| Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > ltrn1o | Structured version Visualization version GIF version | ||
| Description: A lattice translation is a one-to-one onto function. (Contributed by NM, 20-May-2012.) |
| Ref | Expression |
|---|---|
| ltrn1o.b | ⊢ 𝐵 = (Base‘𝐾) |
| ltrn1o.h | ⊢ 𝐻 = (LHyp‘𝐾) |
| ltrn1o.t | ⊢ 𝑇 = ((LTrn‘𝐾)‘𝑊) |
| Ref | Expression |
|---|---|
| ltrn1o | ⊢ (((𝐾 ∈ 𝑉 ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇) → 𝐹:𝐵–1-1-onto→𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simpll 766 | . 2 ⊢ (((𝐾 ∈ 𝑉 ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇) → 𝐾 ∈ 𝑉) | |
| 2 | ltrn1o.h | . . 3 ⊢ 𝐻 = (LHyp‘𝐾) | |
| 3 | eqid 2735 | . . 3 ⊢ (LAut‘𝐾) = (LAut‘𝐾) | |
| 4 | ltrn1o.t | . . 3 ⊢ 𝑇 = ((LTrn‘𝐾)‘𝑊) | |
| 5 | 2, 3, 4 | ltrnlaut 40088 | . 2 ⊢ (((𝐾 ∈ 𝑉 ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇) → 𝐹 ∈ (LAut‘𝐾)) |
| 6 | ltrn1o.b | . . 3 ⊢ 𝐵 = (Base‘𝐾) | |
| 7 | 6, 3 | laut1o 40050 | . 2 ⊢ ((𝐾 ∈ 𝑉 ∧ 𝐹 ∈ (LAut‘𝐾)) → 𝐹:𝐵–1-1-onto→𝐵) |
| 8 | 1, 5, 7 | syl2anc 584 | 1 ⊢ (((𝐾 ∈ 𝑉 ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇) → 𝐹:𝐵–1-1-onto→𝐵) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2108 –1-1-onto→wf1o 6529 ‘cfv 6530 Basecbs 17226 LHypclh 39949 LAutclaut 39950 LTrncltrn 40066 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2707 ax-rep 5249 ax-sep 5266 ax-nul 5276 ax-pow 5335 ax-pr 5402 ax-un 7727 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2727 df-clel 2809 df-nfc 2885 df-ne 2933 df-ral 3052 df-rex 3061 df-reu 3360 df-rab 3416 df-v 3461 df-sbc 3766 df-csb 3875 df-dif 3929 df-un 3931 df-in 3933 df-ss 3943 df-nul 4309 df-if 4501 df-pw 4577 df-sn 4602 df-pr 4604 df-op 4608 df-uni 4884 df-iun 4969 df-br 5120 df-opab 5182 df-mpt 5202 df-id 5548 df-xp 5660 df-rel 5661 df-cnv 5662 df-co 5663 df-dm 5664 df-rn 5665 df-res 5666 df-ima 5667 df-iota 6483 df-fun 6532 df-fn 6533 df-f 6534 df-f1 6535 df-fo 6536 df-f1o 6537 df-fv 6538 df-ov 7406 df-oprab 7407 df-mpo 7408 df-map 8840 df-laut 39954 df-ldil 40069 df-ltrn 40070 |
| This theorem is referenced by: ltrncnvnid 40092 ltrncoidN 40093 ltrnid 40100 ltrncnvatb 40103 ltrncnvel 40107 ltrncoval 40110 ltrncnv 40111 ltrneq2 40113 trlcnv 40130 ltrniotacnvval 40547 cdlemg17h 40633 trlcoabs2N 40687 trlcoat 40688 trlcone 40693 cdlemg47a 40699 cdlemg46 40700 cdlemg47 40701 trljco 40705 tgrpgrplem 40714 tendo0pl 40756 tendoipl 40762 cdlemi2 40784 cdlemk2 40797 cdlemk4 40799 cdlemk8 40803 cdlemkid2 40889 cdlemk45 40912 cdlemk53b 40921 cdlemk53 40922 cdlemk55a 40924 tendocnv 40986 dvhgrp 41072 dvhopN 41081 cdlemn3 41162 cdlemn8 41169 cdlemn9 41170 dihordlem7b 41180 dihopelvalcpre 41213 dihmeetlem1N 41255 dihglblem5apreN 41256 |
| Copyright terms: Public domain | W3C validator |