Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > chpmatply1 | Structured version Visualization version GIF version |
Description: The characteristic polynomial of a (square) matrix over a commutative ring is a polynomial, see also the following remark in [Lang], p. 561: "[the characteristic polynomial] is an element of k[t]". (Contributed by AV, 2-Aug-2019.) (Proof shortened by AV, 29-Nov-2019.) |
Ref | Expression |
---|---|
chpmatply1.c | ⊢ 𝐶 = (𝑁 CharPlyMat 𝑅) |
chpmatply1.a | ⊢ 𝐴 = (𝑁 Mat 𝑅) |
chpmatply1.b | ⊢ 𝐵 = (Base‘𝐴) |
chpmatply1.p | ⊢ 𝑃 = (Poly1‘𝑅) |
chpmatply1.e | ⊢ 𝐸 = (Base‘𝑃) |
Ref | Expression |
---|---|
chpmatply1 | ⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) → (𝐶‘𝑀) ∈ 𝐸) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | chpmatply1.c | . . 3 ⊢ 𝐶 = (𝑁 CharPlyMat 𝑅) | |
2 | chpmatply1.a | . . 3 ⊢ 𝐴 = (𝑁 Mat 𝑅) | |
3 | chpmatply1.b | . . 3 ⊢ 𝐵 = (Base‘𝐴) | |
4 | chpmatply1.p | . . 3 ⊢ 𝑃 = (Poly1‘𝑅) | |
5 | eqid 2737 | . . 3 ⊢ (𝑁 Mat 𝑃) = (𝑁 Mat 𝑃) | |
6 | eqid 2737 | . . 3 ⊢ (𝑁 maDet 𝑃) = (𝑁 maDet 𝑃) | |
7 | eqid 2737 | . . 3 ⊢ (-g‘(𝑁 Mat 𝑃)) = (-g‘(𝑁 Mat 𝑃)) | |
8 | eqid 2737 | . . 3 ⊢ (var1‘𝑅) = (var1‘𝑅) | |
9 | eqid 2737 | . . 3 ⊢ ( ·𝑠 ‘(𝑁 Mat 𝑃)) = ( ·𝑠 ‘(𝑁 Mat 𝑃)) | |
10 | eqid 2737 | . . 3 ⊢ (𝑁 matToPolyMat 𝑅) = (𝑁 matToPolyMat 𝑅) | |
11 | eqid 2737 | . . 3 ⊢ (1r‘(𝑁 Mat 𝑃)) = (1r‘(𝑁 Mat 𝑃)) | |
12 | 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11 | chpmatval 22052 | . 2 ⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) → (𝐶‘𝑀) = ((𝑁 maDet 𝑃)‘(((var1‘𝑅)( ·𝑠 ‘(𝑁 Mat 𝑃))(1r‘(𝑁 Mat 𝑃)))(-g‘(𝑁 Mat 𝑃))((𝑁 matToPolyMat 𝑅)‘𝑀)))) |
13 | 4 | ply1crng 21441 | . . . 4 ⊢ (𝑅 ∈ CRing → 𝑃 ∈ CRing) |
14 | 13 | 3ad2ant2 1133 | . . 3 ⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) → 𝑃 ∈ CRing) |
15 | crngring 19863 | . . . 4 ⊢ (𝑅 ∈ CRing → 𝑅 ∈ Ring) | |
16 | eqid 2737 | . . . . 5 ⊢ (((var1‘𝑅)( ·𝑠 ‘(𝑁 Mat 𝑃))(1r‘(𝑁 Mat 𝑃)))(-g‘(𝑁 Mat 𝑃))((𝑁 matToPolyMat 𝑅)‘𝑀)) = (((var1‘𝑅)( ·𝑠 ‘(𝑁 Mat 𝑃))(1r‘(𝑁 Mat 𝑃)))(-g‘(𝑁 Mat 𝑃))((𝑁 matToPolyMat 𝑅)‘𝑀)) | |
17 | 2, 3, 4, 5, 8, 10, 7, 9, 11, 16 | chmatcl 22049 | . . . 4 ⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀 ∈ 𝐵) → (((var1‘𝑅)( ·𝑠 ‘(𝑁 Mat 𝑃))(1r‘(𝑁 Mat 𝑃)))(-g‘(𝑁 Mat 𝑃))((𝑁 matToPolyMat 𝑅)‘𝑀)) ∈ (Base‘(𝑁 Mat 𝑃))) |
18 | 15, 17 | syl3an2 1163 | . . 3 ⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) → (((var1‘𝑅)( ·𝑠 ‘(𝑁 Mat 𝑃))(1r‘(𝑁 Mat 𝑃)))(-g‘(𝑁 Mat 𝑃))((𝑁 matToPolyMat 𝑅)‘𝑀)) ∈ (Base‘(𝑁 Mat 𝑃))) |
19 | eqid 2737 | . . . 4 ⊢ (Base‘(𝑁 Mat 𝑃)) = (Base‘(𝑁 Mat 𝑃)) | |
20 | chpmatply1.e | . . . 4 ⊢ 𝐸 = (Base‘𝑃) | |
21 | 6, 5, 19, 20 | mdetcl 21817 | . . 3 ⊢ ((𝑃 ∈ CRing ∧ (((var1‘𝑅)( ·𝑠 ‘(𝑁 Mat 𝑃))(1r‘(𝑁 Mat 𝑃)))(-g‘(𝑁 Mat 𝑃))((𝑁 matToPolyMat 𝑅)‘𝑀)) ∈ (Base‘(𝑁 Mat 𝑃))) → ((𝑁 maDet 𝑃)‘(((var1‘𝑅)( ·𝑠 ‘(𝑁 Mat 𝑃))(1r‘(𝑁 Mat 𝑃)))(-g‘(𝑁 Mat 𝑃))((𝑁 matToPolyMat 𝑅)‘𝑀))) ∈ 𝐸) |
22 | 14, 18, 21 | syl2anc 584 | . 2 ⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) → ((𝑁 maDet 𝑃)‘(((var1‘𝑅)( ·𝑠 ‘(𝑁 Mat 𝑃))(1r‘(𝑁 Mat 𝑃)))(-g‘(𝑁 Mat 𝑃))((𝑁 matToPolyMat 𝑅)‘𝑀))) ∈ 𝐸) |
23 | 12, 22 | eqeltrd 2838 | 1 ⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) → (𝐶‘𝑀) ∈ 𝐸) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ w3a 1086 = wceq 1540 ∈ wcel 2105 ‘cfv 6465 (class class class)co 7315 Fincfn 8781 Basecbs 16982 ·𝑠 cvsca 17036 -gcsg 18648 1rcur 19805 Ringcrg 19851 CRingccrg 19852 var1cv1 21419 Poly1cpl1 21420 Mat cmat 21626 maDet cmdat 21805 matToPolyMat cmat2pmat 21925 CharPlyMat cchpmat 22047 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-10 2136 ax-11 2153 ax-12 2170 ax-ext 2708 ax-rep 5224 ax-sep 5238 ax-nul 5245 ax-pow 5303 ax-pr 5367 ax-un 7628 ax-cnex 11000 ax-resscn 11001 ax-1cn 11002 ax-icn 11003 ax-addcl 11004 ax-addrcl 11005 ax-mulcl 11006 ax-mulrcl 11007 ax-mulcom 11008 ax-addass 11009 ax-mulass 11010 ax-distr 11011 ax-i2m1 11012 ax-1ne0 11013 ax-1rid 11014 ax-rnegex 11015 ax-rrecex 11016 ax-cnre 11017 ax-pre-lttri 11018 ax-pre-lttrn 11019 ax-pre-ltadd 11020 ax-pre-mulgt0 11021 ax-addf 11023 ax-mulf 11024 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-xor 1509 df-tru 1543 df-fal 1553 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2539 df-eu 2568 df-clab 2715 df-cleq 2729 df-clel 2815 df-nfc 2887 df-ne 2942 df-nel 3048 df-ral 3063 df-rex 3072 df-rmo 3350 df-reu 3351 df-rab 3405 df-v 3443 df-sbc 3727 df-csb 3843 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-pss 3916 df-nul 4268 df-if 4472 df-pw 4547 df-sn 4572 df-pr 4574 df-tp 4576 df-op 4578 df-ot 4580 df-uni 4851 df-int 4893 df-iun 4939 df-iin 4940 df-br 5088 df-opab 5150 df-mpt 5171 df-tr 5205 df-id 5507 df-eprel 5513 df-po 5521 df-so 5522 df-fr 5562 df-se 5563 df-we 5564 df-xp 5613 df-rel 5614 df-cnv 5615 df-co 5616 df-dm 5617 df-rn 