| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > cntop1 | Structured version Visualization version GIF version | ||
| Description: Reverse closure for a continuous function. (Contributed by Mario Carneiro, 21-Aug-2015.) |
| Ref | Expression |
|---|---|
| cntop1 | ⊢ (𝐹 ∈ (𝐽 Cn 𝐾) → 𝐽 ∈ Top) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid 2730 | . . . 4 ⊢ ∪ 𝐽 = ∪ 𝐽 | |
| 2 | eqid 2730 | . . . 4 ⊢ ∪ 𝐾 = ∪ 𝐾 | |
| 3 | 1, 2 | iscn2 23132 | . . 3 ⊢ (𝐹 ∈ (𝐽 Cn 𝐾) ↔ ((𝐽 ∈ Top ∧ 𝐾 ∈ Top) ∧ (𝐹:∪ 𝐽⟶∪ 𝐾 ∧ ∀𝑥 ∈ 𝐾 (◡𝐹 “ 𝑥) ∈ 𝐽))) |
| 4 | 3 | simplbi 497 | . 2 ⊢ (𝐹 ∈ (𝐽 Cn 𝐾) → (𝐽 ∈ Top ∧ 𝐾 ∈ Top)) |
| 5 | 4 | simpld 494 | 1 ⊢ (𝐹 ∈ (𝐽 Cn 𝐾) → 𝐽 ∈ Top) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∈ wcel 2109 ∀wral 3045 ∪ cuni 4874 ◡ccnv 5640 “ cima 5644 ⟶wf 6510 (class class class)co 7390 Topctop 22787 Cn ccn 23118 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-sep 5254 ax-nul 5264 ax-pow 5323 ax-pr 5390 ax-un 7714 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-ral 3046 df-rex 3055 df-rab 3409 df-v 3452 df-sbc 3757 df-dif 3920 df-un 3922 df-in 3924 df-ss 3934 df-nul 4300 df-if 4492 df-pw 4568 df-sn 4593 df-pr 4595 df-op 4599 df-uni 4875 df-br 5111 df-opab 5173 df-mpt 5192 df-id 5536 df-xp 5647 df-rel 5648 df-cnv 5649 df-co 5650 df-dm 5651 df-rn 5652 df-res 5653 df-ima 5654 df-iota 6467 df-fun 6516 df-fn 6517 df-f 6518 df-fv 6522 df-ov 7393 df-oprab 7394 df-mpo 7395 df-map 8804 df-top 22788 df-topon 22805 df-cn 23121 |
| This theorem is referenced by: cnco 23160 cnclima 23162 cnntri 23165 cnclsi 23166 cnss2 23171 cncnpi 23172 cncnp2 23175 cnrest 23179 cnrest2 23180 cnrest2r 23181 lmcn 23199 cnt0 23240 cnt1 23244 cnhaus 23248 kgen2cn 23453 txcnmpt 23518 uptx 23519 txcn 23520 xkoco1cn 23551 xkoco2cn 23552 xkococnlem 23553 cnmpt21f 23566 qtopss 23609 qtopomap 23612 qtopcmap 23613 hmeofval 23652 hmeof1o 23658 hmeores 23665 hmphen 23679 txhmeo 23697 htpyco2 24885 hauseqcn 33895 cnmbfm 34261 hausgraph 43201 rfcnpre1 45020 fcnre 45026 cnneiima 48909 |
| Copyright terms: Public domain | W3C validator |