| Mathbox for Richard Penner |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > clselmap | Structured version Visualization version GIF version | ||
| Description: The closure function is a map from the powerset of the base set to itself. (Contributed by RP, 22-Apr-2021.) |
| Ref | Expression |
|---|---|
| clselmap.x | ⊢ 𝑋 = ∪ 𝐽 |
| clselmap.k | ⊢ 𝐾 = (cls‘𝐽) |
| Ref | Expression |
|---|---|
| clselmap | ⊢ (𝐽 ∈ Top → 𝐾 ∈ (𝒫 𝑋 ↑m 𝒫 𝑋)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | clselmap.x | . . 3 ⊢ 𝑋 = ∪ 𝐽 | |
| 2 | clselmap.k | . . 3 ⊢ 𝐾 = (cls‘𝐽) | |
| 3 | 1, 2 | clsf2 44122 | . 2 ⊢ (𝐽 ∈ Top → 𝐾:𝒫 𝑋⟶𝒫 𝑋) |
| 4 | 1 | topopn 22800 | . . . 4 ⊢ (𝐽 ∈ Top → 𝑋 ∈ 𝐽) |
| 5 | 4 | pwexd 5337 | . . 3 ⊢ (𝐽 ∈ Top → 𝒫 𝑋 ∈ V) |
| 6 | 5, 5 | elmapd 8816 | . 2 ⊢ (𝐽 ∈ Top → (𝐾 ∈ (𝒫 𝑋 ↑m 𝒫 𝑋) ↔ 𝐾:𝒫 𝑋⟶𝒫 𝑋)) |
| 7 | 3, 6 | mpbird 257 | 1 ⊢ (𝐽 ∈ Top → 𝐾 ∈ (𝒫 𝑋 ↑m 𝒫 𝑋)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2109 Vcvv 3450 𝒫 cpw 4566 ∪ cuni 4874 ⟶wf 6510 ‘cfv 6514 (class class class)co 7390 ↑m cmap 8802 Topctop 22787 clsccl 22912 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-rep 5237 ax-sep 5254 ax-nul 5264 ax-pow 5323 ax-pr 5390 ax-un 7714 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-ral 3046 df-rex 3055 df-reu 3357 df-rab 3409 df-v 3452 df-sbc 3757 df-csb 3866 df-dif 3920 df-un 3922 df-in 3924 df-ss 3934 df-nul 4300 df-if 4492 df-pw 4568 df-sn 4593 df-pr 4595 df-op 4599 df-uni 4875 df-int 4914 df-iun 4960 df-iin 4961 df-br 5111 df-opab 5173 df-mpt 5192 df-id 5536 df-xp 5647 df-rel 5648 df-cnv 5649 df-co 5650 df-dm 5651 df-rn 5652 df-res 5653 df-ima 5654 df-iota 6467 df-fun 6516 df-fn 6517 df-f 6518 df-f1 6519 df-fo 6520 df-f1o 6521 df-fv 6522 df-ov 7393 df-oprab 7394 df-mpo 7395 df-map 8804 df-top 22788 df-cld 22913 df-cls 22915 |
| This theorem is referenced by: dssmapntrcls 44124 dssmapclsntr 44125 |
| Copyright terms: Public domain | W3C validator |