Users' Mathboxes Mathbox for Richard Penner < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  clselmap Structured version   Visualization version   GIF version

Theorem clselmap 44123
Description: The closure function is a map from the powerset of the base set to itself. (Contributed by RP, 22-Apr-2021.)
Hypotheses
Ref Expression
clselmap.x 𝑋 = 𝐽
clselmap.k 𝐾 = (cls‘𝐽)
Assertion
Ref Expression
clselmap (𝐽 ∈ Top → 𝐾 ∈ (𝒫 𝑋m 𝒫 𝑋))

Proof of Theorem clselmap
StepHypRef Expression
1 clselmap.x . . 3 𝑋 = 𝐽
2 clselmap.k . . 3 𝐾 = (cls‘𝐽)
31, 2clsf2 44122 . 2 (𝐽 ∈ Top → 𝐾:𝒫 𝑋⟶𝒫 𝑋)
41topopn 22800 . . . 4 (𝐽 ∈ Top → 𝑋𝐽)
54pwexd 5337 . . 3 (𝐽 ∈ Top → 𝒫 𝑋 ∈ V)
65, 5elmapd 8816 . 2 (𝐽 ∈ Top → (𝐾 ∈ (𝒫 𝑋m 𝒫 𝑋) ↔ 𝐾:𝒫 𝑋⟶𝒫 𝑋))
73, 6mpbird 257 1 (𝐽 ∈ Top → 𝐾 ∈ (𝒫 𝑋m 𝒫 𝑋))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1540  wcel 2109  Vcvv 3450  𝒫 cpw 4566   cuni 4874  wf 6510  cfv 6514  (class class class)co 7390  m cmap 8802  Topctop 22787  clsccl 22912
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-rep 5237  ax-sep 5254  ax-nul 5264  ax-pow 5323  ax-pr 5390  ax-un 7714
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-ral 3046  df-rex 3055  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3757  df-csb 3866  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-op 4599  df-uni 4875  df-int 4914  df-iun 4960  df-iin 4961  df-br 5111  df-opab 5173  df-mpt 5192  df-id 5536  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-f1 6519  df-fo 6520  df-f1o 6521  df-fv 6522  df-ov 7393  df-oprab 7394  df-mpo 7395  df-map 8804  df-top 22788  df-cld 22913  df-cls 22915
This theorem is referenced by:  dssmapntrcls  44124  dssmapclsntr  44125
  Copyright terms: Public domain W3C validator