![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > cnss2 | Structured version Visualization version GIF version |
Description: If the topology 𝐾 is finer than 𝐽, then there are fewer continuous functions into 𝐾 than into 𝐽 from some other space. (Contributed by Mario Carneiro, 19-Mar-2015.) (Revised by Mario Carneiro, 21-Aug-2015.) |
Ref | Expression |
---|---|
cnss2.1 | ⊢ 𝑌 = ∪ 𝐾 |
Ref | Expression |
---|---|
cnss2 | ⊢ ((𝐿 ∈ (TopOn‘𝑌) ∧ 𝐿 ⊆ 𝐾) → (𝐽 Cn 𝐾) ⊆ (𝐽 Cn 𝐿)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2738 | . . . . . 6 ⊢ ∪ 𝐽 = ∪ 𝐽 | |
2 | cnss2.1 | . . . . . 6 ⊢ 𝑌 = ∪ 𝐾 | |
3 | 1, 2 | cnf 22525 | . . . . 5 ⊢ (𝑓 ∈ (𝐽 Cn 𝐾) → 𝑓:∪ 𝐽⟶𝑌) |
4 | 3 | adantl 483 | . . . 4 ⊢ (((𝐿 ∈ (TopOn‘𝑌) ∧ 𝐿 ⊆ 𝐾) ∧ 𝑓 ∈ (𝐽 Cn 𝐾)) → 𝑓:∪ 𝐽⟶𝑌) |
5 | simplr 768 | . . . . 5 ⊢ (((𝐿 ∈ (TopOn‘𝑌) ∧ 𝐿 ⊆ 𝐾) ∧ 𝑓 ∈ (𝐽 Cn 𝐾)) → 𝐿 ⊆ 𝐾) | |
6 | cnima 22544 | . . . . . . 7 ⊢ ((𝑓 ∈ (𝐽 Cn 𝐾) ∧ 𝑥 ∈ 𝐾) → (◡𝑓 “ 𝑥) ∈ 𝐽) | |
7 | 6 | ralrimiva 3142 | . . . . . 6 ⊢ (𝑓 ∈ (𝐽 Cn 𝐾) → ∀𝑥 ∈ 𝐾 (◡𝑓 “ 𝑥) ∈ 𝐽) |
8 | 7 | adantl 483 | . . . . 5 ⊢ (((𝐿 ∈ (TopOn‘𝑌) ∧ 𝐿 ⊆ 𝐾) ∧ 𝑓 ∈ (𝐽 Cn 𝐾)) → ∀𝑥 ∈ 𝐾 (◡𝑓 “ 𝑥) ∈ 𝐽) |
9 | ssralv 4009 | . . . . 5 ⊢ (𝐿 ⊆ 𝐾 → (∀𝑥 ∈ 𝐾 (◡𝑓 “ 𝑥) ∈ 𝐽 → ∀𝑥 ∈ 𝐿 (◡𝑓 “ 𝑥) ∈ 𝐽)) | |
10 | 5, 8, 9 | sylc 65 | . . . 4 ⊢ (((𝐿 ∈ (TopOn‘𝑌) ∧ 𝐿 ⊆ 𝐾) ∧ 𝑓 ∈ (𝐽 Cn 𝐾)) → ∀𝑥 ∈ 𝐿 (◡𝑓 “ 𝑥) ∈ 𝐽) |
11 | cntop1 22519 | . . . . . . 7 ⊢ (𝑓 ∈ (𝐽 Cn 𝐾) → 𝐽 ∈ Top) | |
12 | 11 | adantl 483 | . . . . . 6 ⊢ (((𝐿 ∈ (TopOn‘𝑌) ∧ 𝐿 ⊆ 𝐾) ∧ 𝑓 ∈ (𝐽 Cn 𝐾)) → 𝐽 ∈ Top) |
13 | toptopon2 22195 | . . . . . 6 ⊢ (𝐽 ∈ Top ↔ 𝐽 ∈ (TopOn‘∪ 𝐽)) | |
14 | 12, 13 | sylib 217 | . . . . 5 ⊢ (((𝐿 ∈ (TopOn‘𝑌) ∧ 𝐿 ⊆ 𝐾) ∧ 𝑓 ∈ (𝐽 Cn 𝐾)) → 𝐽 ∈ (TopOn‘∪ 𝐽)) |
15 | simpll 766 | . . . . 5 ⊢ (((𝐿 ∈ (TopOn‘𝑌) ∧ 𝐿 ⊆ 𝐾) ∧ 𝑓 ∈ (𝐽 Cn 𝐾)) → 𝐿 ∈ (TopOn‘𝑌)) | |
16 | iscn 22514 | . . . . 5 ⊢ ((𝐽 ∈ (TopOn‘∪ 𝐽) ∧ 𝐿 ∈ (TopOn‘𝑌)) → (𝑓 ∈ (𝐽 Cn 𝐿) ↔ (𝑓:∪ 𝐽⟶𝑌 ∧ ∀𝑥 ∈ 𝐿 (◡𝑓 “ 𝑥) ∈ 𝐽))) | |
17 | 14, 15, 16 | syl2anc 585 | . . . 4 ⊢ (((𝐿 ∈ (TopOn‘𝑌) ∧ 𝐿 ⊆ 𝐾) ∧ 𝑓 ∈ (𝐽 Cn 𝐾)) → (𝑓 ∈ (𝐽 Cn 𝐿) ↔ (𝑓:∪ 𝐽⟶𝑌 ∧ ∀𝑥 ∈ 𝐿 (◡𝑓 “ 𝑥) ∈ 𝐽))) |
18 | 4, 10, 17 | mpbir2and 712 | . . 3 ⊢ (((𝐿 ∈ (TopOn‘𝑌) ∧ 𝐿 ⊆ 𝐾) ∧ 𝑓 ∈ (𝐽 Cn 𝐾)) → 𝑓 ∈ (𝐽 Cn 𝐿)) |
19 | 18 | ex 414 | . 2 ⊢ ((𝐿 ∈ (TopOn‘𝑌) ∧ 𝐿 ⊆ 𝐾) → (𝑓 ∈ (𝐽 Cn 𝐾) → 𝑓 ∈ (𝐽 Cn 𝐿))) |
20 | 19 | ssrdv 3949 | 1 ⊢ ((𝐿 ∈ (TopOn‘𝑌) ∧ 𝐿 ⊆ 𝐾) → (𝐽 Cn 𝐾) ⊆ (𝐽 Cn 𝐿)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 397 = wceq 1542 ∈ wcel 2107 ∀wral 3063 ⊆ wss 3909 ∪ cuni 4864 ◡ccnv 5630 “ cima 5634 ⟶wf 6488 ‘cfv 6492 (class class class)co 7350 Topctop 22170 TopOnctopon 22187 Cn ccn 22503 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-10 2138 ax-11 2155 ax-12 2172 ax-ext 2709 ax-sep 5255 ax-nul 5262 ax-pow 5319 ax-pr 5383 ax-un 7663 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 847 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1783 df-nf 1787 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2888 df-ne 2943 df-ral 3064 df-rex 3073 df-rab 3407 df-v 3446 df-sbc 3739 df-dif 3912 df-un 3914 df-in 3916 df-ss 3926 df-nul 4282 df-if 4486 df-pw 4561 df-sn 4586 df-pr 4588 df-op 4592 df-uni 4865 df-br 5105 df-opab 5167 df-mpt 5188 df-id 5529 df-xp 5637 df-rel 5638 df-cnv 5639 df-co 5640 df-dm 5641 df-rn 5642 df-res 5643 df-ima 5644 df-iota 6444 df-fun 6494 df-fn 6495 df-f 6496 df-fv 6500 df-ov 7353 df-oprab 7354 df-mpo 7355 df-map 8701 df-top 22171 df-topon 22188 df-cn 22506 |
This theorem is referenced by: kgencn3 22837 xmetdcn 24129 |
Copyright terms: Public domain | W3C validator |