemi2 40801 cdlemk2 40814 cdlemk4 40816 cdlemk8 40820 cdlemkid2 40906 cdlemk45 40929 cdlemk53b 40938 cdlemk53 40939 cdlemk55a 40941 tendocnv 41003 dvhgrp 41089 dvhopN 41098 cdlemn3 41179 cdlemn8 41186 cdlemn9 41187 dihordlem7b 41197 dihopelvalcpre 41230 dihmeetlem1N 41272 dihglblem5apreN 41273 |
Copyright terms: Public domain | W3C validator |