Proof of Theorem cpmidgsum2
Step | Hyp | Ref
| Expression |
1 | | cpmadugsum.a |
. . 3
⊢ 𝐴 = (𝑁 Mat 𝑅) |
2 | | cpmadugsum.b |
. . 3
⊢ 𝐵 = (Base‘𝐴) |
3 | | cpmadugsum.p |
. . 3
⊢ 𝑃 = (Poly1‘𝑅) |
4 | | cpmadugsum.y |
. . 3
⊢ 𝑌 = (𝑁 Mat 𝑃) |
5 | | cpmadugsum.t |
. . 3
⊢ 𝑇 = (𝑁 matToPolyMat 𝑅) |
6 | | cpmadugsum.x |
. . 3
⊢ 𝑋 = (var1‘𝑅) |
7 | | cpmadugsum.e |
. . 3
⊢ ↑ =
(.g‘(mulGrp‘𝑃)) |
8 | | cpmadugsum.m |
. . 3
⊢ · = (
·𝑠 ‘𝑌) |
9 | | cpmadugsum.r |
. . 3
⊢ × =
(.r‘𝑌) |
10 | | cpmadugsum.1 |
. . 3
⊢ 1 =
(1r‘𝑌) |
11 | | cpmadugsum.g |
. . 3
⊢ + =
(+g‘𝑌) |
12 | | cpmadugsum.s |
. . 3
⊢ − =
(-g‘𝑌) |
13 | | cpmadugsum.i |
. . 3
⊢ 𝐼 = ((𝑋 · 1 ) − (𝑇‘𝑀)) |
14 | | cpmadugsum.j |
. . 3
⊢ 𝐽 = (𝑁 maAdju 𝑃) |
15 | | cpmadugsum.0 |
. . 3
⊢ 0 =
(0g‘𝑌) |
16 | | cpmadugsum.g2 |
. . 3
⊢ 𝐺 = (𝑛 ∈ ℕ0 ↦ if(𝑛 = 0, ( 0 − ((𝑇‘𝑀) × (𝑇‘(𝑏‘0)))), if(𝑛 = (𝑠 + 1), (𝑇‘(𝑏‘𝑠)), if((𝑠 + 1) < 𝑛, 0 , ((𝑇‘(𝑏‘(𝑛 − 1))) − ((𝑇‘𝑀) × (𝑇‘(𝑏‘𝑛)))))))) |
17 | 1, 2, 3, 4, 5, 6, 7, 8, 9, 10,
11, 12, 13, 14, 15, 16 | cpmadugsum 21775 |
. 2
⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) → ∃𝑠 ∈ ℕ ∃𝑏 ∈ (𝐵 ↑m (0...𝑠))(𝐼 × (𝐽‘𝐼)) = (𝑌 Σg (𝑖 ∈ ℕ0
↦ ((𝑖 ↑ 𝑋) · (𝐺‘𝑖))))) |
18 | | crngring 19574 |
. . . . . . . . . . . . 13
⊢ (𝑅 ∈ CRing → 𝑅 ∈ Ring) |
19 | 18 | anim2i 620 |
. . . . . . . . . . . 12
⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) → (𝑁 ∈ Fin ∧ 𝑅 ∈ Ring)) |
20 | 19 | 3adant3 1134 |
. . . . . . . . . . 11
⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) → (𝑁 ∈ Fin ∧ 𝑅 ∈ Ring)) |
21 | 3, 4 | pmatring 21589 |
. . . . . . . . . . 11
⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → 𝑌 ∈ Ring) |
22 | | ringgrp 19567 |
. . . . . . . . . . 11
⊢ (𝑌 ∈ Ring → 𝑌 ∈ Grp) |
23 | 20, 21, 22 | 3syl 18 |
. . . . . . . . . 10
⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) → 𝑌 ∈ Grp) |
24 | 3, 4 | pmatlmod 21590 |
. . . . . . . . . . . . 13
⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → 𝑌 ∈ LMod) |
25 | 18, 24 | sylan2 596 |
. . . . . . . . . . . 12
⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) → 𝑌 ∈ LMod) |
26 | 18 | adantl 485 |
. . . . . . . . . . . . . 14
⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) → 𝑅 ∈ Ring) |
27 | | eqid 2737 |
. . . . . . . . . . . . . . 15
⊢
(Base‘𝑃) =
(Base‘𝑃) |
28 | 6, 3, 27 | vr1cl 21138 |
. . . . . . . . . . . . . 14
⊢ (𝑅 ∈ Ring → 𝑋 ∈ (Base‘𝑃)) |
29 | 26, 28 | syl 17 |
. . . . . . . . . . . . 13
⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) → 𝑋 ∈ (Base‘𝑃)) |
30 | 3 | ply1crng 21119 |
. . . . . . . . . . . . . . 15
⊢ (𝑅 ∈ CRing → 𝑃 ∈ CRing) |
31 | 4 | matsca2 21317 |
. . . . . . . . . . . . . . 15
⊢ ((𝑁 ∈ Fin ∧ 𝑃 ∈ CRing) → 𝑃 = (Scalar‘𝑌)) |
32 | 30, 31 | sylan2 596 |
. . . . . . . . . . . . . 14
⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) → 𝑃 = (Scalar‘𝑌)) |
33 | 32 | fveq2d 6721 |
. . . . . . . . . . . . 13
⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) →
(Base‘𝑃) =
(Base‘(Scalar‘𝑌))) |
34 | 29, 33 | eleqtrd 2840 |
. . . . . . . . . . . 12
⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) → 𝑋 ∈
(Base‘(Scalar‘𝑌))) |
35 | | eqid 2737 |
. . . . . . . . . . . . . 14
⊢
(Base‘𝑌) =
(Base‘𝑌) |
36 | 35, 10 | ringidcl 19586 |
. . . . . . . . . . . . 13
⊢ (𝑌 ∈ Ring → 1 ∈
(Base‘𝑌)) |
37 | 19, 21, 36 | 3syl 18 |
. . . . . . . . . . . 12
⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) → 1 ∈
(Base‘𝑌)) |
38 | | eqid 2737 |
. . . . . . . . . . . . 13
⊢
(Scalar‘𝑌) =
(Scalar‘𝑌) |
39 | | eqid 2737 |
. . . . . . . . . . . . 13
⊢
(Base‘(Scalar‘𝑌)) = (Base‘(Scalar‘𝑌)) |
40 | 35, 38, 8, 39 | lmodvscl 19916 |
. . . . . . . . . . . 12
⊢ ((𝑌 ∈ LMod ∧ 𝑋 ∈
(Base‘(Scalar‘𝑌)) ∧ 1 ∈ (Base‘𝑌)) → (𝑋 · 1 ) ∈ (Base‘𝑌)) |
41 | 25, 34, 37, 40 | syl3anc 1373 |
. . . . . . . . . . 11
⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) → (𝑋 · 1 ) ∈ (Base‘𝑌)) |
42 | 41 | 3adant3 1134 |
. . . . . . . . . 10
⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) → (𝑋 · 1 ) ∈ (Base‘𝑌)) |
43 | 5, 1, 2, 3, 4 | mat2pmatbas 21623 |
. . . . . . . . . . 11
⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀 ∈ 𝐵) → (𝑇‘𝑀) ∈ (Base‘𝑌)) |
44 | 18, 43 | syl3an2 1166 |
. . . . . . . . . 10
⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) → (𝑇‘𝑀) ∈ (Base‘𝑌)) |
45 | 35, 12 | grpsubcl 18443 |
. . . . . . . . . 10
⊢ ((𝑌 ∈ Grp ∧ (𝑋 · 1 ) ∈ (Base‘𝑌) ∧ (𝑇‘𝑀) ∈ (Base‘𝑌)) → ((𝑋 · 1 ) − (𝑇‘𝑀)) ∈ (Base‘𝑌)) |
46 | 23, 42, 44, 45 | syl3anc 1373 |
. . . . . . . . 9
⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) → ((𝑋 · 1 ) − (𝑇‘𝑀)) ∈ (Base‘𝑌)) |
47 | 30 | 3ad2ant2 1136 |
. . . . . . . . 9
⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) → 𝑃 ∈ CRing) |
48 | | eqid 2737 |
. . . . . . . . . 10
⊢ (𝑁 maDet 𝑃) = (𝑁 maDet 𝑃) |
49 | 4, 35, 14, 48, 10, 9, 8 | madurid 21541 |
. . . . . . . . 9
⊢ ((((𝑋 · 1 ) − (𝑇‘𝑀)) ∈ (Base‘𝑌) ∧ 𝑃 ∈ CRing) → (((𝑋 · 1 ) − (𝑇‘𝑀)) × (𝐽‘((𝑋 · 1 ) − (𝑇‘𝑀)))) = (((𝑁 maDet 𝑃)‘((𝑋 · 1 ) − (𝑇‘𝑀))) · 1 )) |
50 | 46, 47, 49 | syl2anc 587 |
. . . . . . . 8
⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) → (((𝑋 · 1 ) − (𝑇‘𝑀)) × (𝐽‘((𝑋 · 1 ) − (𝑇‘𝑀)))) = (((𝑁 maDet 𝑃)‘((𝑋 · 1 ) − (𝑇‘𝑀))) · 1 )) |
51 | | id 22 |
. . . . . . . . . 10
⊢ (𝐼 = ((𝑋 · 1 ) − (𝑇‘𝑀)) → 𝐼 = ((𝑋 · 1 ) − (𝑇‘𝑀))) |
52 | | fveq2 6717 |
. . . . . . . . . 10
⊢ (𝐼 = ((𝑋 · 1 ) − (𝑇‘𝑀)) → (𝐽‘𝐼) = (𝐽‘((𝑋 · 1 ) − (𝑇‘𝑀)))) |
53 | 51, 52 | oveq12d 7231 |
. . . . . . . . 9
⊢ (𝐼 = ((𝑋 · 1 ) − (𝑇‘𝑀)) → (𝐼 × (𝐽‘𝐼)) = (((𝑋 · 1 ) − (𝑇‘𝑀)) × (𝐽‘((𝑋 · 1 ) − (𝑇‘𝑀))))) |
54 | 13, 53 | mp1i 13 |
. . . . . . . 8
⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) → (𝐼 × (𝐽‘𝐼)) = (((𝑋 · 1 ) − (𝑇‘𝑀)) × (𝐽‘((𝑋 · 1 ) − (𝑇‘𝑀))))) |
55 | | cpmidgsum2.h |
. . . . . . . . 9
⊢ 𝐻 = (𝐾 · 1 ) |
56 | | cpmidgsum2.k |
. . . . . . . . . . 11
⊢ 𝐾 = (𝐶‘𝑀) |
57 | | cpmidgsum2.c |
. . . . . . . . . . . 12
⊢ 𝐶 = (𝑁 CharPlyMat 𝑅) |
58 | 57, 1, 2, 3, 4, 48,
12, 6, 8, 5, 10 | chpmatval 21728 |
. . . . . . . . . . 11
⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) → (𝐶‘𝑀) = ((𝑁 maDet 𝑃)‘((𝑋 · 1 ) − (𝑇‘𝑀)))) |
59 | 56, 58 | syl5eq 2790 |
. . . . . . . . . 10
⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) → 𝐾 = ((𝑁 maDet 𝑃)‘((𝑋 · 1 ) − (𝑇‘𝑀)))) |
60 | 59 | oveq1d 7228 |
. . . . . . . . 9
⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) → (𝐾 · 1 ) = (((𝑁 maDet 𝑃)‘((𝑋 · 1 ) − (𝑇‘𝑀))) · 1 )) |
61 | 55, 60 | syl5eq 2790 |
. . . . . . . 8
⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) → 𝐻 = (((𝑁 maDet 𝑃)‘((𝑋 · 1 ) − (𝑇‘𝑀))) · 1 )) |
62 | 50, 54, 61 | 3eqtr4rd 2788 |
. . . . . . 7
⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) → 𝐻 = (𝐼 × (𝐽‘𝐼))) |
63 | 62 | adantr 484 |
. . . . . 6
⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) ∧ (𝐼 × (𝐽‘𝐼)) = (𝑌 Σg (𝑖 ∈ ℕ0
↦ ((𝑖 ↑ 𝑋) · (𝐺‘𝑖))))) → 𝐻 = (𝐼 × (𝐽‘𝐼))) |
64 | | simpr 488 |
. . . . . 6
⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) ∧ (𝐼 × (𝐽‘𝐼)) = (𝑌 Σg (𝑖 ∈ ℕ0
↦ ((𝑖 ↑ 𝑋) · (𝐺‘𝑖))))) → (𝐼 × (𝐽‘𝐼)) = (𝑌 Σg (𝑖 ∈ ℕ0
↦ ((𝑖 ↑ 𝑋) · (𝐺‘𝑖))))) |
65 | 63, 64 | eqtrd 2777 |
. . . . 5
⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) ∧ (𝐼 × (𝐽‘𝐼)) = (𝑌 Σg (𝑖 ∈ ℕ0
↦ ((𝑖 ↑ 𝑋) · (𝐺‘𝑖))))) → 𝐻 = (𝑌 Σg (𝑖 ∈ ℕ0
↦ ((𝑖 ↑ 𝑋) · (𝐺‘𝑖))))) |
66 | 65 | ex 416 |
. . . 4
⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) → ((𝐼 × (𝐽‘𝐼)) = (𝑌 Σg (𝑖 ∈ ℕ0
↦ ((𝑖 ↑ 𝑋) · (𝐺‘𝑖)))) → 𝐻 = (𝑌 Σg (𝑖 ∈ ℕ0
↦ ((𝑖 ↑ 𝑋) · (𝐺‘𝑖)))))) |
67 | 66 | reximdv 3192 |
. . 3
⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) → (∃𝑏 ∈ (𝐵 ↑m (0...𝑠))(𝐼 × (𝐽‘𝐼)) = (𝑌 Σg (𝑖 ∈ ℕ0
↦ ((𝑖 ↑ 𝑋) · (𝐺‘𝑖)))) → ∃𝑏 ∈ (𝐵 ↑m (0...𝑠))𝐻 = (𝑌 Σg (𝑖 ∈ ℕ0
↦ ((𝑖 ↑ 𝑋) · (𝐺‘𝑖)))))) |
68 | 67 | reximdv 3192 |
. 2
⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) → (∃𝑠 ∈ ℕ ∃𝑏 ∈ (𝐵 ↑m (0...𝑠))(𝐼 × (𝐽‘𝐼)) = (𝑌 Σg (𝑖 ∈ ℕ0
↦ ((𝑖 ↑ 𝑋) · (𝐺‘𝑖)))) → ∃𝑠 ∈ ℕ ∃𝑏 ∈ (𝐵 ↑m (0...𝑠))𝐻 = (𝑌 Σg (𝑖 ∈ ℕ0
↦ ((𝑖 ↑ 𝑋) · (𝐺‘𝑖)))))) |
69 | 17, 68 | mpd 15 |
1
⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) → ∃𝑠 ∈ ℕ ∃𝑏 ∈ (𝐵 ↑m (0...𝑠))𝐻 = (𝑌 Σg (𝑖 ∈ ℕ0
↦ ((𝑖 ↑ 𝑋) · (𝐺‘𝑖))))) |