MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  chpmatply1 Structured version   Visualization version   GIF version

Theorem chpmatply1 21014
Description: The characteristic polynomial of a (square) matrix over a commutative ring is a polynomial, see also the following remark in [Lang], p. 561: "[the characteristic polynomial] is an element of k[t]". (Contributed by AV, 2-Aug-2019.) (Proof shortened by AV, 29-Nov-2019.)
Hypotheses
Ref Expression
chpmatply1.c 𝐶 = (𝑁 CharPlyMat 𝑅)
chpmatply1.a 𝐴 = (𝑁 Mat 𝑅)
chpmatply1.b 𝐵 = (Base‘𝐴)
chpmatply1.p 𝑃 = (Poly1𝑅)
chpmatply1.e 𝐸 = (Base‘𝑃)
Assertion
Ref Expression
chpmatply1 ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) → (𝐶𝑀) ∈ 𝐸)

Proof of Theorem chpmatply1
StepHypRef Expression
1 chpmatply1.c . . 3 𝐶 = (𝑁 CharPlyMat 𝑅)
2 chpmatply1.a . . 3 𝐴 = (𝑁 Mat 𝑅)
3 chpmatply1.b . . 3 𝐵 = (Base‘𝐴)
4 chpmatply1.p . . 3 𝑃 = (Poly1𝑅)
5 eqid 2825 . . 3 (𝑁 Mat 𝑃) = (𝑁 Mat 𝑃)
6 eqid 2825 . . 3 (𝑁 maDet 𝑃) = (𝑁 maDet 𝑃)
7 eqid 2825 . . 3 (-g‘(𝑁 Mat 𝑃)) = (-g‘(𝑁 Mat 𝑃))
8 eqid 2825 . . 3 (var1𝑅) = (var1𝑅)
9 eqid 2825 . . 3 ( ·𝑠 ‘(𝑁 Mat 𝑃)) = ( ·𝑠 ‘(𝑁 Mat 𝑃))
10 eqid 2825 . . 3 (𝑁 matToPolyMat 𝑅) = (𝑁 matToPolyMat 𝑅)
11 eqid 2825 . . 3 (1r‘(𝑁 Mat 𝑃)) = (1r‘(𝑁 Mat 𝑃))
121, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11chpmatval 21013 . 2 ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) → (𝐶𝑀) = ((𝑁 maDet 𝑃)‘(((var1𝑅)( ·𝑠 ‘(𝑁 Mat 𝑃))(1r‘(𝑁 Mat 𝑃)))(-g‘(𝑁 Mat 𝑃))((𝑁 matToPolyMat 𝑅)‘𝑀))))
134ply1crng 19935 . . . 4 (𝑅 ∈ CRing → 𝑃 ∈ CRing)
14133ad2ant2 1168 . . 3 ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) → 𝑃 ∈ CRing)
15 crngring 18919 . . . 4 (𝑅 ∈ CRing → 𝑅 ∈ Ring)
16 eqid 2825 . . . . 5 (((var1𝑅)( ·𝑠 ‘(𝑁 Mat 𝑃))(1r‘(𝑁 Mat 𝑃)))(-g‘(𝑁 Mat 𝑃))((𝑁 matToPolyMat 𝑅)‘𝑀)) = (((var1𝑅)( ·𝑠 ‘(𝑁 Mat 𝑃))(1r‘(𝑁 Mat 𝑃)))(-g‘(𝑁 Mat 𝑃))((𝑁 matToPolyMat 𝑅)‘𝑀))
172, 3, 4, 5, 8, 10, 7, 9, 11, 16chmatcl 21010 . . . 4 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀𝐵) → (((var1𝑅)( ·𝑠 ‘(𝑁 Mat 𝑃))(1r‘(𝑁 Mat 𝑃)))(-g‘(𝑁 Mat 𝑃))((𝑁 matToPolyMat 𝑅)‘𝑀)) ∈ (Base‘(𝑁 Mat 𝑃)))
1815, 17syl3an2 1207 . . 3 ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) → (((var1𝑅)( ·𝑠 ‘(𝑁 Mat 𝑃))(1r‘(𝑁 Mat 𝑃)))(-g‘(𝑁 Mat 𝑃))((𝑁 matToPolyMat 𝑅)‘𝑀)) ∈ (Base‘(𝑁 Mat 𝑃)))
19 eqid 2825 . . . 4 (Base‘(𝑁 Mat 𝑃)) = (Base‘(𝑁 Mat 𝑃))
20 chpmatply1.e . . . 4 𝐸 = (Base‘𝑃)
