| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > cpmadurid | Structured version Visualization version GIF version | ||
| Description: The right-hand fundamental relation of the adjugate (see madurid 22531) applied to the characteristic matrix of a matrix. (Contributed by AV, 25-Oct-2019.) |
| Ref | Expression |
|---|---|
| cpmadurid.a | ⊢ 𝐴 = (𝑁 Mat 𝑅) |
| cpmadurid.b | ⊢ 𝐵 = (Base‘𝐴) |
| cpmadurid.c | ⊢ 𝐶 = (𝑁 CharPlyMat 𝑅) |
| cpmadurid.p | ⊢ 𝑃 = (Poly1‘𝑅) |
| cpmadurid.y | ⊢ 𝑌 = (𝑁 Mat 𝑃) |
| cpmadurid.x | ⊢ 𝑋 = (var1‘𝑅) |
| cpmadurid.t | ⊢ 𝑇 = (𝑁 matToPolyMat 𝑅) |
| cpmadurid.s | ⊢ − = (-g‘𝑌) |
| cpmadurid.m1 | ⊢ · = ( ·𝑠 ‘𝑌) |
| cpmadurid.1 | ⊢ 1 = (1r‘𝑌) |
| cpmadurid.i | ⊢ 𝐼 = ((𝑋 · 1 ) − (𝑇‘𝑀)) |
| cpmadurid.j | ⊢ 𝐽 = (𝑁 maAdju 𝑃) |
| cpmadurid.m2 | ⊢ × = (.r‘𝑌) |
| Ref | Expression |
|---|---|
| cpmadurid | ⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) → (𝐼 × (𝐽‘𝐼)) = ((𝐶‘𝑀) · 1 )) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | crngring 20154 | . . . 4 ⊢ (𝑅 ∈ CRing → 𝑅 ∈ Ring) | |
| 2 | cpmadurid.a | . . . . 5 ⊢ 𝐴 = (𝑁 Mat 𝑅) | |
| 3 | cpmadurid.b | . . . . 5 ⊢ 𝐵 = (Base‘𝐴) | |
| 4 | cpmadurid.p | . . . . 5 ⊢ 𝑃 = (Poly1‘𝑅) | |
| 5 | cpmadurid.y | . . . . 5 ⊢ 𝑌 = (𝑁 Mat 𝑃) | |
| 6 | cpmadurid.x | . . . . 5 ⊢ 𝑋 = (var1‘𝑅) | |
| 7 | cpmadurid.t | . . . . 5 ⊢ 𝑇 = (𝑁 matToPolyMat 𝑅) | |
| 8 | cpmadurid.s | . . . . 5 ⊢ − = (-g‘𝑌) | |
| 9 | cpmadurid.m1 | . . . . 5 ⊢ · = ( ·𝑠 ‘𝑌) | |
| 10 | cpmadurid.1 | . . . . 5 ⊢ 1 = (1r‘𝑌) | |
| 11 | cpmadurid.i | . . . . 5 ⊢ 𝐼 = ((𝑋 · 1 ) − (𝑇‘𝑀)) | |
| 12 | 2, 3, 4, 5, 6, 7, 8, 9, 10, 11 | chmatcl 22715 | . . . 4 ⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀 ∈ 𝐵) → 𝐼 ∈ (Base‘𝑌)) |
| 13 | 1, 12 | syl3an2 1164 | . . 3 ⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) → 𝐼 ∈ (Base‘𝑌)) |
| 14 | 4 | ply1crng 22083 | . . . 4 ⊢ (𝑅 ∈ CRing → 𝑃 ∈ CRing) |
| 15 | 14 | 3ad2ant2 1134 | . . 3 ⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) → 𝑃 ∈ CRing) |
| 16 | eqid 2729 | . . . 4 ⊢ (Base‘𝑌) = (Base‘𝑌) | |
| 17 | cpmadurid.j | . . . 4 ⊢ 𝐽 = (𝑁 maAdju 𝑃) | |
| 18 | eqid 2729 | . . . 4 ⊢ (𝑁 maDet 𝑃) = (𝑁 maDet 𝑃) | |
| 19 | cpmadurid.m2 | . . . 4 ⊢ × = (.r‘𝑌) | |
| 20 | 5, 16, 17, 18, 10, 19, 9 | madurid 22531 | . . 3 ⊢ ((𝐼 ∈ (Base‘𝑌) ∧ 𝑃 ∈ CRing) → (𝐼 × (𝐽‘𝐼)) = (((𝑁 maDet 𝑃)‘𝐼) · 1 )) |
