MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cpmidgsum2 Structured version   Visualization version   GIF version

Theorem cpmidgsum2 21011
Description: Representation of the identity matrix multiplied with the characteristic polynomial of a matrix as another group sum. (Contributed by AV, 10-Nov-2019.)
Hypotheses
Ref Expression
cpmadugsum.a 𝐴 = (𝑁 Mat 𝑅)
cpmadugsum.b 𝐵 = (Base‘𝐴)
cpmadugsum.p 𝑃 = (Poly1𝑅)
cpmadugsum.y 𝑌 = (𝑁 Mat 𝑃)
cpmadugsum.t 𝑇 = (𝑁 matToPolyMat 𝑅)
cpmadugsum.x 𝑋 = (var1𝑅)
cpmadugsum.e = (.g‘(mulGrp‘𝑃))
cpmadugsum.m · = ( ·𝑠𝑌)
cpmadugsum.r × = (.r𝑌)
cpmadugsum.1 1 = (1r𝑌)
cpmadugsum.g + = (+g𝑌)
cpmadugsum.s = (-g𝑌)
cpmadugsum.i 𝐼 = ((𝑋 · 1 ) (𝑇𝑀))
cpmadugsum.j 𝐽 = (𝑁 maAdju 𝑃)
cpmadugsum.0 0 = (0g𝑌)
cpmadugsum.g2 𝐺 = (𝑛 ∈ ℕ0 ↦ if(𝑛 = 0, ( 0 ((𝑇𝑀) × (𝑇‘(𝑏‘0)))), if(𝑛 = (𝑠 + 1), (𝑇‘(𝑏𝑠)), if((𝑠 + 1) < 𝑛, 0 , ((𝑇‘(𝑏‘(𝑛 − 1))) ((𝑇𝑀) × (𝑇‘(𝑏𝑛))))))))
cpmidgsum2.c 𝐶 = (𝑁 CharPlyMat 𝑅)
cpmidgsum2.k 𝐾 = (𝐶𝑀)
cpmidgsum2.h 𝐻 = (𝐾 · 1 )
Assertion
Ref Expression
cpmidgsum2 ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) → ∃𝑠 ∈ ℕ ∃𝑏 ∈ (𝐵𝑚 (0...𝑠))𝐻 = (𝑌 Σg (𝑖 ∈ ℕ0 ↦ ((𝑖 𝑋) · (𝐺𝑖)))))
Distinct variable groups:   𝐵,𝑖   𝑖,𝑀   𝑖,𝑁   𝑅,𝑖   𝑖,𝑋   𝑖,𝑌   × ,𝑖   · ,𝑖   1 ,𝑖   𝑖,𝑏,𝑠,𝑇   ,𝑖   ,𝑖   𝐴,𝑏,𝑛,𝑠   𝐵,𝑏,𝑛,𝑠   𝐼,𝑏,𝑖,𝑛,𝑠   𝐽,𝑏,𝑖,𝑛,𝑠   𝑀,𝑏,𝑛,𝑠   𝑁,𝑏,𝑛,𝑠   𝑃,𝑖,𝑛   𝑅,𝑏,𝑛,𝑠   𝑇,𝑏,𝑛,𝑠   𝑋,𝑏,𝑛,𝑠   𝑌,𝑏,𝑛,𝑠   ,𝑛,𝑠,𝑏   · ,𝑏,𝑛,𝑠   𝑖,𝐺   × ,𝑛   0 ,𝑛   ,𝑛
Allowed substitution hints:   𝐴(𝑖)   𝐶(𝑖,𝑛,𝑠,𝑏)   𝑃(𝑠,𝑏)   + (𝑖,𝑛,𝑠,𝑏)   × (𝑠,𝑏)   1 (𝑛,𝑠,𝑏)   𝐺(𝑛,𝑠,𝑏)   𝐻(𝑖,𝑛,𝑠,𝑏)   𝐾(𝑖,𝑛,𝑠,𝑏)   (𝑠,𝑏)   0 (𝑖,𝑠,𝑏)

Proof of Theorem cpmidgsum2
StepHypRef Expression
1 cpmadugsum.a . . 3 𝐴 = (𝑁 Mat 𝑅)
2 cpmadugsum.b . . 3 𝐵 = (Base‘𝐴)
3 cpmadugsum.p . . 3 𝑃 = (Poly1𝑅)
4 cpmadugsum.y . . 3 𝑌 = (𝑁 Mat 𝑃)
5 cpmadugsum.t . . 3 𝑇 = (𝑁 matToPolyMat 𝑅)
6 cpmadugsum.x . . 3 𝑋 = (var1𝑅)
7 cpmadugsum.e . . 3 = (.g‘(mulGrp‘𝑃))
8 cpmadugsum.m . . 3 · = ( ·𝑠𝑌)
9 cpmadugsum.r . . 3 × = (.r𝑌)
10 cpmadugsum.1 . . 3 1 = (1r𝑌)
11 cpmadugsum.g . . 3 + = (+g𝑌)
12 cpmadugsum.s . . 3 = (-g𝑌)
13 cpmadugsum.i . . 3 𝐼 = ((𝑋 · 1 ) (𝑇𝑀))
14 cpmadugsum.j . . 3 𝐽 = (𝑁 maAdju 𝑃)
15 cpmadugsum.0 . . 3 0 = (0g𝑌)
