Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > cnss2 | Structured version Visualization version GIF version |
Description: If the topology 𝐾 is finer than 𝐽, then there are fewer continuous functions into 𝐾 than into 𝐽 from some other space. (Contributed by Mario Carneiro, 19-Mar-2015.) (Revised by Mario Carneiro, 21-Aug-2015.) |
Ref | Expression |
---|---|
cnss2.1 | ⊢ 𝑌 = ∪ 𝐾 |
Ref | Expression |
---|---|
cnss2 | ⊢ ((𝐿 ∈ (TopOn‘𝑌) ∧ 𝐿 ⊆ 𝐾) → (𝐽 Cn 𝐾) ⊆ (𝐽 Cn 𝐿)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2738 | . . . . . 6 ⊢ ∪ 𝐽 = ∪ 𝐽 | |
2 | cnss2.1 | . . . . . 6 ⊢ 𝑌 = ∪ 𝐾 | |
3 | 1, 2 | cnf 22305 | . . . . 5 ⊢ (𝑓 ∈ (𝐽 Cn 𝐾) → 𝑓:∪ 𝐽⟶𝑌) |
4 | 3 | adantl 481 | . . . 4 ⊢ (((𝐿 ∈ (TopOn‘𝑌) ∧ 𝐿 ⊆ 𝐾) ∧ 𝑓 ∈ (𝐽 Cn 𝐾)) → 𝑓:∪ 𝐽⟶𝑌) |
5 | simplr 765 | . . . . 5 ⊢ (((𝐿 ∈ (TopOn‘𝑌) ∧ 𝐿 ⊆ 𝐾) ∧ 𝑓 ∈ (𝐽 Cn 𝐾)) → 𝐿 ⊆ 𝐾) | |
6 | cnima 22324 | . . . . . . 7 ⊢ ((𝑓 ∈ (𝐽 Cn 𝐾) ∧ 𝑥 ∈ 𝐾) → (◡𝑓 “ 𝑥) ∈ 𝐽) | |
7 | 6 | ralrimiva 3107 | . . . . . 6 ⊢ (𝑓 ∈ (𝐽 Cn 𝐾) → ∀𝑥 ∈ 𝐾 (◡𝑓 “ 𝑥) ∈ 𝐽) |
8 | 7 | adantl 481 | . . . . 5 ⊢ (((𝐿 ∈ (TopOn‘𝑌) ∧ 𝐿 ⊆ 𝐾) ∧ 𝑓 ∈ (𝐽 Cn 𝐾)) → ∀𝑥 ∈ 𝐾 (◡𝑓 “ 𝑥) ∈ 𝐽) |
9 | ssralv 3983 | . . . . 5 ⊢ (𝐿 ⊆ 𝐾 → (∀𝑥 ∈ 𝐾 (◡𝑓 “ 𝑥) ∈ 𝐽 → ∀𝑥 ∈ 𝐿 (◡𝑓 “ 𝑥) ∈ 𝐽)) | |
10 | 5, 8, 9 | sylc 65 | . . . 4 ⊢ (((𝐿 ∈ (TopOn‘𝑌) ∧ 𝐿 ⊆ 𝐾) ∧ 𝑓 ∈ (𝐽 Cn 𝐾)) → ∀𝑥 ∈ 𝐿 (◡𝑓 “ 𝑥) ∈ 𝐽) |
11 | cntop1 22299 | . . . . . . 7 ⊢ (𝑓 ∈ (𝐽 Cn 𝐾) → 𝐽 ∈ Top) | |
12 | 11 | adantl 481 | . . . . . 6 ⊢ (((𝐿 ∈ (TopOn‘𝑌) ∧ 𝐿 ⊆ 𝐾) ∧ 𝑓 ∈ (𝐽 Cn 𝐾)) → 𝐽 ∈ Top) |
13 | toptopon2 21975 | . . . . . 6 ⊢ (𝐽 ∈ Top ↔ 𝐽 ∈ (TopOn‘∪ 𝐽)) | |
14 | 12, 13 | sylib 217 | . . . . 5 ⊢ (((𝐿 ∈ (TopOn‘𝑌) ∧ 𝐿 ⊆ 𝐾) ∧ 𝑓 ∈ (𝐽 Cn 𝐾)) → 𝐽 ∈ (TopOn‘∪ 𝐽)) |
15 | simpll 763 | . . . . 5 ⊢ (((𝐿 ∈ (TopOn‘𝑌) ∧ 𝐿 ⊆ 𝐾) ∧ 𝑓 ∈ (𝐽 Cn 𝐾)) → 𝐿 ∈ (TopOn‘𝑌)) | |
16 | iscn 22294 | . . . . 5 ⊢ ((𝐽 ∈ (TopOn‘∪ 𝐽) ∧ 𝐿 ∈ (TopOn‘𝑌)) → (𝑓 ∈ (𝐽 Cn 𝐿) ↔ (𝑓:∪ 𝐽⟶𝑌 ∧ ∀𝑥 ∈ 𝐿 (◡𝑓 “ 𝑥) ∈ 𝐽))) | |
17 | 14, 15, 16 | syl2anc 583 | . . . 4 ⊢ (((𝐿 ∈ (TopOn‘𝑌) ∧ 𝐿 ⊆ 𝐾) ∧ 𝑓 ∈ (𝐽 Cn 𝐾)) → (𝑓 ∈ (𝐽 Cn 𝐿) ↔ (𝑓:∪ 𝐽⟶𝑌 ∧ ∀𝑥 ∈ 𝐿 (◡𝑓 “ 𝑥) ∈ 𝐽))) |
18 | 4, 10, 17 | mpbir2and 709 | . . 3 ⊢ (((𝐿 ∈ (TopOn‘𝑌) ∧ 𝐿 ⊆ 𝐾) ∧ 𝑓 ∈ (𝐽 Cn 𝐾)) → 𝑓 ∈ (𝐽 Cn 𝐿)) |
19 | 18 | ex 412 | . 2 ⊢ ((𝐿 ∈ (TopOn‘𝑌) ∧ 𝐿 ⊆ 𝐾) → (𝑓 ∈ (𝐽 Cn 𝐾) → 𝑓 ∈ (𝐽 Cn 𝐿))) |
20 | 19 | ssrdv 3923 | 1 ⊢ ((𝐿 ∈ (TopOn‘𝑌) ∧ 𝐿 ⊆ 𝐾) → (𝐽 Cn 𝐾) ⊆ (𝐽 Cn 𝐿)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 395 = wceq 1539 ∈ wcel 2108 ∀wral 3063 ⊆ wss 3883 ∪ cuni 4836 ◡ccnv 5579 “ cima 5583 ⟶wf 6414 ‘cfv 6418 (class class class)co 7255 Topctop 21950 TopOnctopon 21967 Cn ccn 22283 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-sep 5218 ax-nul 5225 ax-pow 5283 ax-pr 5347 ax-un 7566 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-ral 3068 df-rex 3069 df-rab 3072 df-v 3424 df-sbc 3712 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-nul 4254 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-op 4565 df-uni 4837 df-br 5071 df-opab 5133 df-mpt 5154 df-id 5480 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-iota 6376 df-fun 6420 df-fn 6421 df-f 6422 df-fv 6426 df-ov 7258 df-oprab 7259 df-mpo 7260 df-map 8575 df-top 21951 df-topon 21968 df-cn 22286 |
This theorem is referenced by: kgencn3 22617 xmetdcn 23907 |
Copyright terms: Public domain | W3C validator |