Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > cnss2 | Structured version Visualization version GIF version |
Description: If the topology 𝐾 is finer than 𝐽, then there are fewer continuous functions into 𝐾 than into 𝐽 from some other space. (Contributed by Mario Carneiro, 19-Mar-2015.) (Revised by Mario Carneiro, 21-Aug-2015.) |
Ref | Expression |
---|---|
cnss2.1 | ⊢ 𝑌 = ∪ 𝐾 |
Ref | Expression |
---|---|
cnss2 | ⊢ ((𝐿 ∈ (TopOn‘𝑌) ∧ 𝐿 ⊆ 𝐾) → (𝐽 Cn 𝐾) ⊆ (𝐽 Cn 𝐿)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2738 | . . . . . 6 ⊢ ∪ 𝐽 = ∪ 𝐽 | |
2 | cnss2.1 | . . . . . 6 ⊢ 𝑌 = ∪ 𝐾 | |
3 | 1, 2 | cnf 22397 | . . . . 5 ⊢ (𝑓 ∈ (𝐽 Cn 𝐾) → 𝑓:∪ 𝐽⟶𝑌) |
4 | 3 | adantl 482 | . . . 4 ⊢ (((𝐿 ∈ (TopOn‘𝑌) ∧ 𝐿 ⊆ 𝐾) ∧ 𝑓 ∈ (𝐽 Cn 𝐾)) → 𝑓:∪ 𝐽⟶𝑌) |
5 | simplr 766 | . . . . 5 ⊢ (((𝐿 ∈ (TopOn‘𝑌) ∧ 𝐿 ⊆ 𝐾) ∧ 𝑓 ∈ (𝐽 Cn 𝐾)) → 𝐿 ⊆ 𝐾) | |
6 | cnima 22416 | . . . . . . 7 ⊢ ((𝑓 ∈ (𝐽 Cn 𝐾) ∧ 𝑥 ∈ 𝐾) → (◡𝑓 “ 𝑥) ∈ 𝐽) | |
7 | 6 | ralrimiva 3103 | . . . . . 6 ⊢ (𝑓 ∈ (𝐽 Cn 𝐾) → ∀𝑥 ∈ 𝐾 (◡𝑓 “ 𝑥) ∈ 𝐽) |
8 | 7 | adantl 482 | . . . . 5 ⊢ (((𝐿 ∈ (TopOn‘𝑌) ∧ 𝐿 ⊆ 𝐾) ∧ 𝑓 ∈ (𝐽 Cn 𝐾)) → ∀𝑥 ∈ 𝐾 (◡𝑓 “ 𝑥) ∈ 𝐽) |
9 | ssralv 3987 | . . . . 5 ⊢ (𝐿 ⊆ 𝐾 → (∀𝑥 ∈ 𝐾 (◡𝑓 “ 𝑥) ∈ 𝐽 → ∀𝑥 ∈ 𝐿 (◡𝑓 “ 𝑥) ∈ 𝐽)) | |
10 | 5, 8, 9 | sylc 65 | . . . 4 ⊢ (((𝐿 ∈ (TopOn‘𝑌) ∧ 𝐿 ⊆ 𝐾) ∧ 𝑓 ∈ (𝐽 Cn 𝐾)) → ∀𝑥 ∈ 𝐿 (◡𝑓 “ 𝑥) ∈ 𝐽) |
11 | cntop1 22391 | . . . . . . 7 ⊢ (𝑓 ∈ (𝐽 Cn 𝐾) → 𝐽 ∈ Top) | |
12 | 11 | adantl 482 | . . . . . 6 ⊢ (((𝐿 ∈ (TopOn‘𝑌) ∧ 𝐿 ⊆ 𝐾) ∧ 𝑓 ∈ (𝐽 Cn 𝐾)) → 𝐽 ∈ Top) |
13 | toptopon2 22067 | . . . . . 6 ⊢ (𝐽 ∈ Top ↔ 𝐽 ∈ (TopOn‘∪ 𝐽)) | |
14 | 12, 13 | sylib 217 | . . . . 5 ⊢ (((𝐿 ∈ (TopOn‘𝑌) ∧ 𝐿 ⊆ 𝐾) ∧ 𝑓 ∈ (𝐽 Cn 𝐾)) → 𝐽 ∈ (TopOn‘∪ 𝐽)) |
15 | simpll 764 | . . . . 5 ⊢ (((𝐿 ∈ (TopOn‘𝑌) ∧ 𝐿 ⊆ 𝐾) ∧ 𝑓 ∈ (𝐽 Cn 𝐾)) → 𝐿 ∈ (TopOn‘𝑌)) | |
16 | iscn 22386 | . . . . 5 ⊢ ((𝐽 ∈ (TopOn‘∪ 𝐽) ∧ 𝐿 ∈ (TopOn‘𝑌)) → (𝑓 ∈ (𝐽 Cn 𝐿) ↔ (𝑓:∪ 𝐽⟶𝑌 ∧ ∀𝑥 ∈ 𝐿 (◡𝑓 “ 𝑥) ∈ 𝐽))) | |
17 | 14, 15, 16 | syl2anc 584 | . . . 4 ⊢ (((𝐿 ∈ (TopOn‘𝑌) ∧ 𝐿 ⊆ 𝐾) ∧ 𝑓 ∈ (𝐽 Cn 𝐾)) → (𝑓 ∈ (𝐽 Cn 𝐿) ↔ (𝑓:∪ 𝐽⟶𝑌 ∧ ∀𝑥 ∈ 𝐿 (◡𝑓 “ 𝑥) ∈ 𝐽))) |
18 | 4, 10, 17 | mpbir2and 710 | . . 3 ⊢ (((𝐿 ∈ (TopOn‘𝑌) ∧ 𝐿 ⊆ 𝐾) ∧ 𝑓 ∈ (𝐽 Cn 𝐾)) → 𝑓 ∈ (𝐽 Cn 𝐿)) |
19 | 18 | ex 413 | . 2 ⊢ ((𝐿 ∈ (TopOn‘𝑌) ∧ 𝐿 ⊆ 𝐾) → (𝑓 ∈ (𝐽 Cn 𝐾) → 𝑓 ∈ (𝐽 Cn 𝐿))) |
20 | 19 | ssrdv 3927 | 1 ⊢ ((𝐿 ∈ (TopOn‘𝑌) ∧ 𝐿 ⊆ 𝐾) → (𝐽 Cn 𝐾) ⊆ (𝐽 Cn 𝐿)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 396 = wceq 1539 ∈ wcel 2106 ∀wral 3064 ⊆ wss 3887 ∪ cuni 4839 ◡ccnv 5588 “ cima 5592 ⟶wf 6429 ‘cfv 6433 (class class class)co 7275 Topctop 22042 TopOnctopon 22059 Cn ccn 22375 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-sep 5223 ax-nul 5230 ax-pow 5288 ax-pr 5352 ax-un 7588 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ral 3069 df-rex 3070 df-rab 3073 df-v 3434 df-sbc 3717 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-nul 4257 df-if 4460 df-pw 4535 df-sn 4562 df-pr 4564 df-op 4568 df-uni 4840 df-br 5075 df-opab 5137 df-mpt 5158 df-id 5489 df-xp 5595 df-rel 5596 df-cnv 5597 df-co 5598 df-dm 5599 df-rn 5600 df-res 5601 df-ima 5602 df-iota 6391 df-fun 6435 df-fn 6436 df-f 6437 df-fv 6441 df-ov 7278 df-oprab 7279 df-mpo 7280 df-map 8617 df-top 22043 df-topon 22060 df-cn 22378 |
This theorem is referenced by: kgencn3 22709 xmetdcn 24001 |
Copyright terms: Public domain | W3C validator |