16 cpmadugsum.g2 . . 3 𝐺 = (𝑛 ∈ ℕ0 ↦ if(𝑛 = 0, ( 0 ((𝑇𝑀) × (𝑇‘(𝑏‘0)))), if(𝑛 = (𝑠 + 1), (𝑇‘(𝑏𝑠)), if((𝑠 + 1) < 𝑛, 0 , ((𝑇‘(𝑏‘(𝑛 − 1))) ((𝑇𝑀) × (𝑇‘(𝑏𝑛))))))))
171, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16cpmadugsum 21010 . 2 ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) → ∃𝑠 ∈ ℕ ∃𝑏 ∈ (𝐵𝑚 (0...𝑠))(𝐼 × (𝐽𝐼)) = (𝑌 Σg (𝑖 ∈ ℕ0 ↦ ((𝑖 𝑋) · (𝐺𝑖)))))
18 crngring 18873 . . . . . . . . . . . . 13 (𝑅 ∈ CRing → 𝑅 ∈ Ring)
1918anim2i 611 . . . . . . . . . . . 12 ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) → (𝑁 ∈ Fin ∧ 𝑅 ∈ Ring))
20193adant3 1163 . . . . . . . . . . 11 ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) → (𝑁 ∈ Fin ∧ 𝑅 ∈ Ring))
213, 4pmatring 20825 . . . . . . . . . . 11 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → 𝑌 ∈ Ring)
22 ringgrp 18867 . . . . . . . . . . 11 (𝑌 ∈ Ring → 𝑌 ∈ Grp)
2320, 21, 223syl 18 . . . . . . . . . 10 ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) → 𝑌 ∈ Grp)
243, 4pmatlmod 20826 . . . . . . . . . . . . 13 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → 𝑌 ∈ LMod)
2518, 24sylan2 587 . . . . . . . . . . . 12 ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) → 𝑌 ∈ LMod)
2618adantl 474 . . . . . . . . . . . . . 14 ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) → 𝑅 ∈ Ring)
27 eqid 2800 . . . . . . . . . . . . . . 15 (Base‘𝑃) = (Base‘𝑃)
286, 3, 27vr1cl 19908 . . . . . . . . . . . . . 14 (𝑅 ∈ Ring → 𝑋 ∈ (Base‘𝑃))
2926, 28syl 17 . . . . . . . . . . . . 13 ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) → 𝑋 ∈ (Base‘𝑃))
303ply1crng 19889 . . . . . . . . . . . . . . 15 (𝑅 ∈ CRing → 𝑃 ∈ CRing)
314matsca2 20550 . . . . . . . . . . . . . . 15 ((𝑁 ∈ Fin ∧ 𝑃 ∈ CRing) → 𝑃 = (Scalar‘𝑌))
3230, 31sylan2 587 . . . . . . . . . . . . . 14 ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) → 𝑃 = (Scalar‘𝑌))
3332fveq2d 6416 . . . . . . . . . . . . 13 ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) → (Base‘𝑃) = (Base‘(Scalar‘𝑌)))
3429, 33eleqtrd 2881 . . . . . . . . . . . 12 ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) → 𝑋 ∈ (Base‘(Scalar‘𝑌)))
35 eqid 2800 . . . . . . . . . . . . . 14 (Base‘𝑌) = (Base‘𝑌)
3635, 10ringidcl 18883 . . . . . . . . . . . . 13 (𝑌 ∈ Ring → 1 ∈ (Base‘𝑌))