| 21 | 13, 15, 20 | syl2anc 584 | . 2 ⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) → (𝐼 × (𝐽‘𝐼)) = (((𝑁 maDet 𝑃)‘𝐼) · 1 )) |
| 22 | cpmadurid.c | . . . . 5 ⊢ 𝐶 = (𝑁 CharPlyMat 𝑅) | |
| 23 | 22, 2, 3, 4, 5, 18, 8, 6, 9, 7, 10 | chpmatval 22718 | . . . 4 ⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) → (𝐶‘𝑀) = ((𝑁 maDet 𝑃)‘((𝑋 · 1 ) − (𝑇‘𝑀)))) |
| 24 | 11 | a1i 11 | . . . . . 6 ⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) → 𝐼 = ((𝑋 · 1 ) − (𝑇‘𝑀))) |
| 25 | 24 | eqcomd 2735 | . . . . 5 ⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) → ((𝑋 · 1 ) − (𝑇‘𝑀)) = 𝐼) |
| 26 | 25 | fveq2d 6862 | . . . 4 ⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) → ((𝑁 maDet 𝑃)‘((𝑋 · 1 ) − (𝑇‘𝑀))) = ((𝑁 maDet 𝑃)‘𝐼)) |
| 27 | 23, 26 | eqtr2d 2765 | . . 3 ⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) → ((𝑁 maDet 𝑃)‘𝐼) = (𝐶‘𝑀)) |
| 28 | 27 | oveq1d 7402 | . 2 ⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) → (((𝑁 maDet 𝑃)‘𝐼) · 1 ) = ((𝐶‘𝑀) · 1 )) |
| 29 | 21, 28 | eqtrd 2764 | 1 ⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) → (𝐼 × (𝐽‘𝐼)) = ((𝐶‘𝑀) · 1 )) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ w3a 1086 = wceq 1540 ∈ wcel 2109 ‘cfv 6511 (class class class)co 7387 Fincfn 8918 Basecbs 17179 .rcmulr 17221 ·𝑠 cvsca 17224 -gcsg 18867 1rcur 20090 Ringcrg 20142 CRingccrg 20143 var1cv1 22060 Poly1cpl1 22061 Mat cmat 22294 maDet cmdat 22471 maAdju cmadu 22519 matToPolyMat cmat2pmat 22591 CharPlyMat cchpmat 22713 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5234 ax-sep 5251 ax-nul 5261 ax-pow 5320 ax-pr 5387 ax-un 7711 ax-cnex 11124 ax-resscn 11125 ax-1cn 11126 ax-icn 11127 ax-addcl 11128 ax-addrcl 11129 ax-mulcl 11130 ax-mulrcl 11131 ax-mulcom 11132 ax-addass 11133 ax-mulass 11134 ax-distr 11135 ax-i2m1 11136 ax-1ne0 11137 ax-1rid 11138 ax-rnegex 11139 ax-rrecex 11140 ax-cnre 11141 ax-pre-lttri 11142 ax-pre-lttrn 11143 ax-pre-ltadd 11144 ax-pre-mulgt0 11145 ax-addf 11147 ax-mulf 11148 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-xor 1512 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rmo 3354 df-reu 3355 df-rab 3406 df-v 3449 df-sbc 3754 df-csb 3863 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-pss 3934 df-nul 4297 df-if 4489 df-pw 4565 df-sn 4590 df-pr 4592 df-tp 4594 df-op 4596 df-ot 4598 df-uni 4872 df-int 4911 df-iun 4957 df-iin 4958 df-br 5108 df-opab 5170 df-mpt 5189 df-tr 5215 df-id 5533 df-eprel 5538 