![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > chpmatply1 | Structured version Visualization version GIF version |
Description: The characteristic polynomial of a (square) matrix over a commutative ring is a polynomial, see also the following remark in [Lang], p. 561: "[the characteristic polynomial] is an element of k[t]". (Contributed by AV, 2-Aug-2019.) (Proof shortened by AV, 29-Nov-2019.) |
Ref | Expression |
---|---|
chpmatply1.c | โข ๐ถ = (๐ CharPlyMat ๐ ) |
chpmatply1.a | โข ๐ด = (๐ Mat ๐ ) |
chpmatply1.b | โข ๐ต = (Baseโ๐ด) |
chpmatply1.p | โข ๐ = (Poly1โ๐ ) |
chpmatply1.e | โข ๐ธ = (Baseโ๐) |
Ref | Expression |
---|---|
chpmatply1 | โข ((๐ โ Fin โง ๐ โ CRing โง ๐ โ ๐ต) โ (๐ถโ๐) โ ๐ธ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | chpmatply1.c | . . 3 โข ๐ถ = (๐ CharPlyMat ๐ ) | |
2 | chpmatply1.a | . . 3 โข ๐ด = (๐ Mat ๐ ) | |
3 | chpmatply1.b | . . 3 โข ๐ต = (Baseโ๐ด) | |
4 | chpmatply1.p | . . 3 โข ๐ = (Poly1โ๐ ) | |
5 | eqid 2728 | . . 3 โข (๐ Mat ๐) = (๐ Mat ๐) | |
6 | eqid 2728 | . . 3 โข (๐ maDet ๐) = (๐ maDet ๐) | |
7 | eqid 2728 | . . 3 โข (-gโ(๐ Mat ๐)) = (-gโ(๐ Mat ๐)) | |
8 | eqid 2728 | . . 3 โข (var1โ๐ ) = (var1โ๐ ) | |
9 | eqid 2728 | . . 3 โข ( ยท๐ โ(๐ Mat ๐)) = ( ยท๐ โ(๐ Mat ๐)) | |
10 | eqid 2728 | . . 3 โข (๐ matToPolyMat ๐ ) = (๐ matToPolyMat ๐ ) | |
11 | eqid 2728 | . . 3 โข (1rโ(๐ Mat ๐)) = (1rโ(๐ Mat ๐)) | |
12 | 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11 | chpmatval 22753 | . 2 โข ((๐ โ Fin โง ๐ โ CRing โง ๐ โ ๐ต) โ (๐ถโ๐) = ((๐ maDet ๐)โ(((var1โ๐ )( ยท๐ โ(๐ Mat ๐))(1rโ(๐ Mat ๐)))(-gโ(๐ Mat ๐))((๐ matToPolyMat ๐ )โ๐)))) |
13 | 4 | ply1crng 22124 | . . . 4 โข (๐ โ CRing โ ๐ โ CRing) |
14 | 13 | 3ad2ant2 1131 | . . 3 โข ((๐ โ Fin โง ๐ โ CRing โง ๐ โ ๐ต) โ ๐ โ CRing) |
15 | crngring 20192 | . . . 4 โข (๐ โ CRing โ ๐ โ Ring) | |
16 | eqid 2728 | . . . . 5 โข (((var1โ๐ )( ยท๐ โ(๐ Mat ๐))(1rโ(๐ Mat ๐)))(-gโ(๐ Mat ๐))((๐ matToPolyMat ๐ )โ๐)) = (((var1โ๐ )( ยท๐ โ(๐ Mat ๐))(1rโ(๐ Mat ๐)))(-gโ(๐ Mat ๐))((๐ matToPolyMat ๐ )โ๐)) | |
17 | 2, 3, 4, 5, 8, 10, 7, 9, 11, 16 | chmatcl 22750 | . . . 4 โข ((๐ โ Fin โง ๐ โ Ring โง ๐ โ ๐ต) โ (((var1โ๐ )( ยท๐ โ(๐ Mat ๐))(1rโ(๐ Mat ๐)))(-gโ(๐ Mat ๐))((๐ matToPolyMat ๐ )โ๐)) โ (Baseโ(๐ Mat ๐))) |
18 | 15, 17 | syl3an2 1161 | . . 3 โข ((๐ โ Fin โง ๐ โ CRing โง ๐ โ ๐ต) โ (((var1โ๐ )( ยท๐ โ(๐ Mat ๐))(1rโ(๐ Mat ๐)))(-gโ(๐ Mat ๐))((๐ matToPolyMat ๐ )โ๐)) โ (Baseโ(๐ Mat ๐))) |
19 | eqid 2728 | . . . 4 โข (Baseโ(๐ Mat ๐)) = (Baseโ(๐ Mat ๐)) | |
20 | chpmatply1.e | . . . 4 โข ๐ธ = (Baseโ๐) | |
21 | 6, 5, 19, 20 | mdetcl 22518 | . . 3 โข ((๐ โ CRing โง (((var1โ๐ )( ยท๐ โ(๐ Mat ๐))(1rโ(๐ Mat ๐)))(-gโ(๐ Mat ๐))((๐ matToPolyMat ๐ )โ๐)) โ (Baseโ(๐ Mat ๐))) โ ((๐ maDet ๐)โ(((var1โ๐ )( ยท๐ โ(๐ Mat ๐))(1rโ(๐ Mat ๐)))(-gโ(๐ Mat ๐))((๐ matToPolyMat ๐ )โ๐))) โ ๐ธ) |
22 | 14, 18, 21 | syl2anc 582 | . 2 โข ((๐ โ Fin โง ๐ โ CRing โง ๐ โ ๐ต) โ ((๐ maDet ๐)โ(((var1โ๐ )( ยท๐ โ(๐ Mat ๐))(1rโ(๐ Mat ๐)))(-gโ(๐ Mat ๐))((๐ matToPolyMat ๐ )โ๐))) โ ๐ธ) |
23 | 12, 22 | eqeltrd 2829 | 1 โข ((๐ โ Fin โง ๐ โ CRing โง ๐ โ ๐ต) โ (๐ถโ๐) โ ๐ธ) |
Colors of variables: wff setvar class |
Syntax hints: โ wi 4 โง w3a 1084 = wceq 1533 โ wcel 2098 โcfv 6553 (class class class)co 7426 Fincfn 8970 Basecbs 17187 ยท๐ cvsca 17244 -gcsg 18899 1rcur 20128 Ringcrg 20180 CRingccrg 20181 var1cv1 22102 Poly1cpl1 22103 Mat cmat 22327 maDet cmdat 22506 matToPolyMat cmat2pmat 22626 CharPlyMat cchpmat 22748 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2166 ax-ext 2699 ax-rep 5289 ax-sep 5303 ax-nul 5310 ax-pow 5369 ax-pr 5433 ax-un 7746 ax-cnex 11202 ax-resscn 11203 ax-1cn 11204 ax-icn 11205 ax-addcl 11206 ax-addrcl 11207 ax-mulcl 11208 ax-mulrcl 11209 ax-mulcom 11210 ax-addass 11211 ax-mulass 11212 ax-distr 11213 ax-i2m1 11214 ax-1ne0 11215 ax-1rid 11216 ax-rnegex 11217 ax-rrecex 11218 ax-cnre 11219 ax-pre-lttri 11220 ax-pre-lttrn 11221 ax-pre-ltadd 11222 ax-pre-mulgt0 11223 ax-addf 11225 ax-mulf 11226 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3or 1085 df-3an 1086 df-xor 1505 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2529 df-eu 2558 df-clab 2706 df-cleq 2720 df-clel 2806 df-nfc 2881 df-ne 2938 df-nel 3044 df-ral 3059 df-rex 3068 df-rmo 3374 df-reu 3375 df-rab 3431 df-v 3475 df-sbc 3779 df-csb 3895 df-dif 3952 df-un 3954 df-in 3956 df-ss 3966 df-pss 3968 df-nul 4327 df-if 4533 df-pw 4608 df-sn 4633 df-pr 4635 df-tp 4637 df-op 4639 df-ot 4641 df-uni 4913 df-int 4954 df-iun 5002 df-iin 5003 df-br 5153 df-opab 5215 df-mpt 5236 df-tr 5270 df-id 5580 df-eprel 5586 df-po 5594 df-so 5595 df-fr 5637 df-se 5638 df-we 5639 df-xp 5688 df-rel 5689 df-cnv 5690 df-co 5691 df-dm 5692 df-rn 5693 df-res 5694 df-ima 5695 df-pred 6310 df-ord 6377 df-on 6378 df-lim 6379 df-suc 6380 df-iota 6505 df-fun 6555 df-fn 6556 df-f 6557 df-f1 6558 df-fo 6559 df-f1o 6560 df-fv 6561 df-isom 6562 df-riota 7382 df-ov 7429 df-oprab 7430 df-mpo 7431 df-of 7691 df-ofr 7692 df-om 7877 df-1st 7999 df-2nd 8000 df-supp 8172 df-tpos 8238 df-frecs 8293 df-wrecs 8324 df-recs 8398 df-rdg 8437 df-1o 8493 df-2o 8494 df-er 8731 df-map 8853 df-pm 8854 df-ixp 8923 df-en 8971 df-dom 8972 df-sdom 8973 df-fin 8974 df-fsupp 9394 df-sup 9473 df-oi 9541 df-card 9970 df-pnf 11288 df-mnf 11289 df-xr 11290 df-ltxr 11291 df-le 11292 df-sub 11484 df-neg 11485 df-div 11910 df-nn 12251 df-2 12313 df-3 12314 df-4 12315 df-5 12316 df-6 12317 df-7 12318 df-8 12319 df-9 12320 df-n0 12511 df-xnn0 12583 df-z 12597 df-dec 12716 df-uz 12861 df-rp 13015 df-fz 13525 df-fzo 13668 df-seq 14007 df-exp 14067 df-hash 14330 df-word 14505 df-lsw 14553 df-concat 14561 df-s1 14586 df-substr 14631 df-pfx 14661 df-splice 14740 df-reverse 14749 df-s2 14839 df-struct 17123 df-sets 17140 df-slot 17158 df-ndx 17170 df-base 17188 df-ress 17217 df-plusg 17253 df-mulr 17254 df-starv 17255 df-sca 17256 df-vsca 17257 df-ip 17258 df-tset 17259 df-ple 17260 df-ds 17262 df-unif 17263 df-hom 17264 df-cco 17265 df-0g 17430 df-gsum 17431 df-prds 17436 df-pws 17438 df-mre 17573 df-mrc 17574 df-acs 17576 df-mgm 18607 df-sgrp 18686 df-mnd 18702 df-mhm 18747 df-submnd 18748 df-efmnd 18828 df-grp 18900 df-minusg 18901 df-sbg 18902 df-mulg 19031 df-subg 19085 df-ghm 19175 df-gim 19220 df-cntz 19275 df-oppg 19304 df-symg 19329 df-pmtr 19404 df-psgn 19453 df-cmn 19744 df-abl 19745 df-mgp 20082 df-rng 20100 df-ur 20129 df-ring 20182 df-cring 20183 df-oppr 20280 df-dvdsr 20303 df-unit 20304 df-invr 20334 df-dvr 20347 df-rhm 20418 df-subrng 20490 df-subrg 20515 df-drng 20633 df-lmod 20752 df-lss 20823 df-sra 21065 df-rgmod 21066 df-cnfld 21287 df-zring 21380 df-zrh 21436 df-dsmm 21673 df-frlm 21688 df-ascl 21796 df-psr 21849 df-mvr 21850 df-mpl 21851 df-opsr 21853 df-psr1 22106 df-vr1 22107 df-ply1 22108 df-mamu 22306 df-mat 22328 df-mdet 22507 df-mat2pmat 22629 df-chpmat 22749 |
This theorem is referenced by: chmaidscmat 22770 cpmidgsum 22790 cpmidgsumm2pm 22791 cpmidpmatlem2 22793 cpmidpmatlem3 22794 chcoeffeqlem 22807 cayhamlem3 22809 cayleyhamilton1 22814 |
Copyright terms: Public domain | W3C validator |