3719, 21, 363syl 18 . . . . . . . . . . . 12 ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) → 1 ∈ (Base‘𝑌))
38 eqid 2800 . . . . . . . . . . . . 13 (Scalar‘𝑌) = (Scalar‘𝑌)
39 eqid 2800 . . . . . . . . . . . . 13 (Base‘(Scalar‘𝑌)) = (Base‘(Scalar‘𝑌))
4035, 38, 8, 39lmodvscl 19197 . . . . . . . . . . . 12 ((𝑌 ∈ LMod ∧ 𝑋 ∈ (Base‘(Scalar‘𝑌)) ∧ 1 ∈ (Base‘𝑌)) → (𝑋 · 1 ) ∈ (Base‘𝑌))
4125, 34, 37, 40syl3anc 1491 . . . . . . . . . . 11 ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) → (𝑋 · 1 ) ∈ (Base‘𝑌))
42413adant3 1163 . . . . . . . . . 10 ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) → (𝑋 · 1 ) ∈ (Base‘𝑌))
435, 1, 2, 3, 4mat2pmatbas 20858 . . . . . . . . . . 11 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀𝐵) → (𝑇𝑀) ∈ (Base‘𝑌))
4418, 43syl3an2 1204 . . . . . . . . . 10 ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) → (𝑇𝑀) ∈ (Base‘𝑌))
4535, 12grpsubcl 17810 . . . . . . . . . 10 ((𝑌 ∈ Grp ∧ (𝑋 · 1 ) ∈ (Base‘𝑌) ∧ (𝑇𝑀) ∈ (Base‘𝑌)) → ((𝑋 · 1 ) (𝑇𝑀)) ∈ (Base‘𝑌))
4623, 42, 44, 45syl3anc 1491 . . . . . . . . 9 ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) → ((𝑋 · 1 ) (𝑇𝑀)) ∈ (Base‘𝑌))
47303ad2ant2 1165 . . . . . . . . 9 ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) → 𝑃 ∈ CRing)
48 eqid 2800 . . . . . . . . . 10 (𝑁 maDet 𝑃) = (𝑁 maDet 𝑃)
494, 35, 14, 48, 10, 9, 8madurid 20775 . . . . . . . . 9 ((((𝑋 · 1 ) (𝑇𝑀)) ∈ (Base‘𝑌) ∧ 𝑃 ∈ CRing) → (((𝑋 · 1 ) (𝑇𝑀)) × (𝐽‘((𝑋 · 1 ) (𝑇𝑀)))) = (((𝑁 maDet 𝑃)‘((𝑋 · 1 ) (𝑇𝑀))) · 1 ))
5046, 47, 49syl2anc 580 . . . . . . . 8 ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) → (((𝑋 · 1 ) (𝑇𝑀)) × (𝐽‘((𝑋 · 1 ) (𝑇𝑀)))) = (((𝑁 maDet 𝑃)‘((𝑋 · 1 ) (𝑇𝑀))) · 1 ))
51 id 22 . . . . . . . . . 10 (𝐼 = ((𝑋 · 1 ) (𝑇𝑀)) → 𝐼 = ((𝑋 · 1 ) (𝑇𝑀)))
52 fveq2 6412 . . . . . . . . . 10 (𝐼 = ((𝑋 · 1 ) (𝑇𝑀)) → (𝐽𝐼) = (𝐽‘((𝑋 · 1 ) (𝑇𝑀))))
5351, 52oveq12d 6897 . . . . . . . . 9 (𝐼 = ((𝑋 · 1 ) (𝑇𝑀)) → (𝐼 × (𝐽𝐼)) = (((𝑋 · 1 ) (𝑇𝑀)) × (𝐽‘((𝑋 · 1 ) (𝑇𝑀)))))
5413, 53mp1i 13 . . . . . . . 8 ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) → (𝐼 × (𝐽𝐼)) = (((𝑋 · 1 ) (𝑇𝑀)) × (𝐽‘((𝑋 · 1 ) (𝑇𝑀)))))
55 cpmidgsum2.h . . . . . . . . 9 𝐻 = (𝐾 · 1 )
56 cpmidgsum2.k . . . . . . . . . . 11 𝐾 = (𝐶𝑀)
57 cpmidgsum2.c . . . . . . . . . . . 12 𝐶 = (𝑁 CharPlyMat 𝑅)
5857, 1, 2, 3, 4, 48, 12, 6, 8, 5, 10chpmatval 20963 . . . . . . . . . . 11 ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) → (𝐶𝑀) = ((𝑁 maDet 𝑃)‘((𝑋 · 1 ) (𝑇𝑀))))
5956, 58syl5eq 2846 . . . . . . . . . 10 ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) → 𝐾 = ((𝑁 maDet 𝑃)‘((𝑋 · 1 ) (𝑇𝑀))))
6059oveq1d 6894 . . . . . . . . 9 ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) → (𝐾 · 1 ) = (((𝑁 maDet 𝑃)‘((𝑋 · 1 ) (𝑇𝑀))) · 1 ))
6155, 60syl5eq 2846 . . . . . . . 8 ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) → 𝐻 = (((𝑁 maDet 𝑃)‘((𝑋 · 1 ) (𝑇𝑀))) · 1 ))
6250, 54, 613eqtr4rd 2845 . . . . . . 7 ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) → 𝐻 = (𝐼 × (𝐽𝐼)))
6362adantr 473 . . . . . 6 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝐼 × (𝐽𝐼)) = (𝑌 Σg (𝑖 ∈ ℕ0 ↦ ((𝑖 𝑋) · (𝐺𝑖))))) → 𝐻 = (𝐼 × (𝐽𝐼)))
64 simpr 478 . . . . . 6 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝐼 × (𝐽𝐼)) = (𝑌 Σg (𝑖 ∈ ℕ0 ↦ ((𝑖 𝑋) · (𝐺𝑖))))) → (𝐼 × (𝐽𝐼)) = (𝑌 Σg (𝑖 ∈ ℕ0 ↦ ((𝑖 𝑋) · (𝐺𝑖)))))
6563, 64eqtrd 2834 . . . . 5 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝐼 × (𝐽𝐼)) = (𝑌 Σg (𝑖 ∈ ℕ0 ↦ ((𝑖 𝑋) · (𝐺𝑖))))) → 𝐻 = (𝑌 Σg (𝑖 ∈ ℕ0 ↦ ((𝑖 𝑋) · (𝐺𝑖)))))
6665ex 402 . . . 4 ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) → ((𝐼 × (𝐽𝐼)) = (𝑌 Σg (𝑖 ∈ ℕ0 ↦ ((𝑖 𝑋) · (𝐺𝑖)))) → 𝐻 = (𝑌 Σg (𝑖 ∈ ℕ0 ↦ ((𝑖 𝑋) · (𝐺𝑖))))))
6766reximdv 3197 . . 3 ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) → (∃𝑏 ∈ (𝐵𝑚 (0...𝑠))(𝐼 × (𝐽𝐼)) = (𝑌 Σg (𝑖 ∈ ℕ0 ↦ ((𝑖 𝑋) · (𝐺𝑖)))) → ∃𝑏 ∈ (𝐵𝑚 (0...𝑠))𝐻 = (𝑌 Σg (𝑖 ∈ ℕ0 ↦ ((𝑖 𝑋) · (𝐺𝑖))))))
6867reximdv 3197 . 2 ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) → (∃𝑠 ∈ ℕ ∃𝑏 ∈ (𝐵𝑚 (0...𝑠))(𝐼 × (𝐽𝐼)) = (𝑌 Σg (𝑖 ∈ ℕ0 ↦ ((𝑖 𝑋) · (𝐺𝑖)))) → ∃𝑠 ∈ ℕ ∃𝑏 ∈ (𝐵𝑚 (0...𝑠))𝐻 = (𝑌 Σg (𝑖 ∈ ℕ0 ↦ ((𝑖 𝑋) · (𝐺𝑖))))))
6917, 68mpd 15 1 ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) → ∃𝑠 ∈ ℕ ∃𝑏 ∈ (𝐵𝑚 (0...𝑠))𝐻 = (𝑌 Σg (𝑖 ∈ ℕ0 ↦ ((𝑖 𝑋) · (𝐺𝑖)))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 385  w3a 1108   = wceq 1653  wcel 2157  wrex 3091  ifcif 4278   class class class wbr 4844  cmpt 4923  cfv 6102  (class class class)co 6879  𝑚 cmap 8096  Fincfn 8196  0cc0 10225  1c1 10226   + caddc 10228   < clt 10364  cmin 10557  cn 11313  0cn0 11579  ...cfz 12579  Basecbs 16183  +gcplusg 16266  .rcmulr 16267  Scalarcsca 16269   ·𝑠 cvsca 16270  0gc0g 16414   Σg cgsu 16415  Grpcgrp 17737  -gcsg 17739  .gcmg 17855  mulGrpcmgp 18804  1rcur 18816  Ringcrg 18862  CRingccrg 18863  LModclmod 19180  var1cv1 19867  Poly1cpl1 19868   Mat cmat 20537   maDet cmdat 20715   maAdju cmadu 20763   matToPolyMat cmat2pmat 20836   CharPlyMat cchpmat 20958
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1891  ax-4 1905  ax-5 2006  ax-6 2072  ax-7 2107  ax-8 2159  ax-9 2166  ax-10 2185  ax-11 2200  ax-12 2213  ax-13 2378  ax-ext 2778  ax-rep 4965  ax-sep 4976  ax-nul 4984  ax-pow 5036  ax-pr 5098  ax-un 7184  ax-inf2 8789  ax-cnex 10281  ax-resscn 10282  ax-1cn 10283  ax-icn 10284  ax-addcl 10285  ax-addrcl 10286  ax-mulcl 10287  ax-mulrcl 10288  ax-mulcom 10289  ax-addass 10290  ax-mulass 10291  ax-distr 10292  ax-i2m1 10293  ax-1ne0 10294  ax-1rid 10295  ax-rnegex 10296  ax-rrecex 10297  ax-cnre 10298  ax-pre-lttri 10299  ax-pre-lttrn 10300  ax-pre-ltadd 10301  ax-pre-mulgt0 10302  ax-addf 10304  ax-mulf 10305
This theorem depends on definitions:  df-bi 199  df-an 386  df-or 875  df-3or 1109  df-3an 1110  df-xor 1635  df-tru 1657  df-fal 1667  df-ex 1876  df-nf 1880  df-sb 2065  df-mo 2592  df-eu 2610  df-clab 2787  df-cleq 2793  df-clel 2796  df-nfc 2931  df-ne 2973  df-nel 3076  df-ral 3095  df-rex 3096  df-reu 3097  df-rmo 3098  df-rab 3099  df-v 3388  df-sbc 3635  df-csb 3730  df-dif 3773  df-un 3775  df-in 3777  df-ss 3784  df-pss 3786  df-nul 4117  df-if 4279  df-pw 4352  df-sn 4370  df-pr 4372  df-tp 4374  df-op 4376  df-ot 4378  df-uni 4630  df-int 4669  df-iun 4713  df-iin 4714  df-br 4845  df-opab 4907  df-mpt 4924  df-tr 4947  df-id 5221  df-eprel 5226  df-po 5234  df-so 5235  df-fr 5272  df-se 5273  df-we 5274  df-xp 5319  df-rel 5320  df-cnv 5321  df-co 5322  df-dm 5323  df-rn 5324  df-res 5325  df-ima 5326  df-pred 5899  df-ord 5945  df-on 5946  df-lim 5947  df-suc 5948  df-iota 6065  df-fun 6104  df-fn 6105  df-f 6106  df-f1 6107  df-fo 6108  df-f1o 6109  df-fv 6110  df-isom 6111  df-riota 6840  df-ov 6882  df-oprab 6883  df-mpt2 6884  df-of 7132  df-ofr 7133  df-om 7301  df-1st 7402  df-2nd 7403  df-supp 7534  df-tpos 7591  df-cur 7632  df-wrecs 7646  df-recs 7708  df-rdg 7746  df-1o 7800  df-2o 7801  df-oadd 7804  df-er 7983  df-map 8098  df-pm 8099  df-ixp 8150  df-en 8197  df-dom 8198  df-sdom 8199  df-fin 8200  df-fsupp 8519  df-sup 8591  df-oi 8658  df-card 9052  df-pnf 10366  df-mnf 10367  df-xr 10368  df-ltxr 10369  df-le 10370  df-sub 10559  df-neg 10560  df-div 10978  df-nn 11314  df-2 11375  df-3 11376  df-4 11377  df-5 11378  df-6 11379  df-7 11380  df-8 11381  df-9 11382  df-n0 11580  df-xnn0 11652  df-z 11666  df-dec 11783  df-uz 11930  df-rp 12074  df-fz 12580  df-fzo 12720  df-seq 13055  df-exp 13114  df-hash 13370  df-word 13534  df-lsw 13582  df-concat 13590  df-s1 13615  df-substr 13664  df-pfx 13713  df-splice 13820  df-reverse 13838  df-s2 13932  df-struct 16185  df-ndx 16186  df-slot 16187  df-base 16189  df-sets 16190  df-ress 16191  df-plusg 16279  df-mulr 16280  df-starv 16281  df-sca 16282  df-vsca 16283  df-ip 16284  df-tset 16285  df-ple 16286  df-ds 16288  df-unif 16289  df-hom 16290  df-cco 16291  df-0g 16416  df-gsum 16417  df-prds 16422  df-pws 16424  df-mre 16560  df-mrc 16561  df-acs 16563  df-mgm 17556  df-sgrp 17598  df-mnd 17609  df-mhm 17649  df-submnd 17650  df-grp 17740  df-minusg 17741  df-sbg 17742  df-mulg 17856  df-subg 17903  df-ghm 17970  df-gim 18013  df-cntz 18061  df-oppg 18087  df-symg 18109  df-pmtr 18173  df-psgn 18222  df-evpm 18223  df-cmn 18509  df-abl 18510  df-mgp 18805  df-ur 18817  df-srg 18821  df-ring 18864  df-cring 18865  df-oppr 18938  df-dvdsr 18956  df-unit 18957  df-invr 18987  df-dvr 18998  df-rnghom 19032  df-drng 19066  df-subrg 19095  df-lmod 19182  df-lss 19250  df-sra 19494  df-rgmod 19495  df-assa 19634  df-ascl 19636  df-psr 19678  df-mvr 19679  df-mpl 19680  df-opsr 19682  df-psr1 19871  df-vr1 19872  df-ply1 19873  df-coe1 19874  df-cnfld 20068  df-zring 20140  df-zrh 20173  df-dsmm 20400  df-frlm 20415  df-mamu 20514  df-mat 20538  df-mdet 20716  df-madu 20765  df-mat2pmat 20839  df-decpmat 20895  df-chpmat 20959
This theorem is referenced by:  cpmidg2sum  21012
  Copyright terms: Public domain W3C validator