![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > cnss2 | Structured version Visualization version GIF version |
Description: If the topology 𝐾 is finer than 𝐽, then there are fewer continuous functions into 𝐾 than into 𝐽 from some other space. (Contributed by Mario Carneiro, 19-Mar-2015.) (Revised by Mario Carneiro, 21-Aug-2015.) |
Ref | Expression |
---|---|
cnss2.1 | ⊢ 𝑌 = ∪ 𝐾 |
Ref | Expression |
---|---|
cnss2 | ⊢ ((𝐿 ∈ (TopOn‘𝑌) ∧ 𝐿 ⊆ 𝐾) → (𝐽 Cn 𝐾) ⊆ (𝐽 Cn 𝐿)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2735 | . . . . . 6 ⊢ ∪ 𝐽 = ∪ 𝐽 | |
2 | cnss2.1 | . . . . . 6 ⊢ 𝑌 = ∪ 𝐾 | |
3 | 1, 2 | cnf 23270 | . . . . 5 ⊢ (𝑓 ∈ (𝐽 Cn 𝐾) → 𝑓:∪ 𝐽⟶𝑌) |
4 | 3 | adantl 481 | . . . 4 ⊢ (((𝐿 ∈ (TopOn‘𝑌) ∧ 𝐿 ⊆ 𝐾) ∧ 𝑓 ∈ (𝐽 Cn 𝐾)) → 𝑓:∪ 𝐽⟶𝑌) |
5 | simplr 769 | . . . . 5 ⊢ (((𝐿 ∈ (TopOn‘𝑌) ∧ 𝐿 ⊆ 𝐾) ∧ 𝑓 ∈ (𝐽 Cn 𝐾)) → 𝐿 ⊆ 𝐾) | |
6 | cnima 23289 | . . . . . . 7 ⊢ ((𝑓 ∈ (𝐽 Cn 𝐾) ∧ 𝑥 ∈ 𝐾) → (◡𝑓 “ 𝑥) ∈ 𝐽) | |
7 | 6 | ralrimiva 3144 | . . . . . 6 ⊢ (𝑓 ∈ (𝐽 Cn 𝐾) → ∀𝑥 ∈ 𝐾 (◡𝑓 “ 𝑥) ∈ 𝐽) |
8 | 7 | adantl 481 | . . . . 5 ⊢ (((𝐿 ∈ (TopOn‘𝑌) ∧ 𝐿 ⊆ 𝐾) ∧ 𝑓 ∈ (𝐽 Cn 𝐾)) → ∀𝑥 ∈ 𝐾 (◡𝑓 “ 𝑥) ∈ 𝐽) |
9 | ssralv 4064 | . . . . 5 ⊢ (𝐿 ⊆ 𝐾 → (∀𝑥 ∈ 𝐾 (◡𝑓 “ 𝑥) ∈ 𝐽 → ∀𝑥 ∈ 𝐿 (◡𝑓 “ 𝑥) ∈ 𝐽)) | |
10 | 5, 8, 9 | sylc 65 | . . . 4 ⊢ (((𝐿 ∈ (TopOn‘𝑌) ∧ 𝐿 ⊆ 𝐾) ∧ 𝑓 ∈ (𝐽 Cn 𝐾)) → ∀𝑥 ∈ 𝐿 (◡𝑓 “ 𝑥) ∈ 𝐽) |
11 | cntop1 23264 | . . . . . . 7 ⊢ (𝑓 ∈ (𝐽 Cn 𝐾) → 𝐽 ∈ Top) | |
12 | 11 | adantl 481 | . . . . . 6 ⊢ (((𝐿 ∈ (TopOn‘𝑌) ∧ 𝐿 ⊆ 𝐾) ∧ 𝑓 ∈ (𝐽 Cn 𝐾)) → 𝐽 ∈ Top) |
13 | toptopon2 22940 | . . . . . 6 ⊢ (𝐽 ∈ Top ↔ 𝐽 ∈ (TopOn‘∪ 𝐽)) | |
14 | 12, 13 | sylib 218 | . . . . 5 ⊢ (((𝐿 ∈ (TopOn‘𝑌) ∧ 𝐿 ⊆ 𝐾) ∧ 𝑓 ∈ (𝐽 Cn 𝐾)) → 𝐽 ∈ (TopOn‘∪ 𝐽)) |
15 | simpll 767 | . . . . 5 ⊢ (((𝐿 ∈ (TopOn‘𝑌) ∧ 𝐿 ⊆ 𝐾) ∧ 𝑓 ∈ (𝐽 Cn 𝐾)) → 𝐿 ∈ (TopOn‘𝑌)) | |
16 | iscn 23259 | . . . . 5 ⊢ ((𝐽 ∈ (TopOn‘∪ 𝐽) ∧ 𝐿 ∈ (TopOn‘𝑌)) → (𝑓 ∈ (𝐽 Cn 𝐿) ↔ (𝑓:∪ 𝐽⟶𝑌 ∧ ∀𝑥 ∈ 𝐿 (◡𝑓 “ 𝑥) ∈ 𝐽))) | |
17 | 14, 15, 16 | syl2anc 584 | . . . 4 ⊢ (((𝐿 ∈ (TopOn‘𝑌) ∧ 𝐿 ⊆ 𝐾) ∧ 𝑓 ∈ (𝐽 Cn 𝐾)) → (𝑓 ∈ (𝐽 Cn 𝐿) ↔ (𝑓:∪ 𝐽⟶𝑌 ∧ ∀𝑥 ∈ 𝐿 (◡𝑓 “ 𝑥) ∈ 𝐽))) |
18 | 4, 10, 17 | mpbir2and 713 | . . 3 ⊢ (((𝐿 ∈ (TopOn‘𝑌) ∧ 𝐿 ⊆ 𝐾) ∧ 𝑓 ∈ (𝐽 Cn 𝐾)) → 𝑓 ∈ (𝐽 Cn 𝐿)) |
19 | 18 | ex 412 | . 2 ⊢ ((𝐿 ∈ (TopOn‘𝑌) ∧ 𝐿 ⊆ 𝐾) → (𝑓 ∈ (𝐽 Cn 𝐾) → 𝑓 ∈ (𝐽 Cn 𝐿))) |
20 | 19 | ssrdv 4001 | 1 ⊢ ((𝐿 ∈ (TopOn‘𝑌) ∧ 𝐿 ⊆ 𝐾) → (𝐽 Cn 𝐾) ⊆ (𝐽 Cn 𝐿)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1537 ∈ wcel 2106 ∀wral 3059 ⊆ wss 3963 ∪ cuni 4912 ◡ccnv 5688 “ cima 5692 ⟶wf 6559 ‘cfv 6563 (class class class)co 7431 Topctop 22915 TopOnctopon 22932 Cn ccn 23248 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-8 2108 ax-9 2116 ax-10 2139 ax-11 2155 ax-12 2175 ax-ext 2706 ax-sep 5302 ax-nul 5312 ax-pow 5371 ax-pr 5438 ax-un 7754 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1540 df-fal 1550 df-ex 1777 df-nf 1781 df-sb 2063 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2727 df-clel 2814 df-nfc 2890 df-ne 2939 df-ral 3060 df-rex 3069 df-rab 3434 df-v 3480 df-sbc 3792 df-dif 3966 df-un 3968 df-in 3970 df-ss 3980 df-nul 4340 df-if 4532 df-pw 4607 df-sn 4632 df-pr 4634 df-op 4638 df-uni 4913 df-br 5149 df-opab 5211 df-mpt 5232 df-id 5583 df-xp 5695 df-rel 5696 df-cnv 5697 df-co 5698 df-dm 5699 df-rn 5700 df-res 5701 df-ima 5702 df-iota 6516 df-fun 6565 df-fn 6566 df-f 6567 df-fv 6571 df-ov 7434 df-oprab 7435 df-mpo 7436 df-map 8867 df-top 22916 df-topon 22933 df-cn 23251 |
This theorem is referenced by: kgencn3 23582 xmetdcn 24874 |
Copyright terms: Public domain | W3C validator |