Step | Hyp | Ref
| Expression |
1 | | snfi 9040 |
. . . . . 6
β’ {πΌ} β Fin |
2 | | eleq1 2821 |
. . . . . 6
β’ (π = {πΌ} β (π β Fin β {πΌ} β Fin)) |
3 | 1, 2 | mpbiri 257 |
. . . . 5
β’ (π = {πΌ} β π β Fin) |
4 | 3 | adantr 481 |
. . . 4
β’ ((π = {πΌ} β§ πΌ β π) β π β Fin) |
5 | 4 | 3ad2ant2 1134 |
. . 3
β’ ((π
β CRing β§ (π = {πΌ} β§ πΌ β π) β§ π β π΅) β π β Fin) |
6 | | simp1 1136 |
. . 3
β’ ((π
β CRing β§ (π = {πΌ} β§ πΌ β π) β§ π β π΅) β π
β CRing) |
7 | | simp3 1138 |
. . 3
β’ ((π
β CRing β§ (π = {πΌ} β§ πΌ β π) β§ π β π΅) β π β π΅) |
8 | | chpmat1d.c |
. . . 4
β’ πΆ = (π CharPlyMat π
) |
9 | | chpmat1d.a |
. . . 4
β’ π΄ = (π Mat π
) |
10 | | chpmat1d.b |
. . . 4
β’ π΅ = (Baseβπ΄) |
11 | | chpmat1d.p |
. . . 4
β’ π = (Poly1βπ
) |
12 | | eqid 2732 |
. . . 4
β’ (π Mat π) = (π Mat π) |
13 | | eqid 2732 |
. . . 4
β’ (π maDet π) = (π maDet π) |
14 | | eqid 2732 |
. . . 4
β’
(-gβ(π Mat π)) = (-gβ(π Mat π)) |
15 | | eqid 2732 |
. . . 4
β’
(var1βπ
) = (var1βπ
) |
16 | | eqid 2732 |
. . . 4
β’ (
Β·π β(π Mat π)) = ( Β·π
β(π Mat π)) |
17 | | eqid 2732 |
. . . 4
β’ (π matToPolyMat π
) = (π matToPolyMat π
) |
18 | | eqid 2732 |
. . . 4
β’
(1rβ(π Mat π)) = (1rβ(π Mat π)) |
19 | 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18 | chpmatval 22324 |
. . 3
β’ ((π β Fin β§ π
β CRing β§ π β π΅) β (πΆβπ) = ((π maDet π)β(((var1βπ
)(
Β·π β(π Mat π))(1rβ(π Mat π)))(-gβ(π Mat π))((π matToPolyMat π
)βπ)))) |
20 | 5, 6, 7, 19 | syl3anc 1371 |
. 2
β’ ((π
β CRing β§ (π = {πΌ} β§ πΌ β π) β§ π β π΅) β (πΆβπ) = ((π maDet π)β(((var1βπ
)(
Β·π β(π Mat π))(1rβ(π Mat π)))(-gβ(π Mat π))((π matToPolyMat π
)βπ)))) |
21 | 11 | ply1crng 21713 |
. . . . 5
β’ (π
β CRing β π β CRing) |
22 | 21 | 3ad2ant1 1133 |
. . . 4
β’ ((π
β CRing β§ (π = {πΌ} β§ πΌ β π) β§ π β π΅) β π β CRing) |
23 | | simp2 1137 |
. . . 4
β’ ((π
β CRing β§ (π = {πΌ} β§ πΌ β π) β§ π β π΅) β (π = {πΌ} β§ πΌ β π)) |
24 | | crngring 20061 |
. . . . . . . . 9
β’ (π
β CRing β π
β Ring) |
25 | 11 | ply1ring 21761 |
. . . . . . . . 9
β’ (π
β Ring β π β Ring) |
26 | 24, 25 | syl 17 |
. . . . . . . 8
β’ (π
β CRing β π β Ring) |
