Mathbox for Richard Penner |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > clselmap | Structured version Visualization version GIF version |
Description: The closure function is a map from the powerset of the base set to itself. (Contributed by RP, 22-Apr-2021.) |
Ref | Expression |
---|---|
clselmap.x | ⊢ 𝑋 = ∪ 𝐽 |
clselmap.k | ⊢ 𝐾 = (cls‘𝐽) |
Ref | Expression |
---|---|
clselmap | ⊢ (𝐽 ∈ Top → 𝐾 ∈ (𝒫 𝑋 ↑m 𝒫 𝑋)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | clselmap.x | . . 3 ⊢ 𝑋 = ∪ 𝐽 | |
2 | clselmap.k | . . 3 ⊢ 𝐾 = (cls‘𝐽) | |
3 | 1, 2 | clsf2 41224 | . 2 ⊢ (𝐽 ∈ Top → 𝐾:𝒫 𝑋⟶𝒫 𝑋) |
4 | 1 | topopn 21606 | . . . 4 ⊢ (𝐽 ∈ Top → 𝑋 ∈ 𝐽) |
5 | 4 | pwexd 5248 | . . 3 ⊢ (𝐽 ∈ Top → 𝒫 𝑋 ∈ V) |
6 | 5, 5 | elmapd 8430 | . 2 ⊢ (𝐽 ∈ Top → (𝐾 ∈ (𝒫 𝑋 ↑m 𝒫 𝑋) ↔ 𝐾:𝒫 𝑋⟶𝒫 𝑋)) |
7 | 3, 6 | mpbird 260 | 1 ⊢ (𝐽 ∈ Top → 𝐾 ∈ (𝒫 𝑋 ↑m 𝒫 𝑋)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1538 ∈ wcel 2111 Vcvv 3409 𝒫 cpw 4494 ∪ cuni 4798 ⟶wf 6331 ‘cfv 6335 (class class class)co 7150 ↑m cmap 8416 Topctop 21593 clsccl 21718 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1911 ax-6 1970 ax-7 2015 ax-8 2113 ax-9 2121 ax-10 2142 ax-11 2158 ax-12 2175 ax-ext 2729 ax-rep 5156 ax-sep 5169 ax-nul 5176 ax-pow 5234 ax-pr 5298 ax-un 7459 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 845 df-3an 1086 df-tru 1541 df-fal 1551 df-ex 1782 df-nf 1786 df-sb 2070 df-mo 2557 df-eu 2588 df-clab 2736 df-cleq 2750 df-clel 2830 df-nfc 2901 df-ne 2952 df-ral 3075 df-rex 3076 df-reu 3077 df-rab 3079 df-v 3411 df-sbc 3697 df-csb 3806 df-dif 3861 df-un 3863 df-in 3865 df-ss 3875 df-nul 4226 df-if 4421 df-pw 4496 df-sn 4523 df-pr 4525 df-op 4529 df-uni 4799 df-int 4839 df-iun 4885 df-iin 4886 df-br 5033 df-opab 5095 df-mpt 5113 df-id 5430 df-xp 5530 df-rel 5531 df-cnv 5532 df-co 5533 df-dm 5534 df-rn 5535 df-res 5536 df-ima 5537 df-iota 6294 df-fun 6337 df-fn 6338 df-f 6339 df-f1 6340 df-fo 6341 df-f1o 6342 df-fv 6343 df-ov 7153 df-oprab 7154 df-mpo 7155 df-map 8418 df-top 21594 df-cld 21719 df-cls 21721 |
This theorem is referenced by: dssmapntrcls 41226 dssmapclsntr 41227 |
Copyright terms: Public domain | W3C validator |