Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ltrn1o Structured version   Visualization version   GIF version

Theorem ltrn1o 37127
Description: A lattice translation is a one-to-one onto function. (Contributed by NM, 20-May-2012.)
Hypotheses
Ref Expression
ltrn1o.b 𝐵 = (Base‘𝐾)
ltrn1o.h 𝐻 = (LHyp‘𝐾)
ltrn1o.t 𝑇 = ((LTrn‘𝐾)‘𝑊)
Assertion
Ref Expression
ltrn1o (((𝐾𝑉𝑊𝐻) ∧ 𝐹𝑇) → 𝐹:𝐵1-1-onto𝐵)

Proof of Theorem ltrn1o
StepHypRef Expression
1 simpll 763 . 2 (((𝐾𝑉𝑊𝐻) ∧ 𝐹𝑇) → 𝐾𝑉)
2 ltrn1o.h . . 3 𝐻 = (LHyp‘𝐾)
3 eqid 2826 . . 3 (LAut‘𝐾) = (LAut‘𝐾)
4 ltrn1o.t . . 3 𝑇 = ((LTrn‘𝐾)‘𝑊)
52, 3, 4ltrnlaut 37126 . 2 (((𝐾𝑉𝑊𝐻) ∧ 𝐹𝑇) → 𝐹 ∈ (LAut‘𝐾))
6 ltrn1o.b . . 3 𝐵 = (Base‘𝐾)
76, 3laut1o 37088 . 2 ((𝐾𝑉𝐹 ∈ (LAut‘𝐾)) → 𝐹:𝐵1-1-onto𝐵)
81, 5, 7syl2anc 584 1 (((𝐾𝑉𝑊𝐻) ∧ 𝐹𝑇) → 𝐹:𝐵1-1-onto𝐵)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396   = wceq 1530  wcel 2107  1-1-ontowf1o 6351  cfv 6352  Basecbs 16473  LHypclh 36987  LAutclaut 36988  LTrncltrn 37104
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1904  ax-6 1963  ax-7 2008  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2153  ax-12 2169  ax-ext 2798  ax-rep 5187  ax-sep 5200  ax-nul 5207  ax-pow 5263  ax-pr 5326  ax-un 7451
This theorem depends on definitions:  df-bi 208  df-an 397  df-or 844  df-3an 1083  df-tru 1533  df-ex 1774  df-nf 1778  df-sb 2063  df-mo 2620  df-eu 2652  df-clab 2805  df-cleq 2819  df-clel 2898  df-nfc 2968  df-ne 3022  df-ral 3148  df-rex 3149  df-reu 3150  df-rab 3152  df-v 3502  df-sbc 3777  df-csb 3888  df-dif 3943  df-un 3945  df-in 3947  df-ss 3956  df-nul 4296  df-if 4471  df-pw 4544  df-sn 4565  df-pr 4567  df-op 4571  df-uni 4838  df-iun 4919  df-br 5064  df-opab 5126  df-mpt 5144  df-id 5459  df-xp 5560  df-rel 5561  df-cnv 5562  df-co 5563  df-dm 5564  df-rn 5565  df-res 5566  df-ima 5567  df-iota 6312  df-fun 6354  df-fn 6355  df-f 6356  df-f1 6357  df-fo 6358  df-f1o 6359  df-fv 6360  df-ov 7151  df-oprab 7152  df-mpo 7153  df-map 8398  df-laut 36992  df-ldil 37107  df-ltrn 37108
This theorem is referenced by:  ltrncnvnid  37130  ltrncoidN  37131  ltrnid  37138  ltrncnvatb  37141  ltrncnvel  37145  ltrncoval  37148  ltrncnv  37149  ltrneq2  37151  trlcnv  37168  ltrniotacnvval  37585  cdlemg17h  37671  trlcoabs2N  37725  trlcoat  37726  trlcone  37731  cdlemg47a  37737  cdlemg46  37738  cdlemg47  37739  trljco  37743  tgrpgrplem  37752  tendo0pl  37794  tendoipl  37800  cdlemi2  37822  cdlemk2  37835  cdlemk4  37837  cdlemk8  37841  cdlemkid2  37927  cdlemk45  37950  cdlemk53b  37959  cdlemk53  37960  cdlemk55a  37962  tendocnv  38024  dvhgrp  38110  dvhopN  38119  cdlemn3  38200  cdlemn8  38207  cdlemn9  38208  dihordlem7b  38218  dihopelvalcpre  38251  dihmeetlem1N  38293  dihglblem5apreN  38294
  Copyright terms: Public domain W3C validator