Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > chpmatval2 | Structured version Visualization version GIF version |
Description: The characteristic polynomial of a (square) matrix (expressed with the Leibnitz formula for the determinant). (Contributed by AV, 2-Aug-2019.) |
Ref | Expression |
---|---|
chpmatply1.c | ⊢ 𝐶 = (𝑁 CharPlyMat 𝑅) |
chpmatply1.a | ⊢ 𝐴 = (𝑁 Mat 𝑅) |
chpmatply1.b | ⊢ 𝐵 = (Base‘𝐴) |
chpmatply1.p | ⊢ 𝑃 = (Poly1‘𝑅) |
chpmatval2.y | ⊢ 𝑌 = (𝑁 Mat 𝑃) |
chpmatval2.m1 | ⊢ − = (-g‘𝑌) |
chpmatval2.x | ⊢ 𝑋 = (var1‘𝑅) |
chpmatval2.t1 | ⊢ · = ( ·𝑠 ‘𝑌) |
chpmatval2.t | ⊢ 𝑇 = (𝑁 matToPolyMat 𝑅) |
chpmatval2.i | ⊢ 1 = (1r‘𝑌) |
chpmatval2.g | ⊢ 𝐺 = (SymGrp‘𝑁) |
chpmatval2.h | ⊢ 𝐻 = (Base‘𝐺) |
chpmatval2.z | ⊢ 𝑍 = (ℤRHom‘𝑃) |
chpmatval2.s | ⊢ 𝑆 = (pmSgn‘𝑁) |
chpmatval2.u | ⊢ 𝑈 = (mulGrp‘𝑃) |
chpmatval2.rm | ⊢ × = (.r‘𝑃) |
Ref | Expression |
---|---|
chpmatval2 | ⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀 ∈ 𝐵) → (𝐶‘𝑀) = (𝑃 Σg (𝑝 ∈ 𝐻 ↦ (((𝑍 ∘ 𝑆)‘𝑝) × (𝑈 Σg (𝑥 ∈ 𝑁 ↦ ((𝑝‘𝑥)((𝑋 · 1 ) − (𝑇‘𝑀))𝑥))))))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | chpmatply1.c | . . 3 ⊢ 𝐶 = (𝑁 CharPlyMat 𝑅) | |
2 | chpmatply1.a | . . 3 ⊢ 𝐴 = (𝑁 Mat 𝑅) | |
3 | chpmatply1.b | . . 3 ⊢ 𝐵 = (Base‘𝐴) | |
4 | chpmatply1.p | . . 3 ⊢ 𝑃 = (Poly1‘𝑅) | |
5 | chpmatval2.y | . . 3 ⊢ 𝑌 = (𝑁 Mat 𝑃) | |
6 | eqid 2738 | . . 3 ⊢ (𝑁 maDet 𝑃) = (𝑁 maDet 𝑃) | |
7 | chpmatval2.m1 | . . 3 ⊢ − = (-g‘𝑌) | |
8 | chpmatval2.x | . . 3 ⊢ 𝑋 = (var1‘𝑅) | |
9 | chpmatval2.t1 | . . 3 ⊢ · = ( ·𝑠 ‘𝑌) | |
10 | chpmatval2.t | . . 3 ⊢ 𝑇 = (𝑁 matToPolyMat 𝑅) | |
11 | chpmatval2.i | . . 3 ⊢ 1 = (1r‘𝑌) | |
12 | 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11 | chpmatval 21888 | . 2 ⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀 ∈ 𝐵) → (𝐶‘𝑀) = ((𝑁 maDet 𝑃)‘((𝑋 · 1 ) − (𝑇‘𝑀)))) |
13 | eqid 2738 | . . . 4 ⊢ (𝑁 Mat 𝑃) = (𝑁 Mat 𝑃) | |
14 | 5 | fveq2i 6759 | . . . . 5 ⊢ (-g‘𝑌) = (-g‘(𝑁 Mat 𝑃)) |
15 | 7, 14 | eqtri 2766 | . . . 4 ⊢ − = (-g‘(𝑁 Mat 𝑃)) |
16 | 5 | fveq2i 6759 | . . . . 5 ⊢ ( ·𝑠 ‘𝑌) = ( ·𝑠 ‘(𝑁 Mat 𝑃)) |
17 | 9, 16 | eqtri 2766 | . . . 4 ⊢ · = ( ·𝑠 ‘(𝑁 Mat 𝑃)) |
18 | 5 | fveq2i 6759 | . . . . 5 ⊢ (1r‘𝑌) = (1r‘(𝑁 Mat 𝑃)) |
19 | 11, 18 | eqtri 2766 | . . . 4 ⊢ 1 = (1r‘(𝑁 Mat 𝑃)) |
20 | eqid 2738 | . . . 4 ⊢ ((𝑋 · 1 ) − (𝑇‘𝑀)) = ((𝑋 · 1 ) − (𝑇‘𝑀)) | |
