Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ltrn1o Structured version   Visualization version   GIF version

Theorem ltrn1o 40171
Description: A lattice translation is a one-to-one onto function. (Contributed by NM, 20-May-2012.)
Hypotheses
Ref Expression
ltrn1o.b 𝐵 = (Base‘𝐾)
ltrn1o.h 𝐻 = (LHyp‘𝐾)
ltrn1o.t 𝑇 = ((LTrn‘𝐾)‘𝑊)
Assertion
Ref Expression
ltrn1o (((𝐾𝑉𝑊𝐻) ∧ 𝐹𝑇) → 𝐹:𝐵1-1-onto𝐵)

Proof of Theorem ltrn1o
StepHypRef Expression
1 simpll 766 . 2 (((𝐾𝑉𝑊𝐻) ∧ 𝐹𝑇) → 𝐾𝑉)
2 ltrn1o.h . . 3 𝐻 = (LHyp‘𝐾)
3 eqid 2731 . . 3 (LAut‘𝐾) = (LAut‘𝐾)
4 ltrn1o.t . . 3 𝑇 = ((LTrn‘𝐾)‘𝑊)
52, 3, 4ltrnlaut 40170 . 2 (((𝐾𝑉𝑊𝐻) ∧ 𝐹𝑇) → 𝐹 ∈ (LAut‘𝐾))
6 ltrn1o.b . . 3 𝐵 = (Base‘𝐾)
76, 3laut1o 40132 . 2 ((𝐾𝑉𝐹 ∈ (LAut‘𝐾)) → 𝐹:𝐵1-1-onto𝐵)
81, 5, 7syl2anc 584 1 (((𝐾𝑉𝑊𝐻) ∧ 𝐹𝑇) → 𝐹:𝐵1-1-onto𝐵)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1541  wcel 2111  1-1-ontowf1o 6480  cfv 6481  Basecbs 17120  LHypclh 40031  LAutclaut 40032  LTrncltrn 40148
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-rep 5215  ax-sep 5232  ax-nul 5242  ax-pow 5301  ax-pr 5368  ax-un 7668
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-ral 3048  df-rex 3057  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3737  df-csb 3846  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-nul 4281  df-if 4473  df-pw 4549  df-sn 4574  df-pr 4576  df-op 4580  df-uni 4857  df-iun 4941  df-br 5090  df-opab 5152  df-mpt 5171  df-id 5509  df-xp 5620  df-rel 5621  df-cnv 5622  df-co 5623  df-dm 5624  df-rn 5625  df-res 5626  df-ima 5627  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489  df-ov 7349  df-oprab 7350  df-mpo 7351  df-map 8752  df-laut 40036  df-ldil 40151  df-ltrn 40152
This theorem is referenced by:  ltrncnvnid  40174  ltrncoidN  40175  ltrnid  40182  ltrncnvatb  40185  ltrncnvel  40189  ltrncoval  40192  ltrncnv  40193  ltrneq2  40195  trlcnv  40212  ltrniotacnvval  40629  cdlemg17h  40715  trlcoabs2N  40769  trlcoat  40770  trlcone  40775  cdlemg47a  40781  cdlemg46  40782  cdlemg47  40783  trljco  40787  tgrpgrplem  40796  tendo0pl  40838  tendoipl  40844  cdlemi2  40866  cdlemk2  40879  cdlemk4  40881  cdlemk8  40885  cdlemkid2  40971  cdlemk45  40994  cdlemk53b  41003  cdlemk53  41004  cdlemk55a  41006  tendocnv  41068  dvhgrp  41154  dvhopN  41163  cdlemn3  41244  cdlemn8  41251  cdlemn9  41252  dihordlem7b  41262  dihopelvalcpre  41295  dihmeetlem1N  41337  dihglblem5apreN  41338
  Copyright terms: Public domain W3C validator