![]() |
Mathbox for Richard Penner |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > clselmap | Structured version Visualization version GIF version |
Description: The closure function is a map from the powerset of the base set to itself. (Contributed by RP, 22-Apr-2021.) |
Ref | Expression |
---|---|
clselmap.x | ⊢ 𝑋 = ∪ 𝐽 |
clselmap.k | ⊢ 𝐾 = (cls‘𝐽) |
Ref | Expression |
---|---|
clselmap | ⊢ (𝐽 ∈ Top → 𝐾 ∈ (𝒫 𝑋 ↑m 𝒫 𝑋)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | clselmap.x | . . 3 ⊢ 𝑋 = ∪ 𝐽 | |
2 | clselmap.k | . . 3 ⊢ 𝐾 = (cls‘𝐽) | |
3 | 1, 2 | clsf2 44130 | . 2 ⊢ (𝐽 ∈ Top → 𝐾:𝒫 𝑋⟶𝒫 𝑋) |
4 | 1 | topopn 22934 | . . . 4 ⊢ (𝐽 ∈ Top → 𝑋 ∈ 𝐽) |
5 | 4 | pwexd 5386 | . . 3 ⊢ (𝐽 ∈ Top → 𝒫 𝑋 ∈ V) |
6 | 5, 5 | elmapd 8885 | . 2 ⊢ (𝐽 ∈ Top → (𝐾 ∈ (𝒫 𝑋 ↑m 𝒫 𝑋) ↔ 𝐾:𝒫 𝑋⟶𝒫 𝑋)) |
7 | 3, 6 | mpbird 257 | 1 ⊢ (𝐽 ∈ Top → 𝐾 ∈ (𝒫 𝑋 ↑m 𝒫 𝑋)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1538 ∈ wcel 2107 Vcvv 3479 𝒫 cpw 4606 ∪ cuni 4913 ⟶wf 6562 ‘cfv 6566 (class class class)co 7435 ↑m cmap 8871 Topctop 22921 clsccl 23048 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-11 2156 ax-12 2176 ax-ext 2707 ax-rep 5286 ax-sep 5303 ax-nul 5313 ax-pow 5372 ax-pr 5439 ax-un 7758 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1541 df-fal 1551 df-ex 1778 df-nf 1782 df-sb 2064 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2728 df-clel 2815 df-nfc 2891 df-ne 2940 df-ral 3061 df-rex 3070 df-reu 3380 df-rab 3435 df-v 3481 df-sbc 3793 df-csb 3910 df-dif 3967 df-un 3969 df-in 3971 df-ss 3981 df-nul 4341 df-if 4533 df-pw 4608 df-sn 4633 df-pr 4635 df-op 4639 df-uni 4914 df-int 4953 df-iun 4999 df-iin 5000 df-br 5150 df-opab 5212 df-mpt 5233 df-id 5584 df-xp 5696 df-rel 5697 df-cnv 5698 df-co 5699 df-dm 5700 df-rn 5701 df-res 5702 df-ima 5703 df-iota 6519 df-fun 6568 df-fn 6569 df-f 6570 df-f1 6571 df-fo 6572 df-f1o 6573 df-fv 6574 df-ov 7438 df-oprab 7439 df-mpo 7440 df-map 8873 df-top 22922 df-cld 23049 df-cls 23051 |
This theorem is referenced by: dssmapntrcls 44132 dssmapclsntr 44133 |
Copyright terms: Public domain | W3C validator |