216, 5, 19, 20mdetcl 20777 . . 3 ((𝑃 ∈ CRing ∧ (((var1𝑅)( ·𝑠 ‘(𝑁 Mat 𝑃))(1r‘(𝑁 Mat 𝑃)))(-g‘(𝑁 Mat 𝑃))((𝑁 matToPolyMat 𝑅)‘𝑀)) ∈ (Base‘(𝑁 Mat 𝑃))) → ((𝑁 maDet 𝑃)‘(((var1𝑅)( ·𝑠 ‘(𝑁 Mat 𝑃))(1r‘(𝑁 Mat 𝑃)))(-g‘(𝑁 Mat 𝑃))((𝑁 matToPolyMat 𝑅)‘𝑀))) ∈ 𝐸)
2214, 18, 21syl2anc 579 . 2 ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) → ((𝑁 maDet 𝑃)‘(((var1𝑅)( ·𝑠 ‘(𝑁 Mat 𝑃))(1r‘(𝑁 Mat 𝑃)))(-g‘(𝑁 Mat 𝑃))((𝑁 matToPolyMat 𝑅)‘𝑀))) ∈ 𝐸)
2312, 22eqeltrd 2906 1 ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) → (𝐶𝑀) ∈ 𝐸)
Colors of variables: wff setvar class
Syntax hints:  wi 4  w3a 1111   = wceq 1656  wcel 2164  cfv 6127  (class class class)co 6910  Fincfn 8228  Basecbs 16229   ·𝑠 cvsca 16316  -gcsg 17785  1rcur 18862  Ringcrg 18908  CRingccrg 18909  var1cv1 19913  Poly1cpl1 19914   Mat cmat 20587   maDet cmdat 20765   matToPolyMat cmat2pmat 20886   CharPlyMat cchpmat 21008
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1894  ax-4 1908  ax-5 2009  ax-6 2075  ax-7 2112  ax-8 2166  ax-9 2173  ax-10 2192  ax-11 2207  ax-12 2220  ax-13 2389  ax-ext 2803  ax-rep 4996  ax-sep 5007  ax-nul 5015  ax-pow 5067  ax-pr 5129  ax-un 7214  ax-inf2 8822  ax-cnex 10315  ax-resscn 10316  ax-1cn 10317  ax-icn 10318  ax-addcl 10319  ax-addrcl 10320  ax-mulcl 10321  ax-mulrcl 10322  ax-mulcom 10323  ax-addass 10324  ax-mulass 10325  ax-distr 10326  ax-i2m1 10327  ax-1ne0 10328  ax-1rid 10329  ax-rnegex 10330  ax-rrecex 10331  ax-cnre 10332  ax-pre-lttri 10333  ax-pre-lttrn 10334  ax-pre-ltadd 10335  ax-pre-mulgt0 10336  ax-addf 10338  ax-mulf 10339
This theorem depends on definitions:  df-bi 199  df-an 387  df-or 879  df-3or 1112  df-3an 1113  df-xor 1638  df-tru 1660  df-ex 1879  df-nf 1883  df-sb 2068  df-mo 2605  df-eu 2640  df-clab 2812  df-cleq 2818  df-clel 2821  df-nfc 2958  df-ne 3000  df-nel 3103  df-ral 3122  df-rex 3123  df-reu 3124  df-rmo 3125  df-rab 3126  df-v 3416  df-sbc 3663  df-csb 3758  df-dif 3801  df-un 3803  df-in 3805  df-ss 3812  df-pss 3814  df-nul 4147  df-if 4309  df-pw 4382  df-sn 4400  df-pr 4402  df-tp 4404  df-op 4406  df-ot 4408  df-uni 4661  df-int 4700  df-iun 4744  df-iin 4745  df-br 4876  df-opab 4938  df-mpt 4955  df-tr 4978  df-id 5252  df-eprel 5257  df-po 5265  df-so 5266  df-fr 5305  df-se 5306  df-we 5307  df-xp 5352  df-rel 5353  df-cnv 5354  df-co 5355  df-dm 5356  df-rn 5357  df-res 5358  df-ima 5359  df-pred 5924  df-ord 5970  df-on 5971  df-lim 5972  df-suc 5973  df-iota 6090  df-fun 