df-po 5546 df-so 5547 df-fr 5591 df-se 5592 df-we 5593 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-res 5650 df-ima 5651 df-pred 6274 df-ord 6335 df-on 6336 df-lim 6337 df-suc 6338 df-iota 6464 df-fun 6513 df-fn 6514 df-f 6515 df-f1 6516 df-fo 6517 df-f1o 6518 df-fv 6519 df-isom 6520 df-riota 7344 df-ov 7390 df-oprab 7391 df-mpo 7392 df-of 7653 df-ofr 7654 df-om 7843 df-1st 7968 df-2nd 7969 df-supp 8140 df-tpos 8205 df-frecs 8260 df-wrecs 8291 df-recs 8340 df-rdg 8378 df-1o 8434 df-2o 8435 df-er 8671 df-map 8801 df-pm 8802 df-ixp 8871 df-en 8919 df-dom 8920 df-sdom 8921 df-fin 8922 df-fsupp 9313 df-sup 9393 df-oi 9463 df-card 9892 df-pnf 11210 df-mnf 11211 df-xr 11212 df-ltxr 11213 df-le 11214 df-sub 11407 df-neg 11408 df-div 11836 df-nn 12187 df-2 12249 df-3 12250 df-4 12251 df-5 12252 df-6 12253 df-7 12254 df-8 12255 df-9 12256 df-n0 12443 df-xnn0 12516 df-z 12530 df-dec 12650 df-uz 12794 df-rp 12952 df-fz 13469 df-fzo 13616 df-seq 13967 df-exp 14027 df-hash 14296 df-word 14479 df-lsw 14528 df-concat 14536 df-s1 14561 df-substr 14606 df-pfx 14636 df-splice 14715 df-reverse 14724 df-s2 14814 df-struct 17117 df-sets 17134 df-slot 17152 df-ndx 17164 df-base 17180 df-ress 17201 df-plusg 17233 df-mulr 17234 df-starv 17235 df-sca 17236 df-vsca 17237 df-ip 17238 df-tset 17239 df-ple 17240 df-ds 17242 df-unif 17243 df-hom 17244 df-cco 17245 df-0g 17404 df-gsum 17405 df-prds 17410 df-pws 17412 df-mre 17547 df-mrc 17548 df-acs 17550 df-mgm 18567 df-sgrp 18646 df-mnd 18662 df-mhm 18710 df-submnd 18711 df-efmnd 18796 df-grp 18868 df-minusg 18869 df-sbg 18870 df-mulg 19000 df-subg 19055 df-ghm 19145 df-gim 19191 df-cntz 19249 df-oppg 19278 df-symg 19300 df-pmtr 19372 df-psgn 19421 df-evpm 19422 df-cmn 19712 df-abl 19713 df-mgp 20050 df-rng 20062 df-ur 20091 df-ring 20144 df-cring 20145 df-oppr 20246 df-dvdsr 20266 df-unit 20267 df-invr 20297 df-dvr 20310 df-rhm 20381 df-subrng 20455 df-subrg 20479 df-drng 20640 df-lmod 20768 df-lss 20838 df-sra 21080 df-rgmod 21081 df-cnfld 21265 df-zring 21357 df-zrh 21413 df-dsmm 21641 df-frlm 21656 df-ascl 21764 df-psr 21818 df-mvr 21819 df-mpl 21820 df-opsr 21822 df-psr1 22064 df-vr1 22065 df-ply1 22066 df-mamu 22278 df-mat 22295 df-mdet 22472 df-madu 22521 df-mat2pmat 22594 df-chpmat 22714 |
| This theorem is referenced by: chcoeffeq 22773 |
| Copyright terms: Public domain | W3C validator |