MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cntop1 Structured version   Visualization version   GIF version

Theorem cntop1 22965
Description: Reverse closure for a continuous function. (Contributed by Mario Carneiro, 21-Aug-2015.)
Assertion
Ref Expression
cntop1 (𝐹 ∈ (𝐽 Cn 𝐾) → 𝐽 ∈ Top)

Proof of Theorem cntop1
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 eqid 2731 . . . 4 𝐽 = 𝐽
2 eqid 2731 . . . 4 𝐾 = 𝐾
31, 2iscn2 22963 . . 3 (𝐹 ∈ (𝐽 Cn 𝐾) ↔ ((𝐽 ∈ Top ∧ 𝐾 ∈ Top) ∧ (𝐹: 𝐽 𝐾 ∧ ∀𝑥𝐾 (𝐹𝑥) ∈ 𝐽)))
43simplbi 497 . 2 (𝐹 ∈ (𝐽 Cn 𝐾) → (𝐽 ∈ Top ∧ 𝐾 ∈ Top))
54simpld 494 1 (𝐹 ∈ (𝐽 Cn 𝐾) → 𝐽 ∈ Top)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  wcel 2105  wral 3060   cuni 4908  ccnv 5675  cima 5679  wf 6539  (class class class)co 7412  Topctop 22616   Cn ccn 22949
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1912  ax-6 1970  ax-7 2010  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2153  ax-12 2170  ax-ext 2702  ax-sep 5299  ax-nul 5306  ax-pow 5363  ax-pr 5427  ax-un 7728
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1781  df-nf 1785  df-sb 2067  df-mo 2533  df-eu 2562  df-clab 2709  df-cleq 2723  df-clel 2809  df-nfc 2884  df-ne 2940  df-ral 3061  df-rex 3070  df-rab 3432  df-v 3475  df-sbc 3778  df-dif 3951  df-un 3953  df-in 3955  df-ss 3965  df-nul 4323  df-if 4529  df-pw 4604  df-sn 4629  df-pr 4631  df-op 4635  df-uni 4909  df-br 5149  df-opab 5211  df-mpt 5232  df-id 5574  df-xp 5682  df-rel 5683  df-cnv 5684  df-co 5685  df-dm 5686  df-rn 5687  df-res 5688  df-ima 5689  df-iota 6495  df-fun 6545  df-fn 6546  df-f 6547  df-fv 6551  df-ov 7415  df-oprab 7416  df-mpo 7417  df-map 8825  df-top 22617  df-topon 22634  df-cn 22952
This theorem is referenced by:  cnco  22991  cnclima  22993  cnntri  22996  cnclsi  22997  cnss2  23002  cncnpi  23003  cncnp2  23006  cnrest  23010  cnrest2  23011  cnrest2r  23012  lmcn  23030  cnt0  23071  cnt1  23075  cnhaus  23079  kgen2cn  23284  txcnmpt  23349  uptx  23350  txcn  23351  xkoco1cn  23382  xkoco2cn  23383  xkococnlem  23384  cnmpt21f  23397  qtopss  23440  qtopomap  23443  qtopcmap  23444  hmeofval  23483  hmeof1o  23489  hmeores  23496  hmphen  23510  txhmeo  23528  htpyco2  24726  hauseqcn  33177  cnmbfm  33561  hausgraph  42257  rfcnpre1  44006  fcnre  44012  cnneiima  47637
  Copyright terms: Public domain W3C validator