| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > chpmatval2 | Structured version Visualization version GIF version | ||
| Description: The characteristic polynomial of a (square) matrix (expressed with the Leibnitz formula for the determinant). (Contributed by AV, 2-Aug-2019.) |
| Ref | Expression |
|---|---|
| chpmatply1.c | ⊢ 𝐶 = (𝑁 CharPlyMat 𝑅) |
| chpmatply1.a | ⊢ 𝐴 = (𝑁 Mat 𝑅) |
| chpmatply1.b | ⊢ 𝐵 = (Base‘𝐴) |
| chpmatply1.p | ⊢ 𝑃 = (Poly1‘𝑅) |
| chpmatval2.y | ⊢ 𝑌 = (𝑁 Mat 𝑃) |
| chpmatval2.m1 | ⊢ − = (-g‘𝑌) |
| chpmatval2.x | ⊢ 𝑋 = (var1‘𝑅) |
| chpmatval2.t1 | ⊢ · = ( ·𝑠 ‘𝑌) |
| chpmatval2.t | ⊢ 𝑇 = (𝑁 matToPolyMat 𝑅) |
| chpmatval2.i | ⊢ 1 = (1r‘𝑌) |
| chpmatval2.g | ⊢ 𝐺 = (SymGrp‘𝑁) |
| chpmatval2.h | ⊢ 𝐻 = (Base‘𝐺) |
| chpmatval2.z | ⊢ 𝑍 = (ℤRHom‘𝑃) |
| chpmatval2.s | ⊢ 𝑆 = (pmSgn‘𝑁) |
| chpmatval2.u | ⊢ 𝑈 = (mulGrp‘𝑃) |
| chpmatval2.rm | ⊢ × = (.r‘𝑃) |
| Ref | Expression |
|---|---|
| chpmatval2 | ⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀 ∈ 𝐵) → (𝐶‘𝑀) = (𝑃 Σg (𝑝 ∈ 𝐻 ↦ (((𝑍 ∘ 𝑆)‘𝑝) × (𝑈 Σg (𝑥 ∈ 𝑁 ↦ ((𝑝‘𝑥)((𝑋 · 1 ) − (𝑇‘𝑀))𝑥))))))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | chpmatply1.c | . . 3 ⊢ 𝐶 = (𝑁 CharPlyMat 𝑅) | |
| 2 | chpmatply1.a | . . 3 ⊢ 𝐴 = (𝑁 Mat 𝑅) | |
| 3 | chpmatply1.b | . . 3 ⊢ 𝐵 = (Base‘𝐴) | |
| 4 | chpmatply1.p | . . 3 ⊢ 𝑃 = (Poly1‘𝑅) | |
| 5 | chpmatval2.y | . . 3 ⊢ 𝑌 = (𝑁 Mat 𝑃) | |
| 6 | eqid 2729 | . . 3 ⊢ (𝑁 maDet 𝑃) = (𝑁 maDet 𝑃) | |
| 7 | chpmatval2.m1 | . . 3 ⊢ − = (-g‘𝑌) | |
| 8 | chpmatval2.x | . . 3 ⊢ 𝑋 = (var1‘𝑅) | |
| 9 | chpmatval2.t1 | . . 3 ⊢ · = ( ·𝑠 ‘𝑌) | |
| 10 | chpmatval2.t | . . 3 ⊢ 𝑇 = (𝑁 matToPolyMat 𝑅) | |
| 11 | chpmatval2.i | . . 3 ⊢ 1 = (1r‘𝑌) | |
| 12 | 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11 | chpmatval 22718 | . 2 ⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀 ∈ 𝐵) → (𝐶‘𝑀) = ((𝑁 maDet 𝑃)‘((𝑋 · 1 ) − (𝑇‘𝑀)))) |
| 13 | eqid 2729 | . . . 4 ⊢ (𝑁 Mat 𝑃) = (𝑁 Mat 𝑃) | |
| 14 | 5 | fveq2i 6861 | . . . . 5 ⊢ (-g‘𝑌) = (-g‘(𝑁 Mat 𝑃)) |
| 15 | 7, 14 | eqtri 2752 | . . . 4 ⊢ − = (-g‘(𝑁 Mat 𝑃)) |
| 16 | 5 | fveq2i 6861 | . . . . 5 ⊢ ( ·𝑠 ‘𝑌) = ( ·𝑠 ‘(𝑁 Mat 𝑃)) |
| 17 | 9, 16 | eqtri 2752 | . . . 4 ⊢ · = ( ·𝑠 ‘(𝑁 Mat 𝑃)) |
| 18 | 5 | fveq2i 6861 | . . . . 5 ⊢ (1r‘𝑌) = (1r‘(𝑁 Mat 𝑃)) |
| 19 | 11, 18 | eqtri 2752 | . . . 4 ⊢ 1 = (1r‘(𝑁 Mat 𝑃)) |
| 20 | eqid 2729 | . . . 4 ⊢ ((𝑋 · 1 ) − (𝑇‘𝑀)) = ((𝑋 · 1 ) − (𝑇‘𝑀)) | |
| 21 | 2, 3, 4, 13, 8, 10, 15, 17, 19, 20 | chmatcl 22715 | . . 3 ⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀 ∈ 𝐵) → ((𝑋 · 1 ) − (𝑇‘𝑀)) ∈ (Base‘(𝑁 Mat 𝑃))) |
| 22 | 5 | eqcomi 2738 | . . . . 5 ⊢ (𝑁 Mat 𝑃) = 𝑌 |
| 23 | 22 | fveq2i 6861 | . . . 4 ⊢ (Base‘(𝑁 Mat 𝑃)) = (Base‘𝑌) |
| 24 | chpmatval2.h | . . . . 5 ⊢ 𝐻 = (Base‘𝐺) | |
| 25 | chpmatval2.g | . . . . . 6 ⊢ 𝐺 = (SymGrp‘𝑁) | |
| 26 | 25 | fveq2i 6861 | . . . . 5 ⊢ (Base‘𝐺) = (Base‘(SymGrp‘𝑁)) |
| 27 | 24, 26 | eqtri 2752 | . . . 4 ⊢ 𝐻 = (Base‘(SymGrp‘𝑁)) |
| 28 | chpmatval2.z | . . . 4 ⊢ 𝑍 = (ℤRHom‘𝑃) | |
| 29 | chpmatval2.s | . . . 4 ⊢ 𝑆 = (pmSgn‘𝑁) | |
| 30 | chpmatval2.rm | . . . 4 ⊢ × = (.r‘𝑃) | |
| 31 | chpmatval2.u | . . . 4 ⊢ 𝑈 = (mulGrp‘𝑃) | |
| 32 | 6, 5, 23, 27, 28, 29, 30, 31 | mdetleib 22474 | . . 3 ⊢ (((𝑋 · 1 ) − (𝑇‘𝑀)) ∈ (Base‘(𝑁 Mat 𝑃)) → ((𝑁 maDet 𝑃)‘((𝑋 · 1 ) − (𝑇‘𝑀))) = (𝑃 Σg (𝑝 ∈ 𝐻 ↦ (((𝑍 ∘ 𝑆)‘𝑝) × (𝑈 Σg (𝑥 ∈ 𝑁 ↦ ((𝑝‘𝑥)((𝑋 · 1 ) − (𝑇‘𝑀))𝑥))))))) |
| 33 | 21, 32 | syl 17 | . 2 ⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀 ∈ 𝐵) → ((𝑁 maDet 𝑃)‘((𝑋 · 1 ) − (𝑇‘𝑀))) = (𝑃 Σg (𝑝 ∈ 𝐻 ↦ (((𝑍 ∘ 𝑆)‘𝑝) × (𝑈 Σg (𝑥 ∈ 𝑁 ↦ ((𝑝‘𝑥)((𝑋 · 1 ) − (𝑇‘𝑀))𝑥))))))) |
| 34 | 12, 33 | eqtrd 2764 | 1 ⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀 ∈ 𝐵) → (𝐶‘𝑀) = (𝑃 Σg (𝑝 ∈ 𝐻 ↦ (((𝑍 ∘ 𝑆)‘𝑝) × (𝑈 Σg (𝑥 ∈ 𝑁 ↦ ((𝑝‘𝑥)((𝑋 · 1 ) − (𝑇‘𝑀))𝑥))))))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ w3a 1086 = wceq 1540 ∈ wcel 2109 ↦ cmpt 5188 ∘ ccom 5642 ‘cfv 6511 (class class class)co 7387 Fincfn 8918 Basecbs 17179 .rcmulr 17221 ·𝑠 cvsca 17224 Σg cgsu 17403 -gcsg 18867 SymGrpcsymg 19299 pmSgncpsgn 19419 mulGrpcmgp 20049 1rcur 20090 Ringcrg 20142 ℤRHomczrh 21409 var1cv1 22060 Poly1cpl1 22061 Mat cmat 22294 maDet cmdat 22471 matToPolyMat cmat2pmat 22591 CharPlyMat cchpmat 22713 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5234 ax-sep 5251 ax-nul 5261 ax-pow 5320 ax-pr 5387 ax-un 7711 ax-cnex 11124 ax-resscn 11125 ax-1cn 11126 ax-icn 11127 ax-addcl 11128 ax-addrcl 11129 ax-mulcl 11130 ax-mulrcl 11131 ax-mulcom 11132 ax-addass 11133 ax-mulass 11134 ax-distr 11135 ax-i2m1 11136 ax-1ne0 11137 ax-1rid 11138 ax-rnegex 11139 ax-rrecex 11140 ax-cnre 11141 ax-pre-lttri 11142 ax-pre-lttrn 