Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > eluzelz | Structured version Visualization version GIF version |
Description: A member of an upper set of integers is an integer. (Contributed by NM, 6-Sep-2005.) |
Ref | Expression |
---|---|
eluzelz | ⊢ (𝑁 ∈ (ℤ≥‘𝑀) → 𝑁 ∈ ℤ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eluz2 12517 | . 2 ⊢ (𝑁 ∈ (ℤ≥‘𝑀) ↔ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑀 ≤ 𝑁)) | |
2 | 1 | simp2bi 1144 | 1 ⊢ (𝑁 ∈ (ℤ≥‘𝑀) → 𝑁 ∈ ℤ) |
Copyright terms: Public domain | W3C validator |