Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > clsf | Structured version Visualization version GIF version |
Description: The closure function is a function from subsets of the base to closed sets. (Contributed by Mario Carneiro, 11-Apr-2015.) |
Ref | Expression |
---|---|
clscld.1 | ⊢ 𝑋 = ∪ 𝐽 |
Ref | Expression |
---|---|
clsf | ⊢ (𝐽 ∈ Top → (cls‘𝐽):𝒫 𝑋⟶(Clsd‘𝐽)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elpwi 4559 | . . 3 ⊢ (𝑥 ∈ 𝒫 𝑋 → 𝑥 ⊆ 𝑋) | |
2 | clscld.1 | . . . . 5 ⊢ 𝑋 = ∪ 𝐽 | |
3 | 2 | clsval 22294 | . . . 4 ⊢ ((𝐽 ∈ Top ∧ 𝑥 ⊆ 𝑋) → ((cls‘𝐽)‘𝑥) = ∩ {𝑦 ∈ (Clsd‘𝐽) ∣ 𝑥 ⊆ 𝑦}) |
4 | fvex 6843 | . . . 4 ⊢ ((cls‘𝐽)‘𝑥) ∈ V | |
5 | 3, 4 | eqeltrrdi 2847 | . . 3 ⊢ ((𝐽 ∈ Top ∧ 𝑥 ⊆ 𝑋) → ∩ {𝑦 ∈ (Clsd‘𝐽) ∣ 𝑥 ⊆ 𝑦} ∈ V) |
6 | 1, 5 | sylan2 594 | . 2 ⊢ ((𝐽 ∈ Top ∧ 𝑥 ∈ 𝒫 𝑋) → ∩ {𝑦 ∈ (Clsd‘𝐽) ∣ 𝑥 ⊆ 𝑦} ∈ V) |
7 | 2 | clsfval 22282 | . 2 ⊢ (𝐽 ∈ Top → (cls‘𝐽) = (𝑥 ∈ 𝒫 𝑋 ↦ ∩ {𝑦 ∈ (Clsd‘𝐽) ∣ 𝑥 ⊆ 𝑦})) |
8 | elpwi 4559 | . . 3 ⊢ (𝑦 ∈ 𝒫 𝑋 → 𝑦 ⊆ 𝑋) | |
9 | 2 | clscld 22304 | . . 3 ⊢ ((𝐽 ∈ Top ∧ 𝑦 ⊆ 𝑋) → ((cls‘𝐽)‘𝑦) ∈ (Clsd‘𝐽)) |
10 | 8, 9 | sylan2 594 | . 2 ⊢ ((𝐽 ∈ Top ∧ 𝑦 ∈ 𝒫 𝑋) → ((cls‘𝐽)‘𝑦) ∈ (Clsd‘𝐽)) |
11 | 6, 7, 10 | fmpt2d 7058 | 1 ⊢ (𝐽 ∈ Top → (cls‘𝐽):𝒫 𝑋⟶(Clsd‘𝐽)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 397 = wceq 1541 ∈ wcel 2106 {crab 3404 Vcvv 3442 ⊆ wss 3902 𝒫 cpw 4552 ∪ cuni 4857 ∩ cint 4899 ⟶wf 6480 ‘cfv 6484 Topctop 22148 Clsdccld 22273 clsccl 22275 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2708 ax-rep 5234 ax-sep 5248 ax-nul 5255 ax-pow 5313 ax-pr 5377 ax-un 7655 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 846 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2539 df-eu 2568 df-clab 2715 df-cleq 2729 df-clel 2815 df-nfc 2887 df-ne 2942 df-ral 3063 df-rex 3072 df-reu 3351 df-rab 3405 df-v 3444 df-sbc 3732 df-csb 3848 df-dif 3905 df-un 3907 df-in 3909 df-ss 3919 df-nul 4275 df-if 4479 df-pw 4554 df-sn 4579 df-pr 4581 df-op 4585 df-uni 4858 df-int 4900 df-iun 4948 df-iin 4949 df-br 5098 df-opab 5160 df-mpt 5181 df-id 5523 df-xp 5631 df-rel 5632 df-cnv 5633 df-co 5634 df-dm 5635 df-rn 5636 df-res 5637 df-ima 5638 df-iota 6436 df-fun 6486 df-fn 6487 df-f 6488 df-f1 6489 df-fo 6490 df-f1o 6491 df-fv 6492 df-top 22149 df-cld 22276 df-cls 22278 |
This theorem is referenced by: clsf2 42107 |
Copyright terms: Public domain | W3C validator |