11143 ax-pre-ltadd 11144 ax-pre-mulgt0 11145 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rmo 3354 df-reu 3355 df-rab 3406 df-v 3449 df-sbc 3754 df-csb 3863 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-pss 3934 df-nul 4297 df-if 4489 df-pw 4565 df-sn 4590 df-pr 4592 df-tp 4594 df-op 4596 df-ot 4598 df-uni 4872 df-int 4911 df-iun 4957 df-iin 4958 df-br 5108 df-opab 5170 df-mpt 5189 df-tr 5215 df-id 5533 df-eprel 5538 df-po 5546 df-so 5547 df-fr 5591 df-se 5592 df-we 5593 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-res 5650 df-ima 5651 df-pred 6274 df-ord 6335 df-on 6336 df-lim 6337 df-suc 6338 df-iota 6464 df-fun 6513 df-fn 6514 df-f 6515 df-f1 6516 df-fo 6517 df-f1o 6518 df-fv 6519 df-isom 6520 df-riota 7344 df-ov 7390 df-oprab 7391 df-mpo 7392 df-of 7653 df-ofr 7654 df-om 7843 df-1st 7968 df-2nd 7969 df-supp 8140 df-frecs 8260 df-wrecs 8291 df-recs 8340 df-rdg 8378 df-1o 8434 df-2o 8435 df-er 8671 df-map 8801 df-pm 8802 df-ixp 8871 df-en 8919 df-dom 8920 df-sdom 8921 df-fin 8922 df-fsupp 9313 df-sup 9393 df-oi 9463 df-card 9892 df-pnf 11210 df-mnf 11211 df-xr 11212 df-ltxr 11213 df-le 11214 df-sub 11407 df-neg 11408 df-nn 12187 df-2 12249 df-3 12250 df-4 12251 df-5 12252 df-6 12253 df-7 12254 df-8 12255 df-9 12256 df-n0 12443 df-z 12530 df-dec 12650 df-uz 12794 df-fz 13469 df-fzo 13616 df-seq 13967 df-hash 14296 df-struct 17117 df-sets 17134 df-slot 17152 df-ndx 17164 df-base 17180 df-ress 17201 df-plusg 17233 df-mulr 17234 df-sca 17236 df-vsca 17237 df-ip 17238 df-tset 17239 df-ple 17240 df-ds 17242 df-hom 17244 df-cco 17245 df-0g 17404 df-gsum 17405 df-prds 17410 df-pws 17412 df-mre 17547 df-mrc 17548 df-acs 17550 df-mgm 18567 df-sgrp 18646 df-mnd 18662 df-mhm 18710 df-submnd 18711 df-grp 18868 df-minusg 18869 df-sbg 18870 df-mulg 19000 df-subg 19055 df-ghm 19145 df-cntz 19249 df-cmn 19712 df-abl 19713 df-mgp 20050 df-rng 20062 df-ur 20091 df-ring 20144 df-subrng 20455 df-subrg 20479 df-lmod 20768 df-lss 20838 df-sra 21080 df-rgmod 21081 df-dsmm 21641 df-frlm 21656 df-ascl 21764 df-psr 21818 df-mvr 21819 df-mpl 21820 df-opsr 21822 df-psr1 22064 df-vr1 22065 df-ply1 22066 df-mamu 22278 df-mat 22295 df-mdet 22472 df-mat2pmat 22594 df-chpmat 22714 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |