Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > cpmadurid | Structured version Visualization version GIF version |
Description: The right-hand fundamental relation of the adjugate (see madurid 21803) applied to the characteristic matrix of a matrix. (Contributed by AV, 25-Oct-2019.) |
Ref | Expression |
---|---|
cpmadurid.a | ⊢ 𝐴 = (𝑁 Mat 𝑅) |
cpmadurid.b | ⊢ 𝐵 = (Base‘𝐴) |
cpmadurid.c | ⊢ 𝐶 = (𝑁 CharPlyMat 𝑅) |
cpmadurid.p | ⊢ 𝑃 = (Poly1‘𝑅) |
cpmadurid.y | ⊢ 𝑌 = (𝑁 Mat 𝑃) |
cpmadurid.x | ⊢ 𝑋 = (var1‘𝑅) |
cpmadurid.t | ⊢ 𝑇 = (𝑁 matToPolyMat 𝑅) |
cpmadurid.s | ⊢ − = (-g‘𝑌) |
cpmadurid.m1 | ⊢ · = ( ·𝑠 ‘𝑌) |
cpmadurid.1 | ⊢ 1 = (1r‘𝑌) |
cpmadurid.i | ⊢ 𝐼 = ((𝑋 · 1 ) − (𝑇‘𝑀)) |
cpmadurid.j | ⊢ 𝐽 = (𝑁 maAdju 𝑃) |
cpmadurid.m2 | ⊢ × = (.r‘𝑌) |
Ref | Expression |
---|---|
cpmadurid | ⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) → (𝐼 × (𝐽‘𝐼)) = ((𝐶‘𝑀) · 1 )) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | crngring 19805 | . . . 4 ⊢ (𝑅 ∈ CRing → 𝑅 ∈ Ring) | |
2 | cpmadurid.a | . . . . 5 ⊢ 𝐴 = (𝑁 Mat 𝑅) | |
3 | cpmadurid.b | . . . . 5 ⊢ 𝐵 = (Base‘𝐴) | |
4 | cpmadurid.p | . . . . 5 ⊢ 𝑃 = (Poly1‘𝑅) | |
5 | cpmadurid.y | . . . . 5 ⊢ 𝑌 = (𝑁 Mat 𝑃) | |
6 | cpmadurid.x | . . . . 5 ⊢ 𝑋 = (var1‘𝑅) | |
7 | cpmadurid.t | . . . . 5 ⊢ 𝑇 = (𝑁 matToPolyMat 𝑅) | |
8 | cpmadurid.s | . . . . 5 ⊢ − = (-g‘𝑌) | |
9 | cpmadurid.m1 | . . . . 5 ⊢ · = ( ·𝑠 ‘𝑌) | |
10 | cpmadurid.1 | . . . . 5 ⊢ 1 = (1r‘𝑌) | |
11 | cpmadurid.i | . . . . 5 ⊢ 𝐼 = ((𝑋 · 1 ) − (𝑇‘𝑀)) | |
12 | 2, 3, 4, 5, 6, 7, 8, 9, 10, 11 | chmatcl 21987 | . . . 4 ⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀 ∈ 𝐵) → 𝐼 ∈ (Base‘𝑌)) |
13 | 1, 12 | syl3an2 1163 | . . 3 ⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) → 𝐼 ∈ (Base‘𝑌)) |
14 | 4 | ply1crng 21379 | . . . 4 ⊢ (𝑅 ∈ CRing → 𝑃 ∈ CRing) |
15 | 14 | 3ad2ant2 1133 | . . 3 ⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) → 𝑃 ∈ CRing) |
16 | eqid 2738 | . . . 4 ⊢ (Base‘𝑌) = (Base‘𝑌) | |
17 | cpmadurid.j | . . . 4 ⊢ 𝐽 = (𝑁 maAdju 𝑃) | |
18 | eqid 2738 | . . . 4 ⊢ (𝑁 maDet 𝑃) = (𝑁 maDet 𝑃) | |
19 | cpmadurid.m2 | . . . 4 ⊢ × = (.r‘𝑌) | |
20 | 5, 16, 17, 18, 10, 19, 9 | madurid 21803 | . . 3 ⊢ ((𝐼 ∈ (Base‘𝑌) ∧ 𝑃 ∈ CRing) → (𝐼 × (𝐽‘𝐼)) = (((𝑁 maDet 𝑃)‘𝐼) · 1 )) |
21 | 13, 15, 20 | syl2anc 584 | . 2 ⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) → (𝐼 × (𝐽‘𝐼)) = (((𝑁 maDet 𝑃)‘𝐼) · 1 )) |
22 | cpmadurid.c | . . . . 5 ⊢ 𝐶 = (𝑁 CharPlyMat 𝑅) | |
23 | 22, 2, 3, 4, 5, 18, 8, 6, 9, 7, 10 | chpmatval 21990 | . . . 4 ⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) → (𝐶‘𝑀) = ((𝑁 maDet 𝑃)‘((𝑋 · 1 ) − (𝑇‘𝑀)))) |
24 | 11 | a1i 11 | . . . . . 6 ⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) → 𝐼 = ((𝑋 · 1 ) − (𝑇‘𝑀))) |
25 | 24 | eqcomd 2744 | . . . . 5 ⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) → ((𝑋 · 1 ) − (𝑇‘𝑀)) = 𝐼) |
26 | 25 | fveq2d 6770 | . . . 4 ⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) → ((𝑁 maDet 𝑃)‘((𝑋 · 1 ) − (𝑇‘𝑀))) = ((𝑁 maDet 𝑃)‘𝐼)) |
27 | 23, 26 | eqtr2d 2779 | . . 3 ⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) → ((𝑁 maDet 𝑃)‘𝐼) = (𝐶‘𝑀)) |
28 | 27 | oveq1d 7282 | . 2 ⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) → (((𝑁 maDet 𝑃)‘𝐼) · 1 ) = ((𝐶‘𝑀) · 1 )) |
29 | 21, 28 | eqtrd 2778 | 1 ⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) → (𝐼 × (𝐽‘𝐼)) = ((𝐶‘𝑀) · 1 )) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ w3a 1086 = wceq 1539 ∈ wcel 2106 ‘cfv 6426 (class class class)co 7267 Fincfn 8720 Basecbs 16922 .rcmulr 16973 ·𝑠 cvsca 16976 -gcsg 18589 1rcur 19747 Ringcrg 19793 CRingccrg 19794 var1cv1 21357 Poly1cpl1 21358 Mat cmat 21564 maDet cmdat 21743 maAdju cmadu 21791 matToPolyMat cmat2pmat 21863 CharPlyMat cchpmat 21985 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-rep 5208 ax-sep 5221 ax-nul 5228 ax-pow 5286 ax-pr 5350 ax-un 7578 ax-cnex 10937 ax-resscn 10938 ax-1cn 10939 ax-icn 10940 ax-addcl 10941 ax-addrcl 10942 ax-mulcl 10943 ax-mulrcl 10944 ax-mulcom 10945 ax-addass 10946 ax-mulass 10947 ax-distr 10948 ax-i2m1 10949 ax-1ne0 10950 ax-1rid 10951 ax-rnegex 10952 ax-rrecex 10953 ax-cnre 10954 ax-pre-lttri 10955 ax-pre-lttrn 10956 ax-pre-ltadd 10957 ax-pre-mulgt0 10958 ax-addf 10960 ax-mulf 10961 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-xor 1507 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ne 2944 df-nel 3050 df-ral 3069 df-rex 3070 df-reu 3071 df-rmo 3072 df-rab 3073 df-v 3431 df-sbc 3716 df-csb 3832 df-dif 3889 df-un 3891 df-in 3893 df-ss 3903 df-pss 3905 df-nul 4257 df-if 4460 df-pw 4535 df-sn 4562 df-pr 4564 df-tp 4566 df-op 4568 df-ot 4570 df-uni 4840 df-int 4880 df-iun 4926 df-iin 4927 df-br 5074 df-opab 5136 df-mpt 5157 df-tr 5191 df-id 5484 df-eprel 5490 df-po 5498 df-so 5499 df-fr 5539 df-se 5540 df-we 5541 df-xp 5590 df-rel 5591 df-cnv 5592 df-co 5593 df-dm 5594 df-rn 5595 df-res 5596 df-ima 5597 df-pred 6195 df-ord 6262 df-on 6263 df-lim 6264 df-suc 6265 df-iota 6384 df-fun 6428 df-fn 6429 df-f 6430 df-f1 6431 df-fo 6432 df-f1o 6433 df-fv 6434 df-isom 6435 df-riota 7224 df-ov 7270 df-oprab 7271 df-mpo 7272 df-of 7523 df-ofr 7524 df-om 7703 df-1st 7820 df-2nd 7821 df-supp 7965 df-tpos 8029 df-frecs 8084 df-wrecs 8115 df-recs 8189 df-rdg 8228 df-1o 8284 df-2o 8285 df-er 8485 df-map 8604 df-pm 8605 df-ixp 8673 df-en 8721 df-dom 8722 df-sdom 8723 df-fin 8724 df-fsupp 9116 df-sup 9188 df-oi 9256 df-card 9707 df-pnf 11021 df-mnf 11022 df-xr 11023 df-ltxr 11024 df-le 11025 df-sub 11217 df-neg 11218 df-div 11643 df-nn 11984 df-2 12046 df-3 12047 df-4 12048 df-5 12049 df-6 12050 df-7 12051 df-8 12052 df-9 12053 df-n0 12244 df-xnn0 12316 df-z 12330 df-dec 12448 df-uz 12593 df-rp 12741 df-fz 13250 df-fzo 13393 df-seq 13732 df-exp 13793 df-hash 14055 df-word 14228 df-lsw 14276 df-concat 14284 df-s1 14311 df-substr 14364 df-pfx 14394 df-splice 14473 df-reverse 14482 df-s2 14571 df-struct 16858 df-sets 16875 df-slot 16893 df-ndx 16905 df-base 16923 df-ress 16952 df-plusg 16985 df-mulr 16986 df-starv 16987 df-sca 16988 df-vsca 16989 df-ip 16990 df-tset 16991 df-ple 16992 df-ds 16994 df-unif 16995 df-hom 16996 df-cco 16997 df-0g 17162 df-gsum 17163 df-prds 17168 df-pws 17170 df-mre 17305 df-mrc 17306 df-acs 17308 df-mgm 18336 df-sgrp 18385 df-mnd 18396 df-mhm 18440 df-submnd 18441 df-efmnd 18518 df-grp 18590 df-minusg 18591 df-sbg 18592 df-mulg 18711 df-subg 18762 df-ghm 18842 df-gim 18885 df-cntz 18933 df-oppg 18960 df-symg 18985 df-pmtr 19060 df-psgn 19109 df-evpm 19110 df-cmn 19398 df-abl 19399 df-mgp 19731 df-ur 19748 df-ring 19795 df-cring 19796 df-oppr 19872 df-dvdsr 19893 df-unit 19894 df-invr 19924 df-dvr 19935 df-rnghom 19969 df-drng 20003 df-subrg 20032 df-lmod 20135 df-lss 20204 df-sra 20444 df-rgmod 20445 df-cnfld 20608 df-zring 20681 df-zrh 20715 df-dsmm 20949 df-frlm 20964 df-ascl 21072 df-psr 21122 df-mvr 21123 df-mpl 21124 df-opsr 21126 df-psr1 21361 df-vr1 21362 df-ply1 21363 df-mamu 21543 df-mat 21565 df-mdet 21744 df-madu 21793 df-mat2pmat 21866 df-chpmat 21986 |
This theorem is referenced by: chcoeffeq 22045 |
Copyright terms: Public domain | W3C validator |