![]() |
Mathbox for Richard Penner |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > clselmap | Structured version Visualization version GIF version |
Description: The closure function is a map from the powerset of the base set to itself. (Contributed by RP, 22-Apr-2021.) |
Ref | Expression |
---|---|
clselmap.x | ⊢ 𝑋 = ∪ 𝐽 |
clselmap.k | ⊢ 𝐾 = (cls‘𝐽) |
Ref | Expression |
---|---|
clselmap | ⊢ (𝐽 ∈ Top → 𝐾 ∈ (𝒫 𝑋 ↑𝑚 𝒫 𝑋)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | clselmap.x | . . 3 ⊢ 𝑋 = ∪ 𝐽 | |
2 | clselmap.k | . . 3 ⊢ 𝐾 = (cls‘𝐽) | |
3 | 1, 2 | clsf2 38943 | . 2 ⊢ (𝐽 ∈ Top → 𝐾:𝒫 𝑋⟶𝒫 𝑋) |
4 | 1 | topopn 20924 | . . . 4 ⊢ (𝐽 ∈ Top → 𝑋 ∈ 𝐽) |
5 | pwexg 4980 | . . . 4 ⊢ (𝑋 ∈ 𝐽 → 𝒫 𝑋 ∈ V) | |
6 | 4, 5 | syl 17 | . . 3 ⊢ (𝐽 ∈ Top → 𝒫 𝑋 ∈ V) |
7 | 6, 6 | elmapd 8021 | . 2 ⊢ (𝐽 ∈ Top → (𝐾 ∈ (𝒫 𝑋 ↑𝑚 𝒫 𝑋) ↔ 𝐾:𝒫 𝑋⟶𝒫 𝑋)) |
8 | 3, 7 | mpbird 247 | 1 ⊢ (𝐽 ∈ Top → 𝐾 ∈ (𝒫 𝑋 ↑𝑚 𝒫 𝑋)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1631 ∈ wcel 2145 Vcvv 3351 𝒫 cpw 4297 ∪ cuni 4574 ⟶wf 6025 ‘cfv 6029 (class class class)co 6791 ↑𝑚 cmap 8007 Topctop 20911 clsccl 21036 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1870 ax-4 1885 ax-5 1991 ax-6 2057 ax-7 2093 ax-8 2147 ax-9 2154 ax-10 2174 ax-11 2190 ax-12 2203 ax-13 2408 ax-ext 2751 ax-rep 4904 ax-sep 4915 ax-nul 4923 ax-pow 4974 ax-pr 5034 ax-un 7094 |
This theorem depends on definitions: df-bi 197 df-an 383 df-or 837 df-3an 1073 df-tru 1634 df-ex 1853 df-nf 1858 df-sb 2050 df-eu 2622 df-mo 2623 df-clab 2758 df-cleq 2764 df-clel 2767 df-nfc 2902 df-ne 2944 df-ral 3066 df-rex 3067 df-reu 3068 df-rab 3070 df-v 3353 df-sbc 3588 df-csb 3683 df-dif 3726 df-un 3728 df-in 3730 df-ss 3737 df-nul 4064 df-if 4226 df-pw 4299 df-sn 4317 df-pr 4319 df-op 4323 df-uni 4575 df-int 4612 df-iun 4656 df-iin 4657 df-br 4787 df-opab 4847 df-mpt 4864 df-id 5157 df-xp 5255 df-rel 5256 df-cnv 5257 df-co 5258 df-dm 5259 df-rn 5260 df-res 5261 df-ima 5262 df-iota 5992 df-fun 6031 df-fn 6032 df-f 6033 df-f1 6034 df-fo 6035 df-f1o 6036 df-fv 6037 df-ov 6794 df-oprab 6795 df-mpt2 6796 df-map 8009 df-top 20912 df-cld 21037 df-cls 21039 |
This theorem is referenced by: dssmapntrcls 38945 dssmapclsntr 38946 |
Copyright terms: Public domain | W3C validator |