| Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > ltrn1o | Structured version Visualization version GIF version | ||
| Description: A lattice translation is a one-to-one onto function. (Contributed by NM, 20-May-2012.) |
| Ref | Expression |
|---|---|
| ltrn1o.b | ⊢ 𝐵 = (Base‘𝐾) |
| ltrn1o.h | ⊢ 𝐻 = (LHyp‘𝐾) |
| ltrn1o.t | ⊢ 𝑇 = ((LTrn‘𝐾)‘𝑊) |
| Ref | Expression |
|---|---|
| ltrn1o | ⊢ (((𝐾 ∈ 𝑉 ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇) → 𝐹:𝐵–1-1-onto→𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simpll 766 | . 2 ⊢ (((𝐾 ∈ 𝑉 ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇) → 𝐾 ∈ 𝑉) | |
| 2 | ltrn1o.h | . . 3 ⊢ 𝐻 = (LHyp‘𝐾) | |
| 3 | eqid 2731 | . . 3 ⊢ (LAut‘𝐾) = (LAut‘𝐾) | |
| 4 | ltrn1o.t | . . 3 ⊢ 𝑇 = ((LTrn‘𝐾)‘𝑊) | |
| 5 | 2, 3, 4 | ltrnlaut 40170 | . 2 ⊢ (((𝐾 ∈ 𝑉 ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇) → 𝐹 ∈ (LAut‘𝐾)) |
| 6 | ltrn1o.b | . . 3 ⊢ 𝐵 = (Base‘𝐾) | |
| 7 | 6, 3 | laut1o 40132 | . 2 ⊢ ((𝐾 ∈ 𝑉 ∧ 𝐹 ∈ (LAut‘𝐾)) → 𝐹:𝐵–1-1-onto→𝐵) |
| 8 | 1, 5, 7 | syl2anc 584 | 1 ⊢ (((𝐾 ∈ 𝑉 ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇) → 𝐹:𝐵–1-1-onto→𝐵) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1541 ∈ wcel 2111 –1-1-onto→wf1o 6480 ‘cfv 6481 Basecbs 17120 LHypclh 40031 LAutclaut 40032 LTrncltrn 40148 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-rep 5215 ax-sep 5232 ax-nul 5242 ax-pow 5301 ax-pr 5368 ax-un 7668 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-ral 3048 df-rex 3057 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3737 df-csb 3846 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-nul 4281 df-if 4473 df-pw 4549 df-sn 4574 df-pr 4576 df-op 4580 df-uni 4857 df-iun 4941 df-br 5090 df-opab 5152 df-mpt 5171 df-id 5509 df-xp 5620 df-rel 5621 df-cnv 5622 df-co 5623 df-dm 5624 df-rn 5625 df-res 5626 df-ima 5627 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-f1 6486 df-fo 6487 df-f1o 6488 df-fv 6489 df-ov 7349 df-oprab 7350 df-mpo 7351 df-map 8752 df-laut 40036 df-ldil 40151 df-ltrn 40152 |
| This theorem is referenced by: ltrncnvnid 40174 ltrncoidN 40175 ltrnid 40182 ltrncnvatb 40185 ltrncnvel 40189 ltrncoval 40192 ltrncnv 40193 ltrneq2 40195 trlcnv 40212 ltrniotacnvval 40629 cdlemg17h 40715 trlcoabs2N 40769 trlcoat 40770 trlcone 40775 cdlemg47a 40781 cdlemg46 40782 cdlemg47 40783 trljco 40787 tgrpgrplem 40796 tendo0pl 40838 tendoipl 40844 cdlemi2 40866 cdlemk2 40879 cdlemk4 40881 cdlemk8 40885 cdlemkid2 40971 cdlemk45 40994 cdlemk53b 41003 cdlemk53 41004 cdlemk55a 41006 tendocnv 41068 dvhgrp 41154 dvhopN 41163 cdlemn3 41244 cdlemn8 41251 cdlemn9 41252 dihordlem7b 41262 dihopelvalcpre 41295 dihmeetlem1N 41337 dihglblem5apreN 41338 |
| Copyright terms: Public domain | W3C validator |