![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > cpmadurid | Structured version Visualization version GIF version |
Description: The right-hand fundamental relation of the adjugate (see madurid 22666) applied to the characteristic matrix of a matrix. (Contributed by AV, 25-Oct-2019.) |
Ref | Expression |
---|---|
cpmadurid.a | ⊢ 𝐴 = (𝑁 Mat 𝑅) |
cpmadurid.b | ⊢ 𝐵 = (Base‘𝐴) |
cpmadurid.c | ⊢ 𝐶 = (𝑁 CharPlyMat 𝑅) |
cpmadurid.p | ⊢ 𝑃 = (Poly1‘𝑅) |
cpmadurid.y | ⊢ 𝑌 = (𝑁 Mat 𝑃) |
cpmadurid.x | ⊢ 𝑋 = (var1‘𝑅) |
cpmadurid.t | ⊢ 𝑇 = (𝑁 matToPolyMat 𝑅) |
cpmadurid.s | ⊢ − = (-g‘𝑌) |
cpmadurid.m1 | ⊢ · = ( ·𝑠 ‘𝑌) |
cpmadurid.1 | ⊢ 1 = (1r‘𝑌) |
cpmadurid.i | ⊢ 𝐼 = ((𝑋 · 1 ) − (𝑇‘𝑀)) |
cpmadurid.j | ⊢ 𝐽 = (𝑁 maAdju 𝑃) |
cpmadurid.m2 | ⊢ × = (.r‘𝑌) |
Ref | Expression |
---|---|
cpmadurid | ⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) → (𝐼 × (𝐽‘𝐼)) = ((𝐶‘𝑀) · 1 )) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | crngring 20263 | . . . 4 ⊢ (𝑅 ∈ CRing → 𝑅 ∈ Ring) | |
2 | cpmadurid.a | . . . . 5 ⊢ 𝐴 = (𝑁 Mat 𝑅) | |
3 | cpmadurid.b | . . . . 5 ⊢ 𝐵 = (Base‘𝐴) | |
4 | cpmadurid.p | . . . . 5 ⊢ 𝑃 = (Poly1‘𝑅) | |
5 | cpmadurid.y | . . . . 5 ⊢ 𝑌 = (𝑁 Mat 𝑃) | |
6 | cpmadurid.x | . . . . 5 ⊢ 𝑋 = (var1‘𝑅) | |
7 | cpmadurid.t | . . . . 5 ⊢ 𝑇 = (𝑁 matToPolyMat 𝑅) | |
8 | cpmadurid.s | . . . . 5 ⊢ − = (-g‘𝑌) | |
9 | cpmadurid.m1 | . . . . 5 ⊢ · = ( ·𝑠 ‘𝑌) | |
10 | cpmadurid.1 | . . . . 5 ⊢ 1 = (1r‘𝑌) | |
11 | cpmadurid.i | . . . . 5 ⊢ 𝐼 = ((𝑋 · 1 ) − (𝑇‘𝑀)) | |
12 | 2, 3, 4, 5, 6, 7, 8, 9, 10, 11 | chmatcl 22850 | . . . 4 ⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀 ∈ 𝐵) → 𝐼 ∈ (Base‘𝑌)) |
13 | 1, 12 | syl3an2 1163 | . . 3 ⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) → 𝐼 ∈ (Base‘𝑌)) |
14 | 4 | ply1crng 22216 | . . . 4 ⊢ (𝑅 ∈ CRing → 𝑃 ∈ CRing) |
15 | 14 | 3ad2ant2 1133 | . . 3 ⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) → 𝑃 ∈ CRing) |
16 | eqid 2735 | . . . 4 ⊢ (Base‘𝑌) = (Base‘𝑌) | |
17 | cpmadurid.j | . . . 4 ⊢ 𝐽 = (𝑁 maAdju 𝑃) | |
18 | eqid 2735 | . . . 4 ⊢ (𝑁 maDet 𝑃) = (𝑁 maDet 𝑃) | |
19 | cpmadurid.m2 | . . . 4 ⊢ × = (.r‘𝑌) | |
20 | 5, 16, 17, 18, 10, 19, 9 | madurid 22666 | . . 3 ⊢ ((𝐼 ∈ (Base‘𝑌) ∧ 𝑃 ∈ CRing) → (𝐼 × (𝐽‘𝐼)) = (((𝑁 maDet 𝑃)‘𝐼) · 1 )) |
21 | 13, 15, 20 | syl2anc 584 | . 2 ⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) → (𝐼 × (𝐽‘𝐼)) = (((𝑁 maDet 𝑃)‘𝐼) · 1 )) |
22 | cpmadurid.c | . . . . 5 ⊢ 𝐶 = (𝑁 CharPlyMat 𝑅) | |
23 | 22, 2, 3, 4, 5, 18, 8, 6, 9, 7, 10 | chpmatval 22853 | . . . 4 ⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) → (𝐶‘𝑀) = ((𝑁 maDet 𝑃)‘((𝑋 · 1 ) − (𝑇‘𝑀)))) |
24 | 11 | a1i 11 | . . . . . 6 ⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) → 𝐼 = ((𝑋 · 1 ) − (𝑇‘𝑀))) |
25 | 24 | eqcomd 2741 | . . . . 5 ⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) → ((𝑋 · 1 ) − (𝑇‘𝑀)) = 𝐼) |
26 | 25 | fveq2d 6911 | . . . 4 ⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) → ((𝑁 maDet 𝑃)‘((𝑋 · 1 ) − (𝑇‘𝑀))) = ((𝑁 maDet 𝑃)‘𝐼)) |
27 | 23, 26 | eqtr2d 2776 | . . 3 ⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) → ((𝑁 maDet 𝑃)‘𝐼) = (𝐶‘𝑀)) |
28 | 27 | oveq1d 7446 | . 2 ⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) → (((𝑁 maDet 𝑃)‘𝐼) · 1 ) = ((𝐶‘𝑀) · 1 )) |
29 | 21, 28 | eqtrd 2775 | 1 ⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) → (𝐼 × (𝐽‘𝐼)) = ((𝐶‘𝑀) · 1 )) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ w3a 1086 = wceq 1537 ∈ wcel 2106 ‘cfv 6563 (class class class)co 7431 Fincfn 8984 Basecbs 17245 .rcmulr 17299 ·𝑠 cvsca 17302 -gcsg 18966 1rcur 20199 Ringcrg 20251 CRingccrg 20252 var1cv1 22193 Poly1cpl1 22194 Mat cmat 22427 maDet cmdat 22606 maAdju cmadu 22654 matToPolyMat cmat2pmat 22726 CharPlyMat cchpmat 22848 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-8 2108 ax-9 2116 ax-10 2139 ax-11 2155 ax-12 2175 ax-ext 2706 ax-rep 5285 ax-sep 5302 ax-nul 5312 ax-pow 5371 ax-pr 5438 ax-un 7754 ax-cnex 11209 ax-resscn 11210 ax-1cn 11211 ax-icn 11212 ax-addcl 11213 ax-addrcl 11214 ax-mulcl 11215 ax-mulrcl 11216 ax-mulcom 11217 ax-addass 11218 ax-mulass 11219 ax-distr 11220 ax-i2m1 11221 ax-1ne0 11222 ax-1rid 11223 ax-rnegex 11224 ax-rrecex 11225 ax-cnre 11226 ax-pre-lttri 11227 ax-pre-lttrn 11228 ax-pre-ltadd 11229 ax-pre-mulgt0 11230 ax-addf 11232 ax-mulf 11233 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-xor 1509 df-tru 1540 df-fal 1550 df-ex 1777 df-nf 1781 df-sb 2063 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2727 df-clel 2814 df-nfc 2890 df-ne 2939 df-nel 3045 df-ral 3060 df-rex 3069 df-rmo 3378 df-reu 3379 df-rab 3434 df-v 3480 df-sbc 3792 df-csb 3909 df-dif 3966 df-un 3968 df-in 3970 df-ss 3980 df-pss 3983 df-nul 4340 df-if 4532 df-pw 4607 df-sn 4632 df-pr 4634 df-tp 4636 df-op 4638 df-ot 4640 df-uni 4913 df-int 4952 df-iun 4998 df-iin 4999 df-br 5149 df-opab 5211 df-mpt 5232 df-tr 5266 df-id 5583 df-eprel 5589 df-po 5597 df-so 5598 df-fr 5641 df-se 5642 df-we 5643 df-xp 5695 df-rel 5696 df-cnv 5697 df-co 5698 df-dm 5699 df-rn 5700 df-res 5701 df-ima 5702 df-pred 6323 df-ord 6389 df-on 6390 df-lim 6391 df-suc 6392 df-iota 6516 df-fun 6565 df-fn 6566 df-f 6567 df-f1 6568 df-fo 6569 df-f1o 6570 df-fv 6571 df-isom 6572 df-riota 7388 df-ov 7434 df-oprab 7435 df-mpo 7436 df-of 7697 df-ofr 7698 df-om 7888 df-1st 8013 df-2nd 8014 df-supp 8185 df-tpos 8250 df-frecs 8305 df-wrecs 8336 df-recs 8410 df-rdg 8449 df-1o 8505 df-2o 8506 df-er 8744 df-map 8867 df-pm 8868 df-ixp 8937 df-en 8985 df-dom 8986 df-sdom 8987 df-fin 8988 df-fsupp 9400 df-sup 9480 df-oi 9548 df-card 9977 df-pnf 11295 df-mnf 11296 df-xr 11297 df-ltxr 11298 df-le 11299 df-sub 11492 df-neg 11493 df-div 11919 df-nn 12265 df-2 12327 df-3 12328 df-4 12329 df-5 12330 df-6 12331 df-7 12332 df-8 12333 df-9 12334 df-n0 12525 df-xnn0 12598 df-z 12612 df-dec 12732 df-uz 12877 df-rp 13033 df-fz 13545 df-fzo 13692 df-seq 14040 df-exp 14100 df-hash 14367 df-word 14550 df-lsw 14598 df-concat 14606 df-s1 14631 df-substr 14676 df-pfx 14706 df-splice 14785 df-reverse 14794 df-s2 14884 df-struct 17181 df-sets 17198 df-slot 17216 df-ndx 17228 df-base 17246 df-ress 17275 df-plusg 17311 df-mulr 17312 df-starv 17313 df-sca 17314 df-vsca 17315 df-ip 17316 df-tset 17317 df-ple 17318 df-ds 17320 df-unif 17321 df-hom 17322 df-cco 17323 df-0g 17488 df-gsum 17489 df-prds 17494 df-pws 17496 df-mre 17631 df-mrc 17632 df-acs 17634 df-mgm 18666 df-sgrp 18745 df-mnd 18761 df-mhm 18809 df-submnd 18810 df-efmnd 18895 df-grp 18967 df-minusg 18968 df-sbg 18969 df-mulg 19099 df-subg 19154 df-ghm 19244 df-gim 19290 df-cntz 19348 df-oppg 19377 df-symg 19402 df-pmtr 19475 df-psgn 19524 df-evpm 19525 df-cmn 19815 df-abl 19816 df-mgp 20153 df-rng 20171 df-ur 20200 df-ring 20253 df-cring 20254 df-oppr 20351 df-dvdsr 20374 df-unit 20375 df-invr 20405 df-dvr 20418 df-rhm 20489 df-subrng 20563 df-subrg 20587 df-drng 20748 df-lmod 20877 df-lss 20948 df-sra 21190 df-rgmod 21191 df-cnfld 21383 df-zring 21476 df-zrh 21532 df-dsmm 21770 df-frlm 21785 df-ascl 21893 df-psr 21947 df-mvr 21948 df-mpl 21949 df-opsr 21951 df-psr1 22197 df-vr1 22198 df-ply1 22199 df-mamu 22411 df-mat 22428 df-mdet 22607 df-madu 22656 df-mat2pmat 22729 df-chpmat 22849 |
This theorem is referenced by: chcoeffeq 22908 |
Copyright terms: Public domain | W3C validator |