| Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > ltrn1o | Structured version Visualization version GIF version | ||
| Description: A lattice translation is a one-to-one onto function. (Contributed by NM, 20-May-2012.) |
| Ref | Expression |
|---|---|
| ltrn1o.b | ⊢ 𝐵 = (Base‘𝐾) |
| ltrn1o.h | ⊢ 𝐻 = (LHyp‘𝐾) |
| ltrn1o.t | ⊢ 𝑇 = ((LTrn‘𝐾)‘𝑊) |
| Ref | Expression |
|---|---|
| ltrn1o | ⊢ (((𝐾 ∈ 𝑉 ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇) → 𝐹:𝐵–1-1-onto→𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simpll 766 | . 2 ⊢ (((𝐾 ∈ 𝑉 ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇) → 𝐾 ∈ 𝑉) | |
| 2 | ltrn1o.h | . . 3 ⊢ 𝐻 = (LHyp‘𝐾) | |
| 3 | eqid 2729 | . . 3 ⊢ (LAut‘𝐾) = (LAut‘𝐾) | |
| 4 | ltrn1o.t | . . 3 ⊢ 𝑇 = ((LTrn‘𝐾)‘𝑊) | |
| 5 | 2, 3, 4 | ltrnlaut 40110 | . 2 ⊢ (((𝐾 ∈ 𝑉 ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇) → 𝐹 ∈ (LAut‘𝐾)) |
| 6 | ltrn1o.b | . . 3 ⊢ 𝐵 = (Base‘𝐾) | |
| 7 | 6, 3 | laut1o 40072 | . 2 ⊢ ((𝐾 ∈ 𝑉 ∧ 𝐹 ∈ (LAut‘𝐾)) → 𝐹:𝐵–1-1-onto→𝐵) |
| 8 | 1, 5, 7 | syl2anc 584 | 1 ⊢ (((𝐾 ∈ 𝑉 ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇) → 𝐹:𝐵–1-1-onto→𝐵) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2109 –1-1-onto→wf1o 6498 ‘cfv 6499 Basecbs 17155 LHypclh 39971 LAutclaut 39972 LTrncltrn 40088 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5229 ax-sep 5246 ax-nul 5256 ax-pow 5315 ax-pr 5382 ax-un 7691 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-reu 3352 df-rab 3403 df-v 3446 df-sbc 3751 df-csb 3860 df-dif 3914 df-un 3916 df-in 3918 df-ss 3928 df-nul 4293 df-if 4485 df-pw 4561 df-sn 4586 df-pr 4588 df-op 4592 df-uni 4868 df-iun 4953 df-br 5103 df-opab 5165 df-mpt 5184 df-id 5526 df-xp 5637 df-rel 5638 df-cnv 5639 df-co 5640 df-dm 5641 df-rn 5642 df-res 5643 df-ima 5644 df-iota 6452 df-fun 6501 df-fn 6502 df-f 6503 df-f1 6504 df-fo 6505 df-f1o 6506 df-fv 6507 df-ov 7372 df-oprab 7373 df-mpo 7374 df-map 8778 df-laut 39976 df-ldil 40091 df-ltrn 40092 |
| This theorem is referenced by: ltrncnvnid 40114 ltrncoidN 40115 ltrnid 40122 ltrncnvatb 40125 ltrncnvel 40129 ltrncoval 40132 ltrncnv 40133 ltrneq2 40135 trlcnv 40152 ltrniotacnvval 40569 cdlemg17h 40655 trlcoabs2N 40709 trlcoat 40710 trlcone 40715 cdlemg47a 40721 cdlemg46 40722 cdlemg47 40723 trljco 40727 tgrpgrplem 40736 tendo0pl 40778 tendoipl 40784 cdlemi2 40806 cdlemk2 40819 cdlemk4 40821 cdlemk8 40825 cdlemkid2 40911 cdlemk45 40934 cdlemk53b 40943 cdlemk53 40944 cdlemk55a 40946 tendocnv 41008 dvhgrp 41094 dvhopN 41103 cdlemn3 41184 cdlemn8 41191 cdlemn9 41192 dihordlem7b 41202 dihopelvalcpre 41235 dihmeetlem1N 41277 dihglblem5apreN 41278 |
| Copyright terms: Public domain | W3C validator |