| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > chpmatval2 | Structured version Visualization version GIF version | ||
| Description: The characteristic polynomial of a (square) matrix (expressed with the Leibnitz formula for the determinant). (Contributed by AV, 2-Aug-2019.) |
| Ref | Expression |
|---|---|
| chpmatply1.c | ⊢ 𝐶 = (𝑁 CharPlyMat 𝑅) |
| chpmatply1.a | ⊢ 𝐴 = (𝑁 Mat 𝑅) |
| chpmatply1.b | ⊢ 𝐵 = (Base‘𝐴) |
| chpmatply1.p | ⊢ 𝑃 = (Poly1‘𝑅) |
| chpmatval2.y | ⊢ 𝑌 = (𝑁 Mat 𝑃) |
| chpmatval2.m1 | ⊢ − = (-g‘𝑌) |
| chpmatval2.x | ⊢ 𝑋 = (var1‘𝑅) |
| chpmatval2.t1 | ⊢ · = ( ·𝑠 ‘𝑌) |
| chpmatval2.t | ⊢ 𝑇 = (𝑁 matToPolyMat 𝑅) |
| chpmatval2.i | ⊢ 1 = (1r‘𝑌) |
| chpmatval2.g | ⊢ 𝐺 = (SymGrp‘𝑁) |
| chpmatval2.h | ⊢ 𝐻 = (Base‘𝐺) |
| chpmatval2.z | ⊢ 𝑍 = (ℤRHom‘𝑃) |
| chpmatval2.s | ⊢ 𝑆 = (pmSgn‘𝑁) |
| chpmatval2.u | ⊢ 𝑈 = (mulGrp‘𝑃) |
| chpmatval2.rm | ⊢ × = (.r‘𝑃) |
| Ref | Expression |
|---|---|
| chpmatval2 | ⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀 ∈ 𝐵) → (𝐶‘𝑀) = (𝑃 Σg (𝑝 ∈ 𝐻 ↦ (((𝑍 ∘ 𝑆)‘𝑝) × (𝑈 Σg (𝑥 ∈ 𝑁 ↦ ((𝑝‘𝑥)((𝑋 · 1 ) − (𝑇‘𝑀))𝑥))))))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | chpmatply1.c | . . 3 ⊢ 𝐶 = (𝑁 CharPlyMat 𝑅) | |
| 2 | chpmatply1.a | . . 3 ⊢ 𝐴 = (𝑁 Mat 𝑅) | |
| 3 | chpmatply1.b | . . 3 ⊢ 𝐵 = (Base‘𝐴) | |
| 4 | chpmatply1.p | . . 3 ⊢ 𝑃 = (Poly1‘𝑅) | |
| 5 | chpmatval2.y | . . 3 ⊢ 𝑌 = (𝑁 Mat 𝑃) | |
| 6 | eqid 2730 | . . 3 ⊢ (𝑁 maDet 𝑃) = (𝑁 maDet 𝑃) | |
| 7 | chpmatval2.m1 | . . 3 ⊢ − = (-g‘𝑌) | |
| 8 | chpmatval2.x | . . 3 ⊢ 𝑋 = (var1‘𝑅) | |
| 9 | chpmatval2.t1 | . . 3 ⊢ · = ( ·𝑠 ‘𝑌) | |
| 10 | chpmatval2.t | . . 3 ⊢ 𝑇 = (𝑁 matToPolyMat 𝑅) | |
| 11 | chpmatval2.i | . . 3 ⊢ 1 = (1r‘𝑌) | |
| 12 | 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11 | chpmatval 22724 | . 2 ⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀 ∈ 𝐵) → (𝐶‘𝑀) = ((𝑁 maDet 𝑃)‘((𝑋 · 1 ) − (𝑇‘𝑀)))) |
| 13 | eqid 2730 | . . . 4 ⊢ (𝑁 Mat 𝑃) = (𝑁 Mat 𝑃) | |
| 14 | 5 | fveq2i 6863 | . . . . 5 ⊢ (-g‘𝑌) = (-g‘(𝑁 Mat 𝑃)) |
| 15 | 7, 14 | eqtri 2753 | . . . 4 ⊢ − = (-g‘(𝑁 Mat 𝑃)) |
| 16 | 5 | fveq2i 6863 | . . . . 5 ⊢ ( ·𝑠 ‘𝑌) = ( ·𝑠 ‘(𝑁 Mat 𝑃)) |
| 17 | 9, 16 | eqtri 2753 | . . . 4 ⊢ · = ( ·𝑠 ‘(𝑁 Mat 𝑃)) |
| 18 | 5 | fveq2i 6863 | . . . . 5 ⊢ (1r‘𝑌) = (1r‘(𝑁 Mat 𝑃)) |
| 19 | 11, 18 | eqtri 2753 | . . . 4 ⊢ 1 = (1r‘(𝑁 Mat 𝑃)) |
