![]() |
Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > ltrn1o | Structured version Visualization version GIF version |
Description: A lattice translation is a one-to-one onto function. (Contributed by NM, 20-May-2012.) |
Ref | Expression |
---|---|
ltrn1o.b | ⊢ 𝐵 = (Base‘𝐾) |
ltrn1o.h | ⊢ 𝐻 = (LHyp‘𝐾) |
ltrn1o.t | ⊢ 𝑇 = ((LTrn‘𝐾)‘𝑊) |
Ref | Expression |
---|---|
ltrn1o | ⊢ (((𝐾 ∈ 𝑉 ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇) → 𝐹:𝐵–1-1-onto→𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simpll 785 | . 2 ⊢ (((𝐾 ∈ 𝑉 ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇) → 𝐾 ∈ 𝑉) | |
2 | ltrn1o.h | . . 3 ⊢ 𝐻 = (LHyp‘𝐾) | |
3 | eqid 2825 | . . 3 ⊢ (LAut‘𝐾) = (LAut‘𝐾) | |
4 | ltrn1o.t | . . 3 ⊢ 𝑇 = ((LTrn‘𝐾)‘𝑊) | |
5 | 2, 3, 4 | ltrnlaut 36198 | . 2 ⊢ (((𝐾 ∈ 𝑉 ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇) → 𝐹 ∈ (LAut‘𝐾)) |
6 | ltrn1o.b | . . 3 ⊢ 𝐵 = (Base‘𝐾) | |
7 | 6, 3 | laut1o 36160 | . 2 ⊢ ((𝐾 ∈ 𝑉 ∧ 𝐹 ∈ (LAut‘𝐾)) → 𝐹:𝐵–1-1-onto→𝐵) |
8 | 1, 5, 7 | syl2anc 581 | 1 ⊢ (((𝐾 ∈ 𝑉 ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇) → 𝐹:𝐵–1-1-onto→𝐵) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 386 = wceq 1658 ∈ wcel 2166 –1-1-onto→wf1o 6122 ‘cfv 6123 Basecbs 16222 LHypclh 36059 LAutclaut 36060 LTrncltrn 36176 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1896 ax-4 1910 ax-5 2011 ax-6 2077 ax-7 2114 ax-8 2168 ax-9 2175 ax-10 2194 ax-11 2209 ax-12 2222 ax-13 2391 ax-ext 2803 ax-rep 4994 ax-sep 5005 ax-nul 5013 ax-pow 5065 ax-pr 5127 ax-un 7209 |
This theorem depends on definitions: df-bi 199 df-an 387 df-or 881 df-3an 1115 df-tru 1662 df-ex 1881 df-nf 1885 df-sb 2070 df-mo 2605 df-eu 2640 df-clab 2812 df-cleq 2818 df-clel 2821 df-nfc 2958 df-ne 3000 df-ral 3122 df-rex 3123 df-reu 3124 df-rab 3126 df-v 3416 df-sbc 3663 df-csb 3758 df-dif 3801 df-un 3803 df-in 3805 df-ss 3812 df-nul 4145 df-if 4307 df-pw 4380 df-sn 4398 df-pr 4400 df-op 4404 df-uni 4659 df-iun 4742 df-br 4874 df-opab 4936 df-mpt 4953 df-id 5250 df-xp 5348 df-rel 5349 df-cnv 5350 df-co 5351 df-dm 5352 df-rn 5353 df-res 5354 df-ima 5355 df-iota 6086 df-fun 6125 df-fn 6126 df-f 6127 df-f1 6128 df-fo 6129 df-f1o 6130 df-fv 6131 df-ov 6908 df-oprab 6909 df-mpt2 6910 df-map 8124 df-laut 36064 df-ldil 36179 df-ltrn 36180 |
This theorem is referenced by: ltrncnvnid 36202 ltrncoidN 36203 ltrnid 36210 ltrncnvatb 36213 ltrncnvel 36217 ltrncoval 36220 ltrncnv 36221 ltrneq2 36223 trlcnv 36240 ltrniotacnvval 36657 cdlemg17h 36743 trlcoabs2N 36797 trlcoat 36798 trlcone 36803 cdlemg47a 36809 cdlemg46 36810 cdlemg47 36811 trljco 36815 tgrpgrplem 36824 tendo0pl 36866 tendoipl 36872 cdlemi2 36894 cdlemk2 36907 cdlemk4 36909 cdlemk8 36913 cdlemkid2 36999 cdlemk45 37022 cdlemk53b 37031 cdlemk53 37032 cdlemk55a 37034 tendocnv 37096 dvhgrp 37182 dvhopN 37191 cdlemn3 37272 cdlemn8 37279 cdlemn9 37280 dihordlem7b 37290 dihopelvalcpre 37323 dihmeetlem1N 37365 dihglblem5apreN 37366 |
Copyright terms: Public domain | W3C validator |