21 | 2, 3, 4, 13, 8, 10, 15, 17, 19, 20 | chmatcl 21885 | . . 3 ⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀 ∈ 𝐵) → ((𝑋 · 1 ) − (𝑇‘𝑀)) ∈ (Base‘(𝑁 Mat 𝑃))) |
22 | 5 | eqcomi 2747 | . . . . 5 ⊢ (𝑁 Mat 𝑃) = 𝑌 |
23 | 22 | fveq2i 6759 | . . . 4 ⊢ (Base‘(𝑁 Mat 𝑃)) = (Base‘𝑌) |
24 | chpmatval2.h | . . . . 5 ⊢ 𝐻 = (Base‘𝐺) | |
25 | chpmatval2.g | . . . . . 6 ⊢ 𝐺 = (SymGrp‘𝑁) | |
26 | 25 | fveq2i 6759 | . . . . 5 ⊢ (Base‘𝐺) = (Base‘(SymGrp‘𝑁)) |
27 | 24, 26 | eqtri 2766 | . . . 4 ⊢ 𝐻 = (Base‘(SymGrp‘𝑁)) |
28 | chpmatval2.z | . . . 4 ⊢ 𝑍 = (ℤRHom‘𝑃) | |
29 | chpmatval2.s | . . . 4 ⊢ 𝑆 = (pmSgn‘𝑁) | |
30 | chpmatval2.rm | . . . 4 ⊢ × = (.r‘𝑃) | |
31 | chpmatval2.u | . . . 4 ⊢ 𝑈 = (mulGrp‘𝑃) | |
32 | 6, 5, 23, 27, 28, 29, 30, 31 | mdetleib 21644 | . . 3 ⊢ (((𝑋 · 1 ) − (𝑇‘𝑀)) ∈ (Base‘(𝑁 Mat 𝑃)) → ((𝑁 maDet 𝑃)‘((𝑋 · 1 ) − (𝑇‘𝑀))) = (𝑃 Σg (𝑝 ∈ 𝐻 ↦ (((𝑍 ∘ 𝑆)‘𝑝) × (𝑈 Σg (𝑥 ∈ 𝑁 ↦ ((𝑝‘𝑥)((𝑋 · 1 ) − (𝑇‘𝑀))𝑥))))))) |
33 | 21, 32 | syl 17 | . 2 ⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀 ∈ 𝐵) → ((𝑁 maDet 𝑃)‘((𝑋 · 1 ) − (𝑇‘𝑀))) = (𝑃 Σg (𝑝 ∈ 𝐻 ↦ (((𝑍 ∘ 𝑆)‘𝑝) × (𝑈 Σg (𝑥 ∈ 𝑁 ↦ ((𝑝‘𝑥)((𝑋 · 1 ) − (𝑇‘𝑀))𝑥))))))) |
34 | 12, 33 | eqtrd 2778 | 1 ⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀 ∈ 𝐵) → (𝐶‘𝑀) = (𝑃 Σg (𝑝 ∈ 𝐻 ↦ (((𝑍 ∘ 𝑆)‘𝑝) × (𝑈 Σg (𝑥 ∈ 𝑁 ↦ ((𝑝‘𝑥)((𝑋 · 1 ) − (𝑇‘𝑀))𝑥))))))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ w3a 1085 = wceq 1539 ∈ wcel 2108 ↦ cmpt 5153 ∘ ccom 5584 ‘cfv 6418 (class class class)co 7255 Fincfn 8691 Basecbs 16840 .rcmulr 16889 ·𝑠 cvsca 16892 Σg cgsu 17068 -gcsg 18494 SymGrpcsymg 18889 pmSgncpsgn 19012 mulGrpcmgp 19635 1rcur 19652 Ringcrg 19698 ℤRHomczrh 20613 var1cv1 21257 Poly1cpl1 21258 Mat cmat 21464 maDet cmdat 21641 matToPolyMat cmat2pmat 21761 CharPlyMat cchpmat 21883 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-rep 5205 ax-sep 5218 ax-nul 5225 ax-pow 5283 ax-pr 5347 ax-un 7566 ax-cnex 10858 ax-resscn 10859 ax-1cn 10860 ax-icn 10861 ax-addcl 10862 ax-addrcl 10863 ax-mulcl 10864 ax-mulrcl 10865 ax-mulcom 10866 ax-addass 10867 ax-mulass 10868 ax-distr 10869 ax-i2m1 10870 ax-1ne0 10871 ax-1rid 10872 ax-rnegex 10873 ax-rrecex 10874 ax-cnre 10875 ax-pre-lttri 10876 ax-pre-lttrn 10877 ax-pre-ltadd 10878 ax-pre-mulgt0 10879 