6129  df-fn 6130  df-f 6131  df-f1 6132  df-fo 6133  df-f1o 6134  df-fv 6135  df-isom 6136  df-riota 6871  df-ov 6913  df-oprab 6914  df-mpt2 6915  df-of 7162  df-ofr 7163  df-om 7332  df-1st 7433  df-2nd 7434  df-supp 7565  df-tpos 7622  df-wrecs 7677  df-recs 7739  df-rdg 7777  df-1o 7831  df-2o 7832  df-oadd 7835  df-er 8014  df-map 8129  df-pm 8130  df-ixp 8182  df-en 8229  df-dom 8230  df-sdom 8231  df-fin 8232  df-fsupp 8551  df-sup 8623  df-oi 8691  df-card 9085  df-pnf 10400  df-mnf 10401  df-xr 10402  df-ltxr 10403  df-le 10404  df-sub 10594  df-neg 10595  df-div 11017  df-nn 11358  df-2 11421  df-3 11422  df-4 11423  df-5 11424  df-6 11425  df-7 11426  df-8 11427  df-9 11428  df-n0 11626  df-xnn0 11698  df-z 11712  df-dec 11829  df-uz 11976  df-rp 12120  df-fz 12627  df-fzo 12768  df-seq 13103  df-exp 13162  df-hash 13418  df-word 13582  df-lsw 13630  df-concat 13638  df-s1 13663  df-substr 13708  df-pfx 13757  df-splice 13864  df-reverse 13882  df-s2 13976  df-struct 16231  df-ndx 16232  df-slot 16233  df-base 16235  df-sets 16236  df-ress 16237  df-plusg 16325  df-mulr 16326  df-starv 16327  df-sca 16328  df-vsca 16329  df-ip 16330  df-tset 16331  df-ple 16332  df-ds 16334  df-unif 16335  df-hom 16336  df-cco 16337  df-0g 16462  df-gsum 16463  df-prds 16468  df-pws 16470  df-mre 16606  df-mrc 16607  df-acs 16609  df-mgm 17602  df-sgrp 17644  df-mnd 17655  df-mhm 17695  df-submnd 17696  df-grp 17786  df-minusg 17787  df-sbg 17788  df-mulg 17902  df-subg 17949  df-ghm 18016  df-gim 18059  df-cntz 18107  df-oppg 18133  df-symg 18155  df-pmtr 18219  df-psgn 18268  df-cmn 18555  df-abl 18556  df-mgp 18851  df-ur 18863  df-ring 18910  df-cring 18911  df-oppr 18984  df-dvdsr 19002  df-unit 19003  df-invr 19033  df-dvr 19044  df-rnghom 19078  df-drng 19112  df-subrg 19141  df-lmod 19228  df-lss 19296  df-sra 19540  df-rgmod 19541  df-ascl 19682  df-psr 19724  df-mvr 19725  df-mpl 19726  df-opsr 19728  df-psr1 19917  df-vr1 19918  df-ply1 19919  df-cnfld 20114  df-zring 20186  df-zrh 20219  df-dsmm 20446  df-frlm 20461  df-mamu 20564  df-mat 20588  df-mdet 20766  df-mat2pmat 20889  df-chpmat 21009
This theorem is referenced by:  chmaidscmat  21030  cpmidgsum  21050  cpmidgsumm2pm  21051  cpmidpmatlem2  21053  cpmidpmatlem3  21054  chcoeffeqlem  21067  cayhamlem3  21069  cayleyhamilton1  21074
  Copyright terms: Public domain W3C validator