Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ltrn1o Structured version   Visualization version   GIF version

Theorem ltrn1o 38117
Description: A lattice translation is a one-to-one onto function. (Contributed by NM, 20-May-2012.)
Hypotheses
Ref Expression
ltrn1o.b 𝐵 = (Base‘𝐾)
ltrn1o.h 𝐻 = (LHyp‘𝐾)
ltrn1o.t 𝑇 = ((LTrn‘𝐾)‘𝑊)
Assertion
Ref Expression
ltrn1o (((𝐾𝑉𝑊𝐻) ∧ 𝐹𝑇) → 𝐹:𝐵1-1-onto𝐵)

Proof of Theorem ltrn1o
StepHypRef Expression
1 simpll 763 . 2 (((𝐾𝑉𝑊𝐻) ∧ 𝐹𝑇) → 𝐾𝑉)
2 ltrn1o.h . . 3 𝐻 = (LHyp‘𝐾)
3 eqid 2739 . . 3 (LAut‘𝐾) = (LAut‘𝐾)
4 ltrn1o.t . . 3 𝑇 = ((LTrn‘𝐾)‘𝑊)
52, 3, 4ltrnlaut 38116 . 2 (((𝐾𝑉𝑊𝐻) ∧ 𝐹𝑇) → 𝐹 ∈ (LAut‘𝐾))
6 ltrn1o.b . . 3 𝐵 = (Base‘𝐾)
76, 3laut1o 38078 . 2 ((𝐾𝑉𝐹 ∈ (LAut‘𝐾)) → 𝐹:𝐵1-1-onto𝐵)
81, 5, 7syl2anc 583 1 (((𝐾𝑉𝑊𝐻) ∧ 𝐹𝑇) → 𝐹:𝐵1-1-onto𝐵)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1541  wcel 2109  1-1-ontowf1o 6429  cfv 6430  Basecbs 16893  LHypclh 37977  LAutclaut 37978  LTrncltrn 38094
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1801  ax-4 1815  ax-5 1916  ax-6 1974  ax-7 2014  ax-8 2111  ax-9 2119  ax-10 2140  ax-11 2157  ax-12 2174  ax-ext 2710  ax-rep 5213  ax-sep 5226  ax-nul 5233  ax-pow 5291  ax-pr 5355  ax-un 7579
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3an 1087  df-tru 1544  df-fal 1554  df-ex 1786  df-nf 1790  df-sb 2071  df-mo 2541  df-eu 2570  df-clab 2717  df-cleq 2731  df-clel 2817  df-nfc 2890  df-ne 2945  df-ral 3070  df-rex 3071  df-reu 3072  df-rab 3074  df-v 3432  df-sbc 3720  df-csb 3837  df-dif 3894  df-un 3896  df-in 3898  df-ss 3908  df-nul 4262  df-if 4465  df-pw 4540  df-sn 4567  df-pr 4569  df-op 4573  df-uni 4845  df-iun 4931  df-br 5079  df-opab 5141  df-mpt 5162  df-id 5488  df-xp 5594  df-rel 5595  df-cnv 5596  df-co 5597  df-dm 5598  df-rn 5599  df-res 5600  df-ima 5601  df-iota 6388  df-fun 6432  df-fn 6433  df-f 6434  df-f1 6435  df-fo 6436  df-f1o 6437  df-fv 6438  df-ov 7271  df-oprab 7272  df-mpo 7273  df-map 8591  df-laut 37982  df-ldil 38097  df-ltrn 38098
This theorem is referenced by:  ltrncnvnid  38120  ltrncoidN  38121  ltrnid  38128  ltrncnvatb  38131  ltrncnvel  38135  ltrncoval  38138  ltrncnv  38139  ltrneq2  38141  trlcnv  38158  ltrniotacnvval  38575  cdlemg17h  38661  trlcoabs2N  38715  trlcoat  38716  trlcone  38721  cdlemg47a  38727  cdlemg46  38728  cdlemg47  38729  trljco  38733  tgrpgrplem  38742  tendo0pl  38784  tendoipl  38790  cdlemi2  38812  cdlemk2  38825  cdlemk4  38827  cdlemk8  38831  cdlemkid2  38917  cdlemk45  38940  cdlemk53b  38949  cdlemk53  38950  cdlemk55a  38952  tendocnv  39014  dvhgrp  39100  dvhopN  39109  cdlemn3  39190  cdlemn8  39197  cdlemn9  39198  dihordlem7b  39208  dihopelvalcpre  39241  dihmeetlem1N  39283  dihglblem5apreN  39284
  Copyright terms: Public domain W3C validator