| 20 | eqid 2730 | . . . 4 ⊢ ((𝑋 · 1 ) − (𝑇‘𝑀)) = ((𝑋 · 1 ) − (𝑇‘𝑀)) | |
| 21 | 2, 3, 4, 13, 8, 10, 15, 17, 19, 20 | chmatcl 22721 | . . 3 ⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀 ∈ 𝐵) → ((𝑋 · 1 ) − (𝑇‘𝑀)) ∈ (Base‘(𝑁 Mat 𝑃))) |
| 22 | 5 | eqcomi 2739 | . . . . 5 ⊢ (𝑁 Mat 𝑃) = 𝑌 |
| 23 | 22 | fveq2i 6863 | . . . 4 ⊢ (Base‘(𝑁 Mat 𝑃)) = (Base‘𝑌) |
| 24 | chpmatval2.h | . . . . 5 ⊢ 𝐻 = (Base‘𝐺) | |
| 25 | chpmatval2.g | . . . . . 6 ⊢ 𝐺 = (SymGrp‘𝑁) | |
| 26 | 25 | fveq2i 6863 | . . . . 5 ⊢ (Base‘𝐺) = (Base‘(SymGrp‘𝑁)) |
| 27 | 24, 26 | eqtri 2753 | . . . 4 ⊢ 𝐻 = (Base‘(SymGrp‘𝑁)) |
| 28 | chpmatval2.z | . . . 4 ⊢ 𝑍 = (ℤRHom‘𝑃) | |
| 29 | chpmatval2.s | . . . 4 ⊢ 𝑆 = (pmSgn‘𝑁) | |
| 30 | chpmatval2.rm | . . . 4 ⊢ × = (.r‘𝑃) | |
| 31 | chpmatval2.u | . . . 4 ⊢ 𝑈 = (mulGrp‘𝑃) | |
| 32 | 6, 5, 23, 27, 28, 29, 30, 31 | mdetleib 22480 | . . 3 ⊢ (((𝑋 · 1 ) − (𝑇‘𝑀)) ∈ (Base‘(𝑁 Mat 𝑃)) → ((𝑁 maDet 𝑃)‘((𝑋 · 1 ) − (𝑇‘𝑀))) = (𝑃 Σg (𝑝 ∈ 𝐻 ↦ (((𝑍 ∘ 𝑆)‘𝑝) × (𝑈 Σg (𝑥 ∈ 𝑁 ↦ ((𝑝‘𝑥)((𝑋 · 1 ) − (𝑇‘𝑀))𝑥))))))) |
| 33 | 21, 32 | syl 17 | . 2 ⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀 ∈ 𝐵) → ((𝑁 maDet 𝑃)‘((𝑋 · 1 ) − (𝑇‘𝑀))) = (𝑃 Σg (𝑝 ∈ 𝐻 ↦ (((𝑍 ∘ 𝑆)‘𝑝) × (𝑈 Σg (𝑥 ∈ 𝑁 ↦ ((𝑝‘𝑥)((𝑋 · 1 ) − (𝑇‘𝑀))𝑥))))))) |
| 34 | 12, 33 | eqtrd 2765 | 1 ⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀 ∈ 𝐵) → (𝐶‘𝑀) = (𝑃 Σg (𝑝 ∈ 𝐻 ↦ (((𝑍 ∘ 𝑆)‘𝑝) × (𝑈 Σg (𝑥 ∈ 𝑁 ↦ ((𝑝‘𝑥)((𝑋 · 1 ) − (𝑇‘𝑀))𝑥))))))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ w3a 1086 = wceq 1540 ∈ wcel 2109 ↦ cmpt 5190 ∘ ccom 5644 ‘cfv 6513 (class class class)co 7389 Fincfn 8920 Basecbs 17185 .rcmulr 17227 ·𝑠 cvsca 17230 Σg cgsu 17409 -gcsg 18873 SymGrpcsymg 19305 pmSgncpsgn 19425 mulGrpcmgp 20055 1rcur 20096 Ringcrg 20148 ℤRHomczrh 21415 var1cv1 22066 Poly1cpl1 22067 Mat cmat 22300 maDet cmdat 22477 matToPolyMat cmat2pmat 22597 CharPlyMat cchpmat 22719 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-rep 5236 ax-sep 5253 ax-nul 5263 ax-pow 5322 ax-pr 5389 ax-un 7713 ax-cnex 11130 ax-resscn 11131 ax-1cn 11132 ax-icn 11133 ax-addcl 11134 ax-addrcl 11135 ax-mulcl 11136 ax-mulrcl 11137 ax-mulcom 11138 ax-addass 11139 ax-mulass 11140 ax-distr 11141 ax-i2m1 11142 ax-1ne0 11143 ax-1rid 11144 ax-rnegex 11145 ax-rrecex 11146 ax-cnre 11147 ax-pre-lttri 11148 ax-pre-lttrn 11149 ax-pre-ltadd 11150 