Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ltrn1o Structured version   Visualization version   GIF version

Theorem ltrn1o 40103
Description: A lattice translation is a one-to-one onto function. (Contributed by NM, 20-May-2012.)
Hypotheses
Ref Expression
ltrn1o.b 𝐵 = (Base‘𝐾)
ltrn1o.h 𝐻 = (LHyp‘𝐾)
ltrn1o.t 𝑇 = ((LTrn‘𝐾)‘𝑊)
Assertion
Ref Expression
ltrn1o (((𝐾𝑉𝑊𝐻) ∧ 𝐹𝑇) → 𝐹:𝐵1-1-onto𝐵)

Proof of Theorem ltrn1o
StepHypRef Expression
1 simpll 766 . 2 (((𝐾𝑉𝑊𝐻) ∧ 𝐹𝑇) → 𝐾𝑉)
2 ltrn1o.h . . 3 𝐻 = (LHyp‘𝐾)
3 eqid 2729 . . 3 (LAut‘𝐾) = (LAut‘𝐾)
4 ltrn1o.t . . 3 𝑇 = ((LTrn‘𝐾)‘𝑊)
52, 3, 4ltrnlaut 40102 . 2 (((𝐾𝑉𝑊𝐻) ∧ 𝐹𝑇) → 𝐹 ∈ (LAut‘𝐾))
6 ltrn1o.b . . 3 𝐵 = (Base‘𝐾)
76, 3laut1o 40064 . 2 ((𝐾𝑉𝐹 ∈ (LAut‘𝐾)) → 𝐹:𝐵1-1-onto𝐵)
81, 5, 7syl2anc 584 1 (((𝐾𝑉𝑊𝐻) ∧ 𝐹𝑇) → 𝐹:𝐵1-1-onto𝐵)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2109  1-1-ontowf1o 6481  cfv 6482  Basecbs 17120  LHypclh 39963  LAutclaut 39964  LTrncltrn 40080
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5218  ax-sep 5235  ax-nul 5245  ax-pow 5304  ax-pr 5371  ax-un 7671
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-reu 3344  df-rab 3395  df-v 3438  df-sbc 3743  df-csb 3852  df-dif 3906  df-un 3908  df-in 3910  df-ss 3920  df-nul 4285  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4859  df-iun 4943  df-br 5093  df-opab 5155  df-mpt 5174  df-id 5514  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-iota 6438  df-fun 6484  df-fn 6485  df-f 6486  df-f1 6487  df-fo 6488  df-f1o 6489  df-fv 6490  df-ov 7352  df-oprab 7353  df-mpo 7354  df-map 8755  df-laut 39968  df-ldil 40083  df-ltrn 40084
This theorem is referenced by:  ltrncnvnid  40106  ltrncoidN  40107  ltrnid  40114  ltrncnvatb  40117  ltrncnvel  40121  ltrncoval  40124  ltrncnv  40125  ltrneq2  40127  trlcnv  40144  ltrniotacnvval  40561  cdlemg17h  40647  trlcoabs2N  40701  trlcoat  40702  trlcone  40707  cdlemg47a  40713  cdlemg46  40714  cdlemg47  40715  trljco  40719  tgrpgrplem  40728  tendo0pl  40770  tendoipl  40776  cdlemi2  40798  cdlemk2  40811  cdlemk4  40813  cdlemk8  40817  cdlemkid2  40903  cdlemk45  40926  cdlemk53b  40935  cdlemk53  40936  cdlemk55a  40938  tendocnv  41000  dvhgrp  41086  dvhopN  41095  cdlemn3  41176  cdlemn8  41183  cdlemn9  41184  dihordlem7b  41194  dihopelvalcpre  41227  dihmeetlem1N  41269  dihglblem5apreN  41270
  Copyright terms: Public domain W3C validator