![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > chpmatval2 | Structured version Visualization version GIF version |
Description: The characteristic polynomial of a (square) matrix (expressed with the Leibnitz formula for the determinant). (Contributed by AV, 2-Aug-2019.) |
Ref | Expression |
---|---|
chpmatply1.c | ⊢ 𝐶 = (𝑁 CharPlyMat 𝑅) |
chpmatply1.a | ⊢ 𝐴 = (𝑁 Mat 𝑅) |
chpmatply1.b | ⊢ 𝐵 = (Base‘𝐴) |
chpmatply1.p | ⊢ 𝑃 = (Poly1‘𝑅) |
chpmatval2.y | ⊢ 𝑌 = (𝑁 Mat 𝑃) |
chpmatval2.m1 | ⊢ − = (-g‘𝑌) |
chpmatval2.x | ⊢ 𝑋 = (var1‘𝑅) |
chpmatval2.t1 | ⊢ · = ( ·𝑠 ‘𝑌) |
chpmatval2.t | ⊢ 𝑇 = (𝑁 matToPolyMat 𝑅) |
chpmatval2.i | ⊢ 1 = (1r‘𝑌) |
chpmatval2.g | ⊢ 𝐺 = (SymGrp‘𝑁) |
chpmatval2.h | ⊢ 𝐻 = (Base‘𝐺) |
chpmatval2.z | ⊢ 𝑍 = (ℤRHom‘𝑃) |
chpmatval2.s | ⊢ 𝑆 = (pmSgn‘𝑁) |
chpmatval2.u | ⊢ 𝑈 = (mulGrp‘𝑃) |
chpmatval2.rm | ⊢ × = (.r‘𝑃) |
Ref | Expression |
---|---|
chpmatval2 | ⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀 ∈ 𝐵) → (𝐶‘𝑀) = (𝑃 Σg (𝑝 ∈ 𝐻 ↦ (((𝑍 ∘ 𝑆)‘𝑝) × (𝑈 Σg (𝑥 ∈ 𝑁 ↦ ((𝑝‘𝑥)((𝑋 · 1 ) − (𝑇‘𝑀))𝑥))))))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | chpmatply1.c | . . 3 ⊢ 𝐶 = (𝑁 CharPlyMat 𝑅) | |
2 | chpmatply1.a | . . 3 ⊢ 𝐴 = (𝑁 Mat 𝑅) | |
3 | chpmatply1.b | . . 3 ⊢ 𝐵 = (Base‘𝐴) | |
4 | chpmatply1.p | . . 3 ⊢ 𝑃 = (Poly1‘𝑅) | |
5 | chpmatval2.y | . . 3 ⊢ 𝑌 = (𝑁 Mat 𝑃) | |
6 | eqid 2726 | . . 3 ⊢ (𝑁 maDet 𝑃) = (𝑁 maDet 𝑃) | |
7 | chpmatval2.m1 | . . 3 ⊢ − = (-g‘𝑌) | |
8 | chpmatval2.x | . . 3 ⊢ 𝑋 = (var1‘𝑅) | |
9 | chpmatval2.t1 | . . 3 ⊢ · = ( ·𝑠 ‘𝑌) | |
10 | chpmatval2.t | . . 3 ⊢ 𝑇 = (𝑁 matToPolyMat 𝑅) | |
11 | chpmatval2.i | . . 3 ⊢ 1 = (1r‘𝑌) | |
12 | 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11 | chpmatval 22824 | . 2 ⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀 ∈ 𝐵) → (𝐶‘𝑀) = ((𝑁 maDet 𝑃)‘((𝑋 · 1 ) − (𝑇‘𝑀)))) |
13 | eqid 2726 | . . . 4 ⊢ (𝑁 Mat 𝑃) = (𝑁 Mat 𝑃) | |
14 | 5 | fveq2i 6904 | . . . . 5 ⊢ (-g‘𝑌) = (-g‘(𝑁 Mat 𝑃)) |
15 | 7, 14 | eqtri 2754 | . . . 4 ⊢ − = (-g‘(𝑁 Mat 𝑃)) |
16 | 5 | fveq2i 6904 | . . . . 5 ⊢ ( ·𝑠 ‘𝑌) = ( ·𝑠 ‘(𝑁 Mat 𝑃)) |
17 | 9, 16 | eqtri 2754 | . . . 4 ⊢ · = ( ·𝑠 ‘(𝑁 Mat 𝑃)) |
18 | 5 | fveq2i 6904 | . . . . 5 ⊢ (1r‘𝑌) = (1r‘(𝑁 Mat 𝑃)) |
19 | 11, 18 | eqtri 2754 | . . . 4 ⊢ 1 = (1r‘(𝑁 Mat 𝑃)) |
20 | eqid 2726 | . . . 4 ⊢ ((𝑋 · 1 ) − (𝑇‘𝑀)) = ((𝑋 · 1 ) − (𝑇‘𝑀)) | |
21 | 2, 3, 4, 13, 8, 10, 15, 17, 19, 20 | chmatcl 22821 | . . 3 ⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀 ∈ 𝐵) → ((𝑋 · 1 ) − (𝑇‘𝑀)) ∈ (Base‘(𝑁 Mat 𝑃))) |
22 | 5 | eqcomi 2735 | . . . . 5 ⊢ (𝑁 Mat 𝑃) = 𝑌 |
23 | 22 | fveq2i 6904 | . . . 4 ⊢ (Base‘(𝑁 Mat 𝑃)) = (Base‘𝑌) |
24 | chpmatval2.h | . . . . 5 ⊢ 𝐻 = (Base‘𝐺) | |
25 | chpmatval2.g | . . . . . 6 ⊢ 𝐺 = (SymGrp‘𝑁) | |
26 | 25 | fveq2i 6904 | . . . . 5 ⊢ (Base‘𝐺) = (Base‘(SymGrp‘𝑁)) |
27 | 24, 26 | eqtri 2754 | . . . 4 ⊢ 𝐻 = (Base‘(SymGrp‘𝑁)) |
28 | chpmatval2.z | . . . 4 ⊢ 𝑍 = (ℤRHom‘𝑃) | |
29 | chpmatval2.s | . . . 4 ⊢ 𝑆 = (pmSgn‘𝑁) | |
30 | chpmatval2.rm | . . . 4 ⊢ × = (.r‘𝑃) | |
31 | chpmatval2.u | . . . 4 ⊢ 𝑈 = (mulGrp‘𝑃) | |
32 | 6, 5, 23, 27, 28, 29, 30, 31 | mdetleib 22580 | . . 3 ⊢ (((𝑋 · 1 ) − (𝑇‘𝑀)) ∈ (Base‘(𝑁 Mat 𝑃)) → ((𝑁 maDet 𝑃)‘((𝑋 · 1 ) − (𝑇‘𝑀))) = (𝑃 Σg (𝑝 ∈ 𝐻 ↦ (((𝑍 ∘ 𝑆)‘𝑝) × (𝑈 Σg (𝑥 ∈ 𝑁 ↦ ((𝑝‘𝑥)((𝑋 · 1 ) − (𝑇‘𝑀))𝑥))))))) |
33 | 21, 32 | syl 17 | . 2 ⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀 ∈ 𝐵) → ((𝑁 maDet 𝑃)‘((𝑋 · 1 ) − (𝑇‘𝑀))) = (𝑃 Σg (𝑝 ∈ 𝐻 ↦ (((𝑍 ∘ 𝑆)‘𝑝) × (𝑈 Σg (𝑥 ∈ 𝑁 ↦ ((𝑝‘𝑥)((𝑋 · 1 ) − (𝑇‘𝑀))𝑥))))))) |
34 | 12, 33 | eqtrd 2766 | 1 ⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀 ∈ 𝐵) → (𝐶‘𝑀) = (𝑃 Σg (𝑝 ∈ 𝐻 ↦ (((𝑍 ∘ 𝑆)‘𝑝) × (𝑈 Σg (𝑥 ∈ 𝑁 ↦ ((𝑝‘𝑥)((𝑋 · 1 ) − (𝑇‘𝑀))𝑥))))))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ w3a 1084 = wceq 1534 ∈ wcel 2099 ↦ cmpt 5236 ∘ ccom 5686 ‘cfv 6554 (class class class)co 7424 Fincfn 8974 Basecbs 17213 .rcmulr 17267 ·𝑠 cvsca 17270 Σg cgsu 17455 -gcsg 18930 SymGrpcsymg 19364 pmSgncpsgn 19487 mulGrpcmgp 20117 1rcur 20164 Ringcrg 20216 ℤRHomczrh 21489 var1cv1 22165 Poly1cpl1 22166 Mat cmat 22398 maDet cmdat 22577 matToPolyMat cmat2pmat 22697 CharPlyMat cchpmat 22819 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-10 2130 ax-11 2147 ax-12 2167 ax-ext 2697 ax-rep 5290 ax-sep 5304 ax-nul 5311 ax-pow 5369 ax-pr 5433 ax-un 7746 ax-cnex 11214 ax-resscn 11215 ax-1cn 11216 ax-icn 11217 ax-addcl 11218 ax-addrcl 11219 ax-mulcl 11220 ax-mulrcl 11221 ax-mulcom 11222 ax-addass 11223 ax-mulass 11224 ax-distr 11225 ax-i2m1 11226 ax-1ne0 11227 ax-1rid 11228 ax-rnegex 11229 ax-rrecex 11230 ax-cnre 11231 ax-pre-lttri 11232 ax-pre-lttrn 11233 ax-pre-ltadd 11234 ax-pre-mulgt0 11235 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3or 1085 df-3an 1086 df-tru 1537 df-fal 1547 df-ex 1775 df-nf 1779 df-sb 2061 df-mo 2529 df-eu 2558 df-clab 2704 df-cleq 2718 df-clel 2803 df-nfc 2878 df-ne 2931 df-nel 3037 df-ral 3052 df-rex 3061 df-rmo 3364 df-reu 3365 df-rab 3420 df-v 3464 df-sbc 3777 df-csb 3893 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-pss 3967 df-nul 4326 df-if 4534 df-pw 4609 df-sn 4634 df-pr 4636 df-tp 4638 df-op 4640 df-ot 4642 df-uni 4914 df-int 4955 df-iun 5003 df-iin 5004 df-br 5154 df-opab 5216 df-mpt 5237 df-tr 5271 df-id 5580 df-eprel 5586 df-po 5594 df-so 5595 df-fr 5637 df-se 5638 df-we 5639 df-xp 5688 df-rel 5689 df-cnv 5690 df-co 5691 df-dm 5692 df-rn 5693 df-res 5694 df-ima 5695 df-pred 6312 df-ord 6379 df-on 6380 df-lim 6381 df-suc 6382 df-iota 6506 df-fun 6556 df-fn 6557 df-f 6558 df-f1 6559 df-fo 6560 df-f1o 6561 df-fv 6562 df-isom 6563 df-riota 7380 df-ov 7427 df-oprab 7428 df-mpo 7429 df-of 7690 df-ofr 7691 df-om 7877 df-1st 8003 df-2nd 8004 df-supp 8175 df-frecs 8296 df-wrecs 8327 df-recs 8401 df-rdg 8440 df-1o 8496 df-2o 8497 df-er 8734 df-map 8857 df-pm 8858 df-ixp 8927 df-en 8975 df-dom 8976 df-sdom 8977 df-fin 8978 df-fsupp 9406 df-sup 9485 df-oi 9553 df-card 9982 df-pnf 11300 df-mnf 11301 df-xr 11302 df-ltxr 11303 df-le 11304 df-sub 11496 df-neg 11497 df-nn 12265 df-2 12327 df-3 12328 df-4 12329 df-5 12330 df-6 12331 df-7 12332 df-8 12333 df-9 12334 df-n0 12525 df-z 12611 df-dec 12730 df-uz 12875 df-fz 13539 df-fzo 13682 df-seq 14022 df-hash 14348 df-struct 17149 df-sets 17166 df-slot 17184 df-ndx 17196 df-base 17214 df-ress 17243 df-plusg 17279 df-mulr 17280 df-sca 17282 df-vsca 17283 df-ip 17284 df-tset 17285 df-ple 17286 df-ds 17288 df-hom 17290 df-cco 17291 df-0g 17456 df-gsum 17457 df-prds 17462 df-pws 17464 df-mre 17599 df-mrc 17600 df-acs 17602 df-mgm 18633 df-sgrp 18712 df-mnd 18728 df-mhm 18773 df-submnd 18774 df-grp 18931 df-minusg 18932 df-sbg 18933 df-mulg 19062 df-subg 19117 df-ghm 19207 df-cntz 19311 df-cmn 19780 df-abl 19781 df-mgp 20118 df-rng 20136 df-ur 20165 df-ring 20218 df-subrng 20528 df-subrg 20553 df-lmod 20838 df-lss 20909 df-sra 21151 df-rgmod 21152 df-dsmm 21730 df-frlm 21745 df-ascl 21853 df-psr 21906 df-mvr 21907 df-mpl 21908 df-opsr 21910 df-psr1 22169 df-vr1 22170 df-ply1 22171 df-mamu 22382 df-mat 22399 df-mdet 22578 df-mat2pmat 22700 df-chpmat 22820 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |