MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cntop1 Structured version   Visualization version   GIF version

Theorem cntop1 21845
Description: Reverse closure for a continuous function. (Contributed by Mario Carneiro, 21-Aug-2015.)
Assertion
Ref Expression
cntop1 (𝐹 ∈ (𝐽 Cn 𝐾) → 𝐽 ∈ Top)

Proof of Theorem cntop1
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 eqid 2798 . . . 4 𝐽 = 𝐽
2 eqid 2798 . . . 4 𝐾 = 𝐾
31, 2iscn2 21843 . . 3 (𝐹 ∈ (𝐽 Cn 𝐾) ↔ ((𝐽 ∈ Top ∧ 𝐾 ∈ Top) ∧ (𝐹: 𝐽 𝐾 ∧ ∀𝑥𝐾 (𝐹𝑥) ∈ 𝐽)))
43simplbi 501 . 2 (𝐹 ∈ (𝐽 Cn 𝐾) → (𝐽 ∈ Top ∧ 𝐾 ∈ Top))
54simpld 498 1 (𝐹 ∈ (𝐽 Cn 𝐾) → 𝐽 ∈ Top)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 399  wcel 2111  wral 3106   cuni 4800  ccnv 5518  cima 5522  wf 6320  (class class class)co 7135  Topctop 21498   Cn ccn 21829
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2770  ax-sep 5167  ax-nul 5174  ax-pow 5231  ax-pr 5295  ax-un 7441
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2598  df-eu 2629  df-clab 2777  df-cleq 2791  df-clel 2870  df-nfc 2938  df-ral 3111  df-rex 3112  df-rab 3115  df-v 3443  df-sbc 3721  df-dif 3884  df-un 3886  df-in 3888  df-ss 3898  df-nul 4244  df-if 4426  df-pw 4499  df-sn 4526  df-pr 4528  df-op 4532  df-uni 4801  df-br 5031  df-opab 5093  df-mpt 5111  df-id 5425  df-xp 5525  df-rel 5526  df-cnv 5527  df-co 5528  df-dm 5529  df-rn 5530  df-res 5531  df-ima 5532  df-iota 6283  df-fun 6326  df-fn 6327  df-f 6328  df-fv 6332  df-ov 7138  df-oprab 7139  df-mpo 7140  df-map 8391  df-top 21499  df-topon 21516  df-cn 21832
This theorem is referenced by:  cnco  21871  cnclima  21873  cnntri  21876  cnclsi  21877  cnss2  21882  cncnpi  21883  cncnp2  21886  cnrest  21890  cnrest2  21891  cnrest2r  21892  lmcn  21910  cnt0  21951  cnt1  21955  cnhaus  21959  kgen2cn  22164  txcnmpt  22229  uptx  22230  txcn  22231  xkoco1cn  22262  xkoco2cn  22263  xkococnlem  22264  cnmpt21f  22277  qtopss  22320  qtopomap  22323  qtopcmap  22324  hmeofval  22363  hmeof1o  22369  hmeores  22376  hmphen  22390  txhmeo  22408  htpyco2  23584  hauseqcn  31251  cnmbfm  31631  hausgraph  40156  rfcnpre1  41648  fcnre  41654
  Copyright terms: Public domain W3C validator