27 | 26 | 3ad2ant1 1133 |
. . . . . . 7
β’ ((π
β CRing β§ (π = {πΌ} β§ πΌ β π) β§ π β π΅) β π β Ring) |
28 | 12 | matring 21936 |
. . . . . . 7
β’ ((π β Fin β§ π β Ring) β (π Mat π) β Ring) |
29 | 5, 27, 28 | syl2anc 584 |
. . . . . 6
β’ ((π
β CRing β§ (π = {πΌ} β§ πΌ β π) β§ π β π΅) β (π Mat π) β Ring) |
30 | | ringgrp 20054 |
. . . . . 6
β’ ((π Mat π) β Ring β (π Mat π) β Grp) |
31 | 29, 30 | syl 17 |
. . . . 5
β’ ((π
β CRing β§ (π = {πΌ} β§ πΌ β π) β§ π β π΅) β (π Mat π) β Grp) |
32 | 12 | matlmod 21922 |
. . . . . . 7
β’ ((π β Fin β§ π β Ring) β (π Mat π) β LMod) |
33 | 5, 27, 32 | syl2anc 584 |
. . . . . 6
β’ ((π
β CRing β§ (π = {πΌ} β§ πΌ β π) β§ π β π΅) β (π Mat π) β LMod) |
34 | 24 | 3ad2ant1 1133 |
. . . . . . . 8
β’ ((π
β CRing β§ (π = {πΌ} β§ πΌ β π) β§ π β π΅) β π
β Ring) |
35 | | eqid 2732 |
. . . . . . . . 9
β’
(Poly1βπ
) = (Poly1βπ
) |
36 | | eqid 2732 |
. . . . . . . . 9
β’
(Baseβ(Poly1βπ
)) =
(Baseβ(Poly1βπ
)) |
37 | 15, 35, 36 | vr1cl 21732 |
. . . . . . . 8
β’ (π
β Ring β
(var1βπ
)
β (Baseβ(Poly1βπ
))) |
38 | 34, 37 | syl 17 |
. . . . . . 7
β’ ((π
β CRing β§ (π = {πΌ} β§ πΌ β π) β§ π β π΅) β (var1βπ
) β
(Baseβ(Poly1βπ
))) |
39 | 35 | ply1crng 21713 |
. . . . . . . . . . 11
β’ (π
β CRing β
(Poly1βπ
)
β CRing) |
40 | 39 | 3ad2ant1 1133 |
. . . . . . . . . 10
β’ ((π
β CRing β§ (π = {πΌ} β§ πΌ β π) β§ π β π΅) β (Poly1βπ
) β CRing) |
41 | 11 | oveq2i 7416 |
. . . . . . . . . . 11
β’ (π Mat π) = (π Mat (Poly1βπ
)) |
42 | 41 | matsca2 21913 |
. . . . . . . . . 10
β’ ((π β Fin β§
(Poly1βπ
)
β CRing) β (Poly1βπ
) = (Scalarβ(π Mat π))) |
43 | 5, 40, 42 | syl2anc 584 |
. . . . . . . . 9
β’ ((π
β CRing β§ (π = {πΌ} β§ πΌ β π) β§ π β π΅) β (Poly1βπ
) = (Scalarβ(π Mat π))) |
44 | 43 | eqcomd 2738 |
. . . . . . . 8
β’ ((π
β CRing β§ (π = {πΌ} β§ πΌ β π) β§ π β π΅) β (Scalarβ(π Mat π)) = (Poly1βπ
)) |
45 | 44 | fveq2d 6892 |
. . . . . . 7
β’ ((π
β CRing β§ (π = {πΌ} β§ πΌ β π) β§ π β π΅) β (Baseβ(Scalarβ(π Mat π))) =
(Baseβ(Poly1βπ
))) |
46 | 38, 45 | eleqtrrd 2836 |
. . . . . 6
β’ ((π
β CRing β§ (π = {πΌ} β§ πΌ β π) β§ π β π΅) β (var1βπ
) β
(Baseβ(Scalarβ(π Mat π)))) |