ax-pre-mulgt0 11151 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-nel 3031 df-ral 3046 df-rex 3055 df-rmo 3356 df-reu 3357 df-rab 3409 df-v 3452 df-sbc 3756 df-csb 3865 df-dif 3919 df-un 3921 df-in 3923 df-ss 3933 df-pss 3936 df-nul 4299 df-if 4491 df-pw 4567 df-sn 4592 df-pr 4594 df-tp 4596 df-op 4598 df-ot 4600 df-uni 4874 df-int 4913 df-iun 4959 df-iin 4960 df-br 5110 df-opab 5172 df-mpt 5191 df-tr 5217 df-id 5535 df-eprel 5540 df-po 5548 df-so 5549 df-fr 5593 df-se 5594 df-we 5595 df-xp 5646 df-rel 5647 df-cnv 5648 df-co 5649 df-dm 5650 df-rn 5651 df-res 5652 df-ima 5653 df-pred 6276 df-ord 6337 df-on 6338 df-lim 6339 df-suc 6340 df-iota 6466 df-fun 6515 df-fn 6516 df-f 6517 df-f1 6518 df-fo 6519 df-f1o 6520 df-fv 6521 df-isom 6522 df-riota 7346 df-ov 7392 df-oprab 7393 df-mpo 7394 df-of 7655 df-ofr 7656 df-om 7845 df-1st 7970 df-2nd 7971 df-supp 8142 df-frecs 8262 df-wrecs 8293 df-recs 8342 df-rdg 8380 df-1o 8436 df-2o 8437 df-er 8673 df-map 8803 df-pm 8804 df-ixp 8873 df-en 8921 df-dom 8922 df-sdom 8923 df-fin 8924 df-fsupp 9319 df-sup 9399 df-oi 9469 df-card 9898 df-pnf 11216 df-mnf 11217 df-xr 11218 df-ltxr 11219 df-le 11220 df-sub 11413 df-neg 11414 df-nn 12188 df-2 12250 df-3 12251 df-4 12252 df-5 12253 df-6 12254 df-7 12255 df-8 12256 df-9 12257 df-n0 12449 df-z 12536 df-dec 12656 df-uz 12800 df-fz 13475 df-fzo 13622 df-seq 13973 df-hash 14302 df-struct 17123 df-sets 17140 df-slot 17158 df-ndx 17170 df-base 17186 df-ress 17207 df-plusg 17239 df-mulr 17240 df-sca 17242 df-vsca 17243 df-ip 17244 df-tset 17245 df-ple 17246 df-ds 17248 df-hom 17250 df-cco 17251 df-0g 17410 df-gsum 17411 df-prds 17416 df-pws 17418 df-mre 17553 df-mrc 17554 df-acs 17556 df-mgm 18573 df-sgrp 18652 df-mnd 18668 df-mhm 18716 df-submnd 18717 df-grp 18874 df-minusg 18875 df-sbg 18876 df-mulg 19006 df-subg 19061 df-ghm 19151 df-cntz 19255 df-cmn 19718 df-abl 19719 df-mgp 20056 df-rng 20068 df-ur 20097 df-ring 20150 df-subrng 20461 df-subrg 20485 df-lmod 20774 df-lss 20844 df-sra 21086 df-rgmod 21087 df-dsmm 21647 df-frlm 21662 df-ascl 21770 df-psr 21824 df-mvr 21825 df-mpl 21826 df-opsr 21828 df-psr1 22070 df-vr1 22071 df-ply1 22072 df-mamu 22284 df-mat 22301 df-mdet 22478 df-mat2pmat 22600 df-chpmat 22720 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |