| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > chpmatply1 | Structured version Visualization version GIF version | ||
| Description: The characteristic polynomial of a (square) matrix over a commutative ring is a polynomial, see also the following remark in [Lang], p. 561: "[the characteristic polynomial] is an element of k[t]". (Contributed by AV, 2-Aug-2019.) (Proof shortened by AV, 29-Nov-2019.) |
| Ref | Expression |
|---|---|
| chpmatply1.c | ⊢ 𝐶 = (𝑁 CharPlyMat 𝑅) |
| chpmatply1.a | ⊢ 𝐴 = (𝑁 Mat 𝑅) |
| chpmatply1.b | ⊢ 𝐵 = (Base‘𝐴) |
| chpmatply1.p | ⊢ 𝑃 = (Poly1‘𝑅) |
| chpmatply1.e | ⊢ 𝐸 = (Base‘𝑃) |
| Ref | Expression |
|---|---|
| chpmatply1 | ⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) → (𝐶‘𝑀) ∈ 𝐸) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | chpmatply1.c | . . 3 ⊢ 𝐶 = (𝑁 CharPlyMat 𝑅) | |
| 2 | chpmatply1.a | . . 3 ⊢ 𝐴 = (𝑁 Mat 𝑅) | |
| 3 | chpmatply1.b | . . 3 ⊢ 𝐵 = (Base‘𝐴) | |
| 4 | chpmatply1.p | . . 3 ⊢ 𝑃 = (Poly1‘𝑅) | |
| 5 | eqid 2729 | . . 3 ⊢ (𝑁 Mat 𝑃) = (𝑁 Mat 𝑃) | |
| 6 | eqid 2729 | . . 3 ⊢ (𝑁 maDet 𝑃) = (𝑁 maDet 𝑃) | |
| 7 | eqid 2729 | . . 3 ⊢ (-g‘(𝑁 Mat 𝑃)) = (-g‘(𝑁 Mat 𝑃)) | |
| 8 | eqid 2729 | . . 3 ⊢ (var1‘𝑅) = (var1‘𝑅) | |
| 9 | eqid 2729 | . . 3 ⊢ ( ·𝑠 ‘(𝑁 Mat 𝑃)) = ( ·𝑠 ‘(𝑁 Mat 𝑃)) | |
| 10 | eqid 2729 | . . 3 ⊢ (𝑁 matToPolyMat 𝑅) = (𝑁 matToPolyMat 𝑅) | |
| 11 | eqid 2729 | . . 3 ⊢ (1r‘(𝑁 Mat 𝑃)) = (1r‘(𝑁 Mat 𝑃)) | |
| 12 | 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11 | chpmatval 22751 | . 2 ⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) → (𝐶‘𝑀) = ((𝑁 maDet 𝑃)‘(((var1‘𝑅)( ·𝑠 ‘(𝑁 Mat 𝑃))(1r‘(𝑁 Mat 𝑃)))(-g‘(𝑁 Mat 𝑃))((𝑁 matToPolyMat 𝑅)‘𝑀)))) |
| 13 | 4 | ply1crng 22116 | . . . 4 ⊢ (𝑅 ∈ CRing → 𝑃 ∈ CRing) |
| 14 | 13 | 3ad2ant2 1134 | . . 3 ⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) → 𝑃 ∈ CRing) |
| 15 | crngring 20165 | . . . 4 ⊢ (𝑅 ∈ CRing → 𝑅 ∈ Ring) | |
| 16 | eqid 2729 | . . . . 5 ⊢ (((var1‘𝑅)( ·𝑠 ‘(𝑁 Mat 𝑃))(1r‘(𝑁 Mat 𝑃)))(-g‘(𝑁 Mat 𝑃))((𝑁 matToPolyMat 𝑅)‘𝑀)) = (((var1‘𝑅)( ·𝑠 ‘(𝑁 Mat 𝑃))(1r‘(𝑁 Mat 𝑃)))(-g‘(𝑁 Mat 𝑃))((𝑁 matToPolyMat 𝑅)‘𝑀)) | |
| 17 | 2, 3, 4, 5, 8, 10, 7, 9, 11, 16 | chmatcl 22748 | . . . 4 ⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀 ∈ 𝐵) → (((var1‘𝑅)( ·𝑠 ‘(𝑁 Mat 𝑃))(1r‘(𝑁 Mat 𝑃)))(-g‘(𝑁 Mat 𝑃))((𝑁 matToPolyMat 𝑅)‘𝑀)) ∈ (Base‘(𝑁 Mat 𝑃))) |
| 18 | 15, 17 | syl3an2 1164 | . . 3 ⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) → (((var1‘𝑅)( ·𝑠 ‘(𝑁 Mat 𝑃))(1r‘(𝑁 Mat 𝑃)))(-g‘(𝑁 Mat 𝑃))((𝑁 matToPolyMat 𝑅)‘𝑀)) ∈ (Base‘(𝑁 Mat 𝑃))) |
| 19 | eqid 2729 | . . . 4 ⊢ (Base‘(𝑁 Mat 𝑃)) = (Base‘(𝑁 Mat 𝑃)) | |
| 20 | chpmatply1.e | . . . 4 ⊢ 𝐸 = (Base‘𝑃) | |
| 21 | 6, 5, 19, 20 | mdetcl 22516 | . . 3 ⊢ ((𝑃 ∈ CRing ∧ (((var1‘𝑅)( ·𝑠 ‘(𝑁 Mat 𝑃))(1r‘(𝑁 Mat 𝑃)))(-g‘(𝑁 Mat 𝑃))((𝑁 matToPolyMat 𝑅)‘𝑀)) ∈ (Base‘(𝑁 Mat 𝑃))) → ((𝑁 maDet 𝑃)‘(((var1‘𝑅)( ·𝑠 ‘(𝑁 Mat 𝑃))(1r‘(𝑁 Mat 𝑃)))(-g‘(𝑁 Mat 𝑃))((𝑁 matToPolyMat 𝑅)‘𝑀))) ∈ 𝐸) |
| 22 | 14, 18, 21 | syl2anc 584 | . 2 ⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) → ((𝑁 maDet 𝑃)‘(((var1‘𝑅)( ·𝑠 ‘(𝑁 Mat 𝑃))(1r‘(𝑁 Mat 𝑃)))(-g‘(𝑁 Mat 𝑃))((𝑁 matToPolyMat 𝑅)‘𝑀))) ∈ 𝐸) |
| 23 | 12, 22 | eqeltrd 2828 | 1 ⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) → (𝐶‘𝑀) ∈ 𝐸) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ w3a 1086 = wceq 1540 ∈ wcel 2109 ‘cfv 6499 (class class class)co 7369 Fincfn 8895 Basecbs 17155 ·𝑠 cvsca 17200 -gcsg 18849 1rcur 20101 Ringcrg 20153 CRingccrg 20154 var1cv1 22093 Poly1cpl1 22094 Mat cmat 22327 maDet cmdat 22504 matToPolyMat cmat2pmat 22624 CharPlyMat cchpmat 22746 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5229 ax-sep 5246 ax-nul 5256 ax-pow 5315 ax-pr 5382 ax-un 7691 ax-cnex 11100 ax-resscn 11101 ax-1cn 11102 ax-icn 11103 ax-addcl 11104 ax-addrcl 11105 ax-mulcl 11106 ax-mulrcl 11107 ax-mulcom 11108 ax-addass 11109 ax-mulass 11110 ax-distr 11111 ax-i2m1 11112 ax-1ne0 11113 ax-1rid 11114 ax-rnegex 11115 ax-rrecex 11116 ax-cnre 11117 ax-pre-lttri 11118 ax-pre-lttrn 11119 ax-pre-ltadd 11120 ax-pre-mulgt0 11121 ax-addf 11123 ax-mulf 11124 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-xor 1512 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rmo 3351 df-reu 3352 df-rab 3403 df-v 3446 df-sbc 3751 df-csb 3860 df-dif 3914 df-un 3916 df-in 3918 df-ss 3928 df-pss 3931 df-nul 4293 df-if 4485 df-pw 4561 df-sn 4586 df-pr 4588 df-tp 4590 df-op 4592 df-ot 4594 df-uni 4868 df-int 4907 df-iun 4953 df-iin 4954 df-br 5103 df-opab 5165 df-mpt 5184 df-tr 5210 df-id 5526 df-eprel 5531 df-po 5539 df-so 5540 df-fr 5584 df-se 5585 df-we 5586 df-xp 5637 df-rel 5638 df-cnv 5639 df-co 5640 df-dm 5641 df-rn 5642 df-res 5643 df-ima 5644 df-pred 6262 df-ord 6323 df-on 6324 df-lim 6325 df-suc 6326 df-iota 6452 df-fun 6501 df-fn 6502 df-f 6503 df-f1 6504 df-fo 6505 df-f1o 6506 df-fv 6507 df-isom 6508 df-riota 7326 df-ov 7372 df-oprab 7373 df-mpo 7374 df-of 7633 df-ofr 7634 df-om 7823 df-1st 7947 df-2nd 7948 df-supp 8117 df-tpos 8182 df-frecs 8237 df-wrecs 8268 df-recs 8317 df-rdg 8355 df-1o 8411 df-2o 8412 df-er 8648 df-map 8778 df-pm 8779 df-ixp 8848 df-en 8896 df-dom 8897 df-sdom 8898 df-fin 8899 df-fsupp 9289 df-sup 9369 df-oi 9439 df-card 9868 df-pnf 11186 df-mnf 11187 df-xr 11188 df-ltxr 11189 df-le 11190 df-sub 11383 df-neg 11384 df-div 11812 df-nn 12163 df-2 12225 df-3 12226 df-4 12227 df-5 12228 df-6 12229 df-7 12230 df-8 12231 df-9 12232 df-n0 12419 df-xnn0 12492 df-z 12506 df-dec 12626 df-uz 12770 df-rp 12928 df-fz 13445 df-fzo 13592 df-seq 13943 df-exp 14003 df-hash 14272 df-word 14455 df-lsw 14504 df-concat 14512 df-s1 14537 df-substr 14582 df-pfx 14612 df-splice 14691 df-reverse 14700 df-s2 14790 df-struct 17093 df-sets 17110 df-slot 17128 df-ndx 17140 df-base 17156 df-ress 17177 df-plusg 17209 df-mulr 17210 df-starv 17211 df-sca 17212 df-vsca 17213 df-ip 17214 df-tset 17215 df-ple 17216 df-ds 17218 df-unif 17219 df-hom 17220 df-cco 17221 df-0g 17380 df-gsum 17381 df-prds 17386 df-pws 17388 df-mre 17523 df-mrc 17524 df-acs 17526 df-mgm 18549 df-sgrp 18628 df-mnd 18644 df-mhm 18692 df-submnd 18693 df-efmnd 18778 df-grp 18850 df-minusg 18851 df-sbg 18852 df-mulg 18982 df-subg 19037 df-ghm 19127 df-gim 19173 df-cntz 19231 df-oppg 19260 df-symg 19284 df-pmtr 19356 df-psgn 19405 df-cmn 19696 df-abl 19697 df-mgp 20061 df-rng 20073 df-ur 20102 df-ring 20155 df-cring 20156 df-oppr 20257 df-dvdsr 20277 df-unit 20278 df-invr 20308 df-dvr 20321 df-rhm 20392 df-subrng 20466 df-subrg 20490 df-drng 20651 df-lmod 20800 df-lss 20870 df-sra 21112 df-rgmod 21113 df-cnfld 21297 df-zring 21389 df-zrh 21445 df-dsmm 21674 df-frlm 21689 df-ascl 21797 df-psr 21851 df-mvr 21852 df-mpl 21853 df-opsr 21855 df-psr1 22097 df-vr1 22098 df-ply1 22099 df-mamu 22311 df-mat 22328 df-mdet 22505 df-mat2pmat 22627 df-chpmat 22747 |
| This theorem is referenced by: chmaidscmat 22768 cpmidgsum 22788 cpmidgsumm2pm 22789 cpmidpmatlem2 22791 cpmidpmatlem3 22792 chcoeffeqlem 22805 cayhamlem3 22807 cayleyhamilton1 22812 |
| Copyright terms: Public domain | W3C validator |