Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ltrn1o Structured version   Visualization version   GIF version

Theorem ltrn1o 40081
Description: A lattice translation is a one-to-one onto function. (Contributed by NM, 20-May-2012.)
Hypotheses
Ref Expression
ltrn1o.b 𝐵 = (Base‘𝐾)
ltrn1o.h 𝐻 = (LHyp‘𝐾)
ltrn1o.t 𝑇 = ((LTrn‘𝐾)‘𝑊)
Assertion
Ref Expression
ltrn1o (((𝐾𝑉𝑊𝐻) ∧ 𝐹𝑇) → 𝐹:𝐵1-1-onto𝐵)

Proof of Theorem ltrn1o
StepHypRef Expression
1 simpll 766 . 2 (((𝐾𝑉𝑊𝐻) ∧ 𝐹𝑇) → 𝐾𝑉)
2 ltrn1o.h . . 3 𝐻 = (LHyp‘𝐾)
3 eqid 2740 . . 3 (LAut‘𝐾) = (LAut‘𝐾)
4 ltrn1o.t . . 3 𝑇 = ((LTrn‘𝐾)‘𝑊)
52, 3, 4ltrnlaut 40080 . 2 (((𝐾𝑉𝑊𝐻) ∧ 𝐹𝑇) → 𝐹 ∈ (LAut‘𝐾))
6 ltrn1o.b . . 3 𝐵 = (Base‘𝐾)
76, 3laut1o 40042 . 2 ((𝐾𝑉𝐹 ∈ (LAut‘𝐾)) → 𝐹:𝐵1-1-onto𝐵)
81, 5, 7syl2anc 583 1 (((𝐾𝑉𝑊𝐻) ∧ 𝐹𝑇) → 𝐹:𝐵1-1-onto𝐵)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1537  wcel 2108  1-1-ontowf1o 6572  cfv 6573  Basecbs 17258  LHypclh 39941  LAutclaut 39942  LTrncltrn 40058
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-rep 5303  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-ral 3068  df-rex 3077  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-iun 5017  df-br 5167  df-opab 5229  df-mpt 5250  df-id 5593  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-ov 7451  df-oprab 7452  df-mpo 7453  df-map 8886  df-laut 39946  df-ldil 40061  df-ltrn 40062
This theorem is referenced by:  ltrncnvnid  40084  ltrncoidN  40085  ltrnid  40092  ltrncnvatb  40095  ltrncnvel  40099  ltrncoval  40102  ltrncnv  40103  ltrneq2  40105  trlcnv  40122  ltrniotacnvval  40539  cdlemg17h  40625  trlcoabs2N  40679  trlcoat  40680  trlcone  40685  cdlemg47a  40691  cdlemg46  40692  cdlemg47  40693  trljco  40697  tgrpgrplem  40706  tendo0pl  40748  tendoipl  40754  cdlemi2  40776  cdlemk2  40789  cdlemk4  40791  cdlemk8  40795  cdlemkid2  40881  cdlemk45  40904  cdlemk53b  40913  cdlemk53  40914  cdlemk55a  40916  tendocnv  40978  dvhgrp  41064  dvhopN  41073  cdlemn3  41154  cdlemn8  41161  cdlemn9  41162  dihordlem7b  41172  dihopelvalcpre  41205  dihmeetlem1N  41247  dihglblem5apreN  41248
  Copyright terms: Public domain W3C validator