![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > clsf | Structured version Visualization version GIF version |
Description: The closure function is a function from subsets of the base to closed sets. (Contributed by Mario Carneiro, 11-Apr-2015.) |
Ref | Expression |
---|---|
clscld.1 | ⊢ 𝑋 = ∪ 𝐽 |
Ref | Expression |
---|---|
clsf | ⊢ (𝐽 ∈ Top → (cls‘𝐽):𝒫 𝑋⟶(Clsd‘𝐽)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elpwi 4390 | . . 3 ⊢ (𝑥 ∈ 𝒫 𝑋 → 𝑥 ⊆ 𝑋) | |
2 | clscld.1 | . . . . 5 ⊢ 𝑋 = ∪ 𝐽 | |
3 | 2 | clsval 21219 | . . . 4 ⊢ ((𝐽 ∈ Top ∧ 𝑥 ⊆ 𝑋) → ((cls‘𝐽)‘𝑥) = ∩ {𝑦 ∈ (Clsd‘𝐽) ∣ 𝑥 ⊆ 𝑦}) |
4 | fvex 6450 | . . . 4 ⊢ ((cls‘𝐽)‘𝑥) ∈ V | |
5 | 3, 4 | syl6eqelr 2915 | . . 3 ⊢ ((𝐽 ∈ Top ∧ 𝑥 ⊆ 𝑋) → ∩ {𝑦 ∈ (Clsd‘𝐽) ∣ 𝑥 ⊆ 𝑦} ∈ V) |
6 | 1, 5 | sylan2 586 | . 2 ⊢ ((𝐽 ∈ Top ∧ 𝑥 ∈ 𝒫 𝑋) → ∩ {𝑦 ∈ (Clsd‘𝐽) ∣ 𝑥 ⊆ 𝑦} ∈ V) |
7 | 2 | clsfval 21207 | . 2 ⊢ (𝐽 ∈ Top → (cls‘𝐽) = (𝑥 ∈ 𝒫 𝑋 ↦ ∩ {𝑦 ∈ (Clsd‘𝐽) ∣ 𝑥 ⊆ 𝑦})) |
8 | elpwi 4390 | . . 3 ⊢ (𝑦 ∈ 𝒫 𝑋 → 𝑦 ⊆ 𝑋) | |
9 | 2 | clscld 21229 | . . 3 ⊢ ((𝐽 ∈ Top ∧ 𝑦 ⊆ 𝑋) → ((cls‘𝐽)‘𝑦) ∈ (Clsd‘𝐽)) |
10 | 8, 9 | sylan2 586 | . 2 ⊢ ((𝐽 ∈ Top ∧ 𝑦 ∈ 𝒫 𝑋) → ((cls‘𝐽)‘𝑦) ∈ (Clsd‘𝐽)) |
11 | 6, 7, 10 | fmpt2d 6647 | 1 ⊢ (𝐽 ∈ Top → (cls‘𝐽):𝒫 𝑋⟶(Clsd‘𝐽)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 386 = wceq 1656 ∈ wcel 2164 {crab 3121 Vcvv 3414 ⊆ wss 3798 𝒫 cpw 4380 ∪ cuni 4660 ∩ cint 4699 ⟶wf 6123 ‘cfv 6127 Topctop 21075 Clsdccld 21198 clsccl 21200 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1894 ax-4 1908 ax-5 2009 ax-6 2075 ax-7 2112 ax-8 2166 ax-9 2173 ax-10 2192 ax-11 2207 ax-12 2220 ax-13 2389 ax-ext 2803 ax-rep 4996 ax-sep 5007 ax-nul 5015 ax-pow 5067 ax-pr 5129 ax-un 7214 |
This theorem depends on definitions: df-bi 199 df-an 387 df-or 879 df-3an 1113 df-tru 1660 df-ex 1879 df-nf 1883 df-sb 2068 df-mo 2605 df-eu 2640 df-clab 2812 df-cleq 2818 df-clel 2821 df-nfc 2958 df-ne 3000 df-ral 3122 df-rex 3123 df-reu 3124 df-rab 3126 df-v 3416 df-sbc 3663 df-csb 3758 df-dif 3801 df-un 3803 df-in 3805 df-ss 3812 df-nul 4147 df-if 4309 df-pw 4382 df-sn 4400 df-pr 4402 df-op 4406 df-uni 4661 df-int 4700 df-iun 4744 df-iin 4745 df-br 4876 df-opab 4938 df-mpt 4955 df-id 5252 df-xp 5352 df-rel 5353 df-cnv 5354 df-co 5355 df-dm 5356 df-rn 5357 df-res 5358 df-ima 5359 df-iota 6090 df-fun 6129 df-fn 6130 df-f 6131 df-f1 6132 df-fo 6133 df-f1o 6134 df-fv 6135 df-top 21076 df-cld 21201 df-cls 21203 |
This theorem is referenced by: clsf2 39263 |
Copyright terms: Public domain | W3C validator |