Users' Mathboxes Mathbox for Richard Penner < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  clselmap Structured version   Visualization version   GIF version

Theorem clselmap 44078
Description: The closure function is a map from the powerset of the base set to itself. (Contributed by RP, 22-Apr-2021.)
Hypotheses
Ref Expression
clselmap.x 𝑋 = 𝐽
clselmap.k 𝐾 = (cls‘𝐽)
Assertion
Ref Expression
clselmap (𝐽 ∈ Top → 𝐾 ∈ (𝒫 𝑋m 𝒫 𝑋))

Proof of Theorem clselmap
StepHypRef Expression
1 clselmap.x . . 3 𝑋 = 𝐽
2 clselmap.k . . 3 𝐾 = (cls‘𝐽)
31, 2clsf2 44077 . 2 (𝐽 ∈ Top → 𝐾:𝒫 𝑋⟶𝒫 𝑋)
41topopn 22859 . . . 4 (𝐽 ∈ Top → 𝑋𝐽)
54pwexd 5359 . . 3 (𝐽 ∈ Top → 𝒫 𝑋 ∈ V)
65, 5elmapd 8861 . 2 (𝐽 ∈ Top → (𝐾 ∈ (𝒫 𝑋m 𝒫 𝑋) ↔ 𝐾:𝒫 𝑋⟶𝒫 𝑋))
73, 6mpbird 257 1 (𝐽 ∈ Top → 𝐾 ∈ (𝒫 𝑋m 𝒫 𝑋))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1539  wcel 2107  Vcvv 3463  𝒫 cpw 4580   cuni 4887  wf 6536  cfv 6540  (class class class)co 7412  m cmap 8847  Topctop 22846  clsccl 22971
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-10 2140  ax-11 2156  ax-12 2176  ax-ext 2706  ax-rep 5259  ax-sep 5276  ax-nul 5286  ax-pow 5345  ax-pr 5412  ax-un 7736
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1779  df-nf 1783  df-sb 2064  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2726  df-clel 2808  df-nfc 2884  df-ne 2932  df-ral 3051  df-rex 3060  df-reu 3364  df-rab 3420  df-v 3465  df-sbc 3771  df-csb 3880  df-dif 3934  df-un 3936  df-in 3938  df-ss 3948  df-nul 4314  df-if 4506  df-pw 4582  df-sn 4607  df-pr 4609  df-op 4613  df-uni 4888  df-int 4927  df-iun 4973  df-iin 4974  df-br 5124  df-opab 5186  df-mpt 5206  df-id 5558  df-xp 5671  df-rel 5672  df-cnv 5673  df-co 5674  df-dm 5675  df-rn 5676  df-res 5677  df-ima 5678  df-iota 6493  df-fun 6542  df-fn 6543  df-f 6544  df-f1 6545  df-fo 6546  df-f1o 6547  df-fv 6548  df-ov 7415  df-oprab 7416  df-mpo 7417  df-map 8849  df-top 22847  df-cld 22972  df-cls 22974
This theorem is referenced by:  dssmapntrcls  44079  dssmapclsntr  44080
  Copyright terms: Public domain W3C validator