| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > clsf | Structured version Visualization version GIF version | ||
| Description: The closure function is a function from subsets of the base to closed sets. (Contributed by Mario Carneiro, 11-Apr-2015.) |
| Ref | Expression |
|---|---|
| clscld.1 | ⊢ 𝑋 = ∪ 𝐽 |
| Ref | Expression |
|---|---|
| clsf | ⊢ (𝐽 ∈ Top → (cls‘𝐽):𝒫 𝑋⟶(Clsd‘𝐽)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elpwi 4560 | . . 3 ⊢ (𝑥 ∈ 𝒫 𝑋 → 𝑥 ⊆ 𝑋) | |
| 2 | clscld.1 | . . . . 5 ⊢ 𝑋 = ∪ 𝐽 | |
| 3 | 2 | clsval 22941 | . . . 4 ⊢ ((𝐽 ∈ Top ∧ 𝑥 ⊆ 𝑋) → ((cls‘𝐽)‘𝑥) = ∩ {𝑦 ∈ (Clsd‘𝐽) ∣ 𝑥 ⊆ 𝑦}) |
| 4 | fvex 6839 | . . . 4 ⊢ ((cls‘𝐽)‘𝑥) ∈ V | |
| 5 | 3, 4 | eqeltrrdi 2837 | . . 3 ⊢ ((𝐽 ∈ Top ∧ 𝑥 ⊆ 𝑋) → ∩ {𝑦 ∈ (Clsd‘𝐽) ∣ 𝑥 ⊆ 𝑦} ∈ V) |
| 6 | 1, 5 | sylan2 593 | . 2 ⊢ ((𝐽 ∈ Top ∧ 𝑥 ∈ 𝒫 𝑋) → ∩ {𝑦 ∈ (Clsd‘𝐽) ∣ 𝑥 ⊆ 𝑦} ∈ V) |
| 7 | 2 | clsfval 22929 | . 2 ⊢ (𝐽 ∈ Top → (cls‘𝐽) = (𝑥 ∈ 𝒫 𝑋 ↦ ∩ {𝑦 ∈ (Clsd‘𝐽) ∣ 𝑥 ⊆ 𝑦})) |
| 8 | elpwi 4560 | . . 3 ⊢ (𝑦 ∈ 𝒫 𝑋 → 𝑦 ⊆ 𝑋) | |
| 9 | 2 | clscld 22951 | . . 3 ⊢ ((𝐽 ∈ Top ∧ 𝑦 ⊆ 𝑋) → ((cls‘𝐽)‘𝑦) ∈ (Clsd‘𝐽)) |
| 10 | 8, 9 | sylan2 593 | . 2 ⊢ ((𝐽 ∈ Top ∧ 𝑦 ∈ 𝒫 𝑋) → ((cls‘𝐽)‘𝑦) ∈ (Clsd‘𝐽)) |
| 11 | 6, 7, 10 | fmpt2d 7062 | 1 ⊢ (𝐽 ∈ Top → (cls‘𝐽):𝒫 𝑋⟶(Clsd‘𝐽)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2109 {crab 3396 Vcvv 3438 ⊆ wss 3905 𝒫 cpw 4553 ∪ cuni 4861 ∩ cint 4899 ⟶wf 6482 ‘cfv 6486 Topctop 22797 Clsdccld 22920 clsccl 22922 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5221 ax-sep 5238 ax-nul 5248 ax-pow 5307 ax-pr 5374 ax-un 7675 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-reu 3346 df-rab 3397 df-v 3440 df-sbc 3745 df-csb 3854 df-dif 3908 df-un 3910 df-in 3912 df-ss 3922 df-nul 4287 df-if 4479 df-pw 4555 df-sn 4580 df-pr 4582 df-op 4586 df-uni 4862 df-int 4900 df-iun 4946 df-iin 4947 df-br 5096 df-opab 5158 df-mpt 5177 df-id 5518 df-xp 5629 df-rel 5630 df-cnv 5631 df-co 5632 df-dm 5633 df-rn 5634 df-res 5635 df-ima 5636 df-iota 6442 df-fun 6488 df-fn 6489 df-f 6490 df-f1 6491 df-fo 6492 df-f1o 6493 df-fv 6494 df-top 22798 df-cld 22923 df-cls 22925 |
| This theorem is referenced by: clsf2 44119 |
| Copyright terms: Public domain | W3C validator |