47 | | eqid 2732 |
. . . . . . . 8
β’
(Baseβ(π Mat
π)) = (Baseβ(π Mat π)) |
48 | 47, 18 | ringidcl 20076 |
. . . . . . 7
β’ ((π Mat π) β Ring β
(1rβ(π Mat
π)) β
(Baseβ(π Mat π))) |
49 | 29, 48 | syl 17 |
. . . . . 6
β’ ((π
β CRing β§ (π = {πΌ} β§ πΌ β π) β§ π β π΅) β (1rβ(π Mat π)) β (Baseβ(π Mat π))) |
50 | | eqid 2732 |
. . . . . . 7
β’
(Scalarβ(π Mat
π)) = (Scalarβ(π Mat π)) |
51 | | eqid 2732 |
. . . . . . 7
β’
(Baseβ(Scalarβ(π Mat π))) = (Baseβ(Scalarβ(π Mat π))) |
52 | 47, 50, 16, 51 | lmodvscl 20481 |
. . . . . 6
β’ (((π Mat π) β LMod β§
(var1βπ
)
β (Baseβ(Scalarβ(π Mat π))) β§ (1rβ(π Mat π)) β (Baseβ(π Mat π))) β ((var1βπ
)(
Β·π β(π Mat π))(1rβ(π Mat π))) β (Baseβ(π Mat π))) |
53 | 33, 46, 49, 52 | syl3anc 1371 |
. . . . 5
β’ ((π
β CRing β§ (π = {πΌ} β§ πΌ β π) β§ π β π΅) β ((var1βπ
)(
Β·π β(π Mat π))(1rβ(π Mat π))) β (Baseβ(π Mat π))) |
54 | 17, 9, 10, 11, 12 | mat2pmatbas 22219 |
. . . . . 6
β’ ((π β Fin β§ π
β Ring β§ π β π΅) β ((π matToPolyMat π
)βπ) β (Baseβ(π Mat π))) |
55 | 5, 34, 7, 54 | syl3anc 1371 |
. . . . 5
β’ ((π
β CRing β§ (π = {πΌ} β§ πΌ β π) β§ π β π΅) β ((π matToPolyMat π
)βπ) β (Baseβ(π Mat π))) |
56 | 47, 14 | grpsubcl 18899 |
. . . . 5
β’ (((π Mat π) β Grp β§
((var1βπ
)(
Β·π β(π Mat π))(1rβ(π Mat π))) β (Baseβ(π Mat π)) β§ ((π matToPolyMat π
)βπ) β (Baseβ(π Mat π))) β (((var1βπ
)(
Β·π β(π Mat π))(1rβ(π Mat π)))(-gβ(π Mat π))((π matToPolyMat π
)βπ)) β (Baseβ(π Mat π))) |
57 | 31, 53, 55, 56 | syl3anc 1371 |
. . . 4
β’ ((π
β CRing β§ (π = {πΌ} β§ πΌ β π) β§ π β π΅) β (((var1βπ
)(
Β·π β(π Mat π))(1rβ(π Mat π)))(-gβ(π Mat π))((π matToPolyMat π
)βπ)) β (Baseβ(π Mat π))) |
58 | 13, 12, 47 | m1detdiag 22090 |
. . . 4
β’ ((π β CRing β§ (π = {πΌ} β§ πΌ β π) β§ (((var1βπ
)(
Β·π β(π Mat π))(1rβ(π Mat π)))(-gβ(π Mat π))((π matToPolyMat π
)βπ)) β (Baseβ(π Mat π))) β ((π maDet π)β(((var1βπ
)(
Β·π β(π Mat π))(1rβ(π Mat π)))(-gβ(π Mat π))((π matToPolyMat π
)βπ))) = (πΌ(((var1βπ
)( Β·π
β(π Mat π))(1rβ(π Mat π)))(-gβ(π Mat π))((π matToPolyMat π
)βπ))πΌ)) |
59 | 22, 23, 57, 58 | syl3anc 1371 |
. . 3
β’ ((π
β CRing β§ (π = {πΌ} β§ πΌ β π) β§ π β π΅) β ((π maDet π)β(((var1βπ