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3or 1086 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-nel 3049 df-ral 3068 df-rex 3069 df-reu 3070 df-rmo 3071 df-rab 3072 df-v 3424 df-sbc 3712 df-csb 3829 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-pss 3902 df-nul 4254 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-tp 4563 df-op 4565 df-ot 4567 df-uni 4837 df-int 4877 df-iun 4923 df-iin 4924 df-br 5071 df-opab 5133 df-mpt 5154 df-tr 5188 df-id 5480 df-eprel 5486 df-po 5494 df-so 5495 df-fr 5535 df-se 5536 df-we 5537 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-pred 6191 df-ord 6254 df-on 6255 df-lim 6256 df-suc 6257 df-iota 6376 df-fun 6420 df-fn 6421 df-f 6422 df-f1 6423 df-fo 6424 df-f1o 6425 df-fv 6426 df-isom 6427 df-riota 7212 df-ov 7258 df-oprab 7259 df-mpo 7260 df-of 7511 df-ofr 7512 df-om 7688 df-1st 7804 df-2nd 7805 df-supp 7949 df-frecs 8068 df-wrecs 8099 df-recs 8173 df-rdg 8212 df-1o 8267 df-er 8456 df-map 8575 df-pm 8576 df-ixp 8644 df-en 8692 df-dom 8693 df-sdom 8694 df-fin 8695 df-fsupp 9059 df-sup 9131 df-oi 9199 df-card 9628 df-pnf 10942 df-mnf 10943 df-xr 10944 df-ltxr 10945 df-le 10946 df-sub 11137 df-neg 11138 df-nn 11904 df-2 11966 df-3 11967 df-4 11968 df-5 11969 df-6 11970 df-7 11971 df-8 11972 df-9 11973 df-n0 12164 df-z 12250 df-dec 12367 df-uz 12512 df-fz 13169 df-fzo 13312 df-seq 13650 df-hash 13973 df-struct 16776 df-sets 16793 df-slot 16811 df-ndx 16823 df-base 16841 df-ress 16868 df-plusg 16901 df-mulr 16902 df-sca 16904 df-vsca 16905 df-ip 16906 df-tset 16907 df-ple 16908 df-ds 16910 df-hom 16912 df-cco 16913 df-0g 17069 df-gsum 17070 df-prds 17075 df-pws 17077 df-mre 17212 df-mrc 17213 df-acs 17215 df-mgm 18241 df-sgrp 18290 df-mnd 18301 df-mhm 18345 df-submnd 18346 df-grp 18495 df-minusg 18496 df-sbg 18497 df-mulg 18616 df-subg 18667 df-ghm 18747 df-cntz 18838 df-cmn 19303 df-abl 19304 df-mgp 19636 df-ur 19653 df-ring 19700 df-subrg 19937 df-lmod 20040 df-lss 20109 df-sra 20349 df-rgmod 20350 df-dsmm 20849 df-frlm 20864 df-ascl 20972 df-psr 21022 df-mvr 21023 df-mpl 21024 df-opsr 21026 df-psr1 21261 df-vr1 21262 df-ply1 21263 df-mamu 21443 df-mat 21465 df-mdet 21642 df-mat2pmat 21764 df-chpmat 21884 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |