![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > cpmadurid | Structured version Visualization version GIF version |
Description: The right-hand fundamental relation of the adjugate (see madurid 20969) applied to the characteristic matrix of a matrix. (Contributed by AV, 25-Oct-2019.) |
Ref | Expression |
---|---|
cpmadurid.a | ⊢ 𝐴 = (𝑁 Mat 𝑅) |
cpmadurid.b | ⊢ 𝐵 = (Base‘𝐴) |
cpmadurid.c | ⊢ 𝐶 = (𝑁 CharPlyMat 𝑅) |
cpmadurid.p | ⊢ 𝑃 = (Poly1‘𝑅) |
cpmadurid.y | ⊢ 𝑌 = (𝑁 Mat 𝑃) |
cpmadurid.x | ⊢ 𝑋 = (var1‘𝑅) |
cpmadurid.t | ⊢ 𝑇 = (𝑁 matToPolyMat 𝑅) |
cpmadurid.s | ⊢ − = (-g‘𝑌) |
cpmadurid.m1 | ⊢ · = ( ·𝑠 ‘𝑌) |
cpmadurid.1 | ⊢ 1 = (1r‘𝑌) |
cpmadurid.i | ⊢ 𝐼 = ((𝑋 · 1 ) − (𝑇‘𝑀)) |
cpmadurid.j | ⊢ 𝐽 = (𝑁 maAdju 𝑃) |
cpmadurid.m2 | ⊢ × = (.r‘𝑌) |
Ref | Expression |
---|---|
cpmadurid | ⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) → (𝐼 × (𝐽‘𝐼)) = ((𝐶‘𝑀) · 1 )) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | crngring 19043 | . . . 4 ⊢ (𝑅 ∈ CRing → 𝑅 ∈ Ring) | |
2 | cpmadurid.a | . . . . 5 ⊢ 𝐴 = (𝑁 Mat 𝑅) | |
3 | cpmadurid.b | . . . . 5 ⊢ 𝐵 = (Base‘𝐴) | |
4 | cpmadurid.p | . . . . 5 ⊢ 𝑃 = (Poly1‘𝑅) | |
5 | cpmadurid.y | . . . . 5 ⊢ 𝑌 = (𝑁 Mat 𝑃) | |
6 | cpmadurid.x | . . . . 5 ⊢ 𝑋 = (var1‘𝑅) | |
7 | cpmadurid.t | . . . . 5 ⊢ 𝑇 = (𝑁 matToPolyMat 𝑅) | |
8 | cpmadurid.s | . . . . 5 ⊢ − = (-g‘𝑌) | |
9 | cpmadurid.m1 | . . . . 5 ⊢ · = ( ·𝑠 ‘𝑌) | |
10 | cpmadurid.1 | . . . . 5 ⊢ 1 = (1r‘𝑌) | |
11 | cpmadurid.i | . . . . 5 ⊢ 𝐼 = ((𝑋 · 1 ) − (𝑇‘𝑀)) | |
12 | 2, 3, 4, 5, 6, 7, 8, 9, 10, 11 | chmatcl 21152 | . . . 4 ⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀 ∈ 𝐵) → 𝐼 ∈ (Base‘𝑌)) |
13 | 1, 12 | syl3an2 1144 | . . 3 ⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) → 𝐼 ∈ (Base‘𝑌)) |
14 | 4 | ply1crng 20081 | . . . 4 ⊢ (𝑅 ∈ CRing → 𝑃 ∈ CRing) |
15 | 14 | 3ad2ant2 1114 | . . 3 ⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) → 𝑃 ∈ CRing) |
16 | eqid 2772 | . . . 4 ⊢ (Base‘𝑌) = (Base‘𝑌) | |
17 | cpmadurid.j | . . . 4 ⊢ 𝐽 = (𝑁 maAdju 𝑃) | |
18 | eqid 2772 | . . . 4 ⊢ (𝑁 maDet 𝑃) = (𝑁 maDet 𝑃) | |
19 | cpmadurid.m2 | . . . 4 ⊢ × = (.r‘𝑌) | |
20 | 5, 16, 17, 18, 10, 19, 9 | madurid 20969 | . . 3 ⊢ ((𝐼 ∈ (Base‘𝑌) ∧ 𝑃 ∈ CRing) → (𝐼 × (𝐽‘𝐼)) = (((𝑁 maDet 𝑃)‘𝐼) · 1 )) |
21 | 13, 15, 20 | syl2anc 576 | . 2 ⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) → (𝐼 × (𝐽‘𝐼)) = (((𝑁 maDet 𝑃)‘𝐼) · 1 )) |
22 | cpmadurid.c | . . . . 5 ⊢ 𝐶 = (𝑁 CharPlyMat 𝑅) | |
23 | 22, 2, 3, 4, 5, 18, 8, 6, 9, 7, 10 | chpmatval 21155 | . . . 4 ⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) → (𝐶‘𝑀) = ((𝑁 maDet 𝑃)‘((𝑋 · 1 ) − (𝑇‘𝑀)))) |
24 | 11 | a1i 11 | . . . . . 6 ⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) → 𝐼 = ((𝑋 · 1 ) − (𝑇‘𝑀))) |
25 | 24 | eqcomd 2778 | . . . . 5 ⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) → ((𝑋 · 1 ) − (𝑇‘𝑀)) = 𝐼) |
26 | 25 | fveq2d 6500 | . . . 4 ⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) → ((𝑁 maDet 𝑃)‘((𝑋 · 1 ) − (𝑇‘𝑀))) = ((𝑁 maDet 𝑃)‘𝐼)) |
27 | 23, 26 | eqtr2d 2809 | . . 3 ⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) → ((𝑁 maDet 𝑃)‘𝐼) = (𝐶‘𝑀)) |
28 | 27 | oveq1d 6989 | . 2 ⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) → (((𝑁 maDet 𝑃)‘𝐼) · 1 ) = ((𝐶‘𝑀) · 1 )) |
29 | 21, 28 | eqtrd 2808 | 1 ⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) → (𝐼 × (𝐽‘𝐼)) = ((𝐶‘𝑀) · 1 )) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ w3a 1068 = wceq 1507 ∈ wcel 2050 ‘cfv 6185 (class class class)co 6974 Fincfn 8304 Basecbs 16337 .rcmulr 16420 ·𝑠 cvsca 16423 -gcsg 17905 1rcur 18986 Ringcrg 19032 CRingccrg 19033 var1cv1 20059 Poly1cpl1 20060 Mat cmat 20732 maDet cmdat 20909 maAdju cmadu 20957 matToPolyMat cmat2pmat 21028 CharPlyMat cchpmat 21150 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1758 ax-4 1772 ax-5 1869 ax-6 1928 ax-7 1965 ax-8 2052 ax-9 2059 ax-10 2079 ax-11 2093 ax-12 2106 ax-13 2301 ax-ext 2744 ax-rep 5045 ax-sep 5056 ax-nul 5063 ax-pow 5115 ax-pr 5182 ax-un 7277 ax-cnex 10389 ax-resscn 10390 ax-1cn 10391 ax-icn 10392 ax-addcl 10393 ax-addrcl 10394 ax-mulcl 10395 ax-mulrcl 10396 ax-mulcom 10397 ax-addass 10398 ax-mulass 10399 ax-distr 10400 ax-i2m1 10401 ax-1ne0 10402 ax-1rid 10403 ax-rnegex 10404 ax-rrecex 10405 ax-cnre 10406 ax-pre-lttri 10407 ax-pre-lttrn 10408 ax-pre-ltadd 10409 ax-pre-mulgt0 10410 ax-addf 10412 ax-mulf 10413 |
This theorem depends on definitions: df-bi 199 df-an 388 df-or 834 df-3or 1069 df-3an 1070 df-xor 1489 df-tru 1510 df-fal 1520 df-ex 1743 df-nf 1747 df-sb 2016 df-mo 2547 df-eu 2584 df-clab 2753 df-cleq 2765 df-clel 2840 df-nfc 2912 df-ne 2962 df-nel 3068 df-ral 3087 df-rex 3088 df-reu 3089 df-rmo 3090 df-rab 3091 df-v 3411 df-sbc 3676 df-csb 3781 df-dif 3826 df-un 3828 df-in 3830 df-ss 3837 df-pss 3839 df-nul 4173 df-if 4345 df-pw 4418 df-sn 4436 df-pr 4438 df-tp 4440 df-op 4442 df-ot 4444 df-uni 4709 df-int 4746 df-iun 4790 df-iin 4791 df-br 4926 df-opab 4988 df-mpt 5005 df-tr 5027 df-id 5308 df-eprel 5313 df-po 5322 df-so 5323 df-fr 5362 df-se 5363 df-we 5364 df-xp 5409 df-rel 5410 df-cnv 5411 df-co 5412 df-dm 5413 df-rn 5414 df-res 5415 df-ima 5416 df-pred 5983 df-ord 6029 df-on 6030 df-lim 6031 df-suc 6032 df-iota 6149 df-fun 6187 df-fn 6188 df-f 6189 df-f1 6190 df-fo 6191 df-f1o 6192 df-fv 6193 df-isom 6194 df-riota 6935 df-ov 6977 df-oprab 6978 df-mpo 6979 df-of 7225 df-ofr 7226 df-om 7395 df-1st 7499 df-2nd 7500 df-supp 7632 df-tpos 7693 df-wrecs 7748 df-recs 7810 df-rdg 7848 df-1o 7903 df-2o 7904 df-oadd 7907 df-er 8087 df-map 8206 df-pm 8207 df-ixp 8258 df-en 8305 df-dom 8306 df-sdom 8307 df-fin 8308 df-fsupp 8627 df-sup 8699 df-oi 8767 df-card 9160 df-pnf 10474 df-mnf 10475 df-xr 10476 df-ltxr 10477 df-le 10478 df-sub 10670 df-neg 10671 df-div 11097 df-nn 11438 df-2 11501 df-3 11502 df-4 11503 df-5 11504 df-6 11505 df-7 11506 df-8 11507 df-9 11508 df-n0 11706 df-xnn0 11778 df-z 11792 df-dec 11910 df-uz 12057 df-rp 12203 df-fz 12707 df-fzo 12848 df-seq 13183 df-exp 13243 df-hash 13504 df-word 13671 df-lsw 13724 df-concat 13732 df-s1 13757 df-substr 13802 df-pfx 13851 df-splice 13958 df-reverse 13976 df-s2 14070 df-struct 16339 df-ndx 16340 df-slot 16341 df-base 16343 df-sets 16344 df-ress 16345 df-plusg 16432 df-mulr 16433 df-starv 16434 df-sca 16435 df-vsca 16436 df-ip 16437 df-tset 16438 df-ple 16439 df-ds 16441 df-unif 16442 df-hom 16443 df-cco 16444 df-0g 16569 df-gsum 16570 df-prds 16575 df-pws 16577 df-mre 16727 df-mrc 16728 df-acs 16730 df-mgm 17722 df-sgrp 17764 df-mnd 17775 df-mhm 17815 df-submnd 17816 df-grp 17906 df-minusg 17907 df-sbg 17908 df-mulg 18024 df-subg 18072 df-ghm 18139 df-gim 18182 df-cntz 18230 df-oppg 18257 df-symg 18279 df-pmtr 18343 df-psgn 18392 df-evpm 18393 df-cmn 18680 df-abl 18681 df-mgp 18975 df-ur 18987 df-ring 19034 df-cring 19035 df-oppr 19108 df-dvdsr 19126 df-unit 19127 df-invr 19157 df-dvr 19168 df-rnghom 19202 df-drng 19239 df-subrg 19268 df-lmod 19370 df-lss 19438 df-sra 19678 df-rgmod 19679 df-ascl 19820 df-psr 19862 df-mvr 19863 df-mpl 19864 df-opsr 19866 df-psr1 20063 df-vr1 20064 df-ply1 20065 df-cnfld 20260 df-zring 20332 df-zrh 20365 df-dsmm 20590 df-frlm 20605 df-mamu 20709 df-mat 20733 df-mdet 20910 df-madu 20959 df-mat2pmat 21031 df-chpmat 21151 |
This theorem is referenced by: chcoeffeq 21210 |
Copyright terms: Public domain | W3C validator |