MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  clsf Structured version   Visualization version   GIF version

Theorem clsf 22248
Description: The closure function is a function from subsets of the base to closed sets. (Contributed by Mario Carneiro, 11-Apr-2015.)
Hypothesis
Ref Expression
clscld.1 𝑋 = 𝐽
Assertion
Ref Expression
clsf (𝐽 ∈ Top → (cls‘𝐽):𝒫 𝑋⟶(Clsd‘𝐽))

Proof of Theorem clsf
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 elpwi 4546 . . 3 (𝑥 ∈ 𝒫 𝑋𝑥𝑋)
2 clscld.1 . . . . 5 𝑋 = 𝐽
32clsval 22237 . . . 4 ((𝐽 ∈ Top ∧ 𝑥𝑋) → ((cls‘𝐽)‘𝑥) = {𝑦 ∈ (Clsd‘𝐽) ∣ 𝑥𝑦})
4 fvex 6817 . . . 4 ((cls‘𝐽)‘𝑥) ∈ V
53, 4eqeltrrdi 2846 . . 3 ((𝐽 ∈ Top ∧ 𝑥𝑋) → {𝑦 ∈ (Clsd‘𝐽) ∣ 𝑥𝑦} ∈ V)
61, 5sylan2 594 . 2 ((𝐽 ∈ Top ∧ 𝑥 ∈ 𝒫 𝑋) → {𝑦 ∈ (Clsd‘𝐽) ∣ 𝑥𝑦} ∈ V)
72clsfval 22225 . 2 (𝐽 ∈ Top → (cls‘𝐽) = (𝑥 ∈ 𝒫 𝑋 {𝑦 ∈ (Clsd‘𝐽) ∣ 𝑥𝑦}))
8 elpwi 4546 . . 3 (𝑦 ∈ 𝒫 𝑋𝑦𝑋)
92clscld 22247 . . 3 ((𝐽 ∈ Top ∧ 𝑦𝑋) → ((cls‘𝐽)‘𝑦) ∈ (Clsd‘𝐽))
108, 9sylan2 594 . 2 ((𝐽 ∈ Top ∧ 𝑦 ∈ 𝒫 𝑋) → ((cls‘𝐽)‘𝑦) ∈ (Clsd‘𝐽))
116, 7, 10fmpt2d 7029 1 (𝐽 ∈ Top → (cls‘𝐽):𝒫 𝑋⟶(Clsd‘𝐽))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 397   = wceq 1539  wcel 2104  {crab 3303  Vcvv 3437  wss 3892  𝒫 cpw 4539   cuni 4844   cint 4886  wf 6454  cfv 6458  Topctop 22091  Clsdccld 22216  clsccl 22218
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1911  ax-6 1969  ax-7 2009  ax-8 2106  ax-9 2114  ax-10 2135  ax-11 2152  ax-12 2169  ax-ext 2707  ax-rep 5218  ax-sep 5232  ax-nul 5239  ax-pow 5297  ax-pr 5361  ax-un 7620
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 846  df-3an 1089  df-tru 1542  df-fal 1552  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2538  df-eu 2567  df-clab 2714  df-cleq 2728  df-clel 2814  df-nfc 2887  df-ne 2942  df-ral 3063  df-rex 3072  df-reu 3305  df-rab 3306  df-v 3439  df-sbc 3722  df-csb 3838  df-dif 3895  df-un 3897  df-in 3899  df-ss 3909  df-nul 4263  df-if 4466  df-pw 4541  df-sn 4566  df-pr 4568  df-op 4572  df-uni 4845  df-int 4887  df-iun 4933  df-iin 4934  df-br 5082  df-opab 5144  df-mpt 5165  df-id 5500  df-xp 5606  df-rel 5607  df-cnv 5608  df-co 5609  df-dm 5610  df-rn 5611  df-res 5612  df-ima 5613  df-iota 6410  df-fun 6460  df-fn 6461  df-f 6462  df-f1 6463  df-fo 6464  df-f1o 6465  df-fv 6466  df-top 22092  df-cld 22219  df-cls 22221
This theorem is referenced by:  clsf2  41949
  Copyright terms: Public domain W3C validator