)(
Β·π β(π Mat π))(1rβ(π Mat π)))(-gβ(π Mat π))((π matToPolyMat π
)βπ))) = (πΌ(((var1βπ
)( Β·π
β(π Mat π))(1rβ(π Mat π)))(-gβ(π Mat π))((π matToPolyMat π
)βπ))πΌ)) |
60 | | chpmat1d.x |
. . . . . . . . 9
β’ π = (var1βπ
) |
61 | 60 | eqcomi 2741 |
. . . . . . . 8
β’
(var1βπ
) = π |
62 | 61 | a1i 11 |
. . . . . . 7
β’ ((π
β CRing β§ (π = {πΌ} β§ πΌ β π) β§ π β π΅) β (var1βπ
) = π) |
63 | 62 | oveq1d 7420 |
. . . . . 6
β’ ((π
β CRing β§ (π = {πΌ} β§ πΌ β π) β§ π β π΅) β ((var1βπ
)(
Β·π β(π Mat π))(1rβ(π Mat π))) = (π( Β·π
β(π Mat π))(1rβ(π Mat π)))) |
64 | 63 | oveq1d 7420 |
. . . . 5
β’ ((π
β CRing β§ (π = {πΌ} β§ πΌ β π) β§ π β π΅) β (((var1βπ
)(
Β·π β(π Mat π))(1rβ(π Mat π)))(-gβ(π Mat π))((π matToPolyMat π
)βπ)) = ((π( Β·π
β(π Mat π))(1rβ(π Mat π)))(-gβ(π Mat π))((π matToPolyMat π
)βπ))) |
65 | 64 | oveqd 7422 |
. . . 4
β’ ((π
β CRing β§ (π = {πΌ} β§ πΌ β π) β§ π β π΅) β (πΌ(((var1βπ
)( Β·π
β(π Mat π))(1rβ(π Mat π)))(-gβ(π Mat π))((π matToPolyMat π
)βπ))πΌ) = (πΌ((π( Β·π
β(π Mat π))(1rβ(π Mat π)))(-gβ(π Mat π))((π matToPolyMat π
)βπ))πΌ)) |
66 | | chpmat1d.z |
. . . . . 6
β’ β =
(-gβπ) |
67 | | chpmat1d.s |
. . . . . 6
β’ π = (algScβπ) |
68 | 8, 11, 9, 10, 60, 66, 67, 12, 17 | chpmat1dlem 22328 |
. . . . 5
β’ ((π
β Ring β§ (π = {πΌ} β§ πΌ β π) β§ π β π΅) β (πΌ((π( Β·π
β(π Mat π))(1rβ(π Mat π)))(-gβ(π Mat π))((π matToPolyMat π
)βπ))πΌ) = (π β (πβ(πΌππΌ)))) |
69 | 24, 68 | syl3an1 1163 |
. . . 4
β’ ((π
β CRing β§ (π = {πΌ} β§ πΌ β π) β§ π β π΅) β (πΌ((π( Β·π
β(π Mat π))(1rβ(π Mat π)))(-gβ(π Mat π))((π matToPolyMat π
)βπ))πΌ) = (π β (πβ(πΌππΌ)))) |
70 | 65, 69 | eqtrd 2772 |
. . 3
β’ ((π
β CRing β§ (π = {πΌ} β§ πΌ β π) β§ π β π΅) β (πΌ(((var1βπ
)( Β·π
β(π Mat π))(1rβ(π Mat π)))(-gβ(π Mat π))((π matToPolyMat π
)βπ))πΌ) = (π β (πβ(πΌππΌ)))) |
71 | 59, 70 | eqtrd 2772 |
. 2
β’ ((π
β CRing β§ (π = {πΌ} β§ πΌ β π) β§ π β π΅) β ((π maDet π)β(((var1βπ
)(
Β·π β(π Mat π))(1rβ(π Mat π)))(-gβ(π Mat π))((π matToPolyMat π
)βπ))) = (π β (πβ(πΌππΌ)))) |
72 | 20, 71 | eqtrd 2772 |
1
β’ ((π
β CRing β§ (π = {πΌ} β§ πΌ β π) β§ π β π΅) β (πΆβπ) = (π β (πβ(πΌππΌ)))) |