5618 df-res 5619 df-ima 5620 df-pred 6224 df-ord 6291 df-on 6292 df-lim 6293 df-suc 6294 df-iota 6417 df-fun 6467 df-fn 6468 df-f 6469 df-f1 6470 df-fo 6471 df-f1o 6472 df-fv 6473 df-isom 6474 df-riota 7272 df-ov 7318 df-oprab 7319 df-mpo 7320 df-of 7573 df-ofr 7574 df-om 7758 df-1st 7876 df-2nd 7877 df-supp 8025 df-tpos 8089 df-frecs 8144 df-wrecs 8175 df-recs 8249 df-rdg 8288 df-1o 8344 df-2o 8345 df-er 8546 df-map 8665 df-pm 8666 df-ixp 8734 df-en 8782 df-dom 8783 df-sdom 8784 df-fin 8785 df-fsupp 9199 df-sup 9271 df-oi 9339 df-card 9768 df-pnf 11084 df-mnf 11085 df-xr 11086 df-ltxr 11087 df-le 11088 df-sub 11280 df-neg 11281 df-div 11706 df-nn 12047 df-2 12109 df-3 12110 df-4 12111 df-5 12112 df-6 12113 df-7 12114 df-8 12115 df-9 12116 df-n0 12307 df-xnn0 12379 df-z 12393 df-dec 12511 df-uz 12656 df-rp 12804 df-fz 13313 df-fzo 13456 df-seq 13795 df-exp 13856 df-hash 14118 df-word 14290 df-lsw 14338 df-concat 14346 df-s1 14373 df-substr 14426 df-pfx 14456 df-splice 14535 df-reverse 14544 df-s2 14633 df-struct 16918 df-sets 16935 df-slot 16953 df-ndx 16965 df-base 16983 df-ress 17012 df-plusg 17045 df-mulr 17046 df-starv 17047 df-sca 17048 df-vsca 17049 df-ip 17050 df-tset 17051 df-ple 17052 df-ds 17054 df-unif 17055 df-hom 17056 df-cco 17057 df-0g 17222 df-gsum 17223 df-prds 17228 df-pws 17230 df-mre 17365 df-mrc 17366 df-acs 17368 df-mgm 18396 df-sgrp 18445 df-mnd 18456 df-mhm 18500 df-submnd 18501 df-efmnd 18577 df-grp 18649 df-minusg 18650 df-sbg 18651 df-mulg 18770 df-subg 18821 df-ghm 18901 df-gim 18944 df-cntz 18992 df-oppg 19019 df-symg 19044 df-pmtr 19119 df-psgn 19168 df-cmn 19456 df-abl 19457 df-mgp 19789 df-ur 19806 df-ring 19853 df-cring 19854 df-oppr 19930 df-dvdsr 19951 df-unit 19952 df-invr 19982 df-dvr 19993 df-rnghom 20027 df-drng 20065 df-subrg 20094 df-lmod 20197 df-lss 20266 df-sra 20506 df-rgmod 20507 df-cnfld 20670 df-zring 20743 df-zrh 20777 df-dsmm 21011 df-frlm 21026 df-ascl 21134 df-psr 21184 df-mvr 21185 df-mpl 21186 df-opsr 21188 df-psr1 21423 df-vr1 21424 df-ply1 21425 df-mamu 21605 df-mat 21627 df-mdet 21806 df-mat2pmat 21928 df-chpmat 22048 |
This theorem is referenced by: chmaidscmat 22069 cpmidgsum 22089 cpmidgsumm2pm 22090 cpmidpmatlem2 22092 cpmidpmatlem3 22093 chcoeffeqlem 22106 cayhamlem3 22108 cayleyhamilton1 22113 |
Copyright terms: Public domain | W3C validator |