| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > cnss1 | Structured version Visualization version GIF version | ||
| Description: If the topology 𝐾 is finer than 𝐽, then there are more continuous functions from 𝐾 than from 𝐽. (Contributed by Mario Carneiro, 19-Mar-2015.) (Revised by Mario Carneiro, 21-Aug-2015.) |
| Ref | Expression |
|---|---|
| cnss1.1 | ⊢ 𝑋 = ∪ 𝐽 |
| Ref | Expression |
|---|---|
| cnss1 | ⊢ ((𝐾 ∈ (TopOn‘𝑋) ∧ 𝐽 ⊆ 𝐾) → (𝐽 Cn 𝐿) ⊆ (𝐾 Cn 𝐿)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cnss1.1 | . . . . . 6 ⊢ 𝑋 = ∪ 𝐽 | |
| 2 | eqid 2729 | . . . . . 6 ⊢ ∪ 𝐿 = ∪ 𝐿 | |
| 3 | 1, 2 | cnf 23131 | . . . . 5 ⊢ (𝑓 ∈ (𝐽 Cn 𝐿) → 𝑓:𝑋⟶∪ 𝐿) |
| 4 | 3 | adantl 481 | . . . 4 ⊢ (((𝐾 ∈ (TopOn‘𝑋) ∧ 𝐽 ⊆ 𝐾) ∧ 𝑓 ∈ (𝐽 Cn 𝐿)) → 𝑓:𝑋⟶∪ 𝐿) |
| 5 | simpllr 775 | . . . . . 6 ⊢ ((((𝐾 ∈ (TopOn‘𝑋) ∧ 𝐽 ⊆ 𝐾) ∧ 𝑓 ∈ (𝐽 Cn 𝐿)) ∧ 𝑥 ∈ 𝐿) → 𝐽 ⊆ 𝐾) | |
| 6 | cnima 23150 | . . . . . . 7 ⊢ ((𝑓 ∈ (𝐽 Cn 𝐿) ∧ 𝑥 ∈ 𝐿) → (◡𝑓 “ 𝑥) ∈ 𝐽) | |
| 7 | 6 | adantll 714 | . . . . . 6 ⊢ ((((𝐾 ∈ (TopOn‘𝑋) ∧ 𝐽 ⊆ 𝐾) ∧ 𝑓 ∈ (𝐽 Cn 𝐿)) ∧ 𝑥 ∈ 𝐿) → (◡𝑓 “ 𝑥) ∈ 𝐽) |
| 8 | 5, 7 | sseldd 3936 | . . . . 5 ⊢ ((((𝐾 ∈ (TopOn‘𝑋) ∧ 𝐽 ⊆ 𝐾) ∧ 𝑓 ∈ (𝐽 Cn 𝐿)) ∧ 𝑥 ∈ 𝐿) → (◡𝑓 “ 𝑥) ∈ 𝐾) |
| 9 | 8 | ralrimiva 3121 | . . . 4 ⊢ (((𝐾 ∈ (TopOn‘𝑋) ∧ 𝐽 ⊆ 𝐾) ∧ 𝑓 ∈ (𝐽 Cn 𝐿)) → ∀𝑥 ∈ 𝐿 (◡𝑓 “ 𝑥) ∈ 𝐾) |
| 10 | simpll 766 | . . . . 5 ⊢ (((𝐾 ∈ (TopOn‘𝑋) ∧ 𝐽 ⊆ 𝐾) ∧ 𝑓 ∈ (𝐽 Cn 𝐿)) → 𝐾 ∈ (TopOn‘𝑋)) | |
| 11 | cntop2 23126 | . . . . . . 7 ⊢ (𝑓 ∈ (𝐽 Cn 𝐿) → 𝐿 ∈ Top) | |
| 12 | 11 | adantl 481 | . . . . . 6 ⊢ (((𝐾 ∈ (TopOn‘𝑋) ∧ 𝐽 ⊆ 𝐾) ∧ 𝑓 ∈ (𝐽 Cn 𝐿)) → 𝐿 ∈ Top) |
| 13 | toptopon2 22803 | . . . . . 6 ⊢ (𝐿 ∈ Top ↔ 𝐿 ∈ (TopOn‘∪ 𝐿)) | |
| 14 | 12, 13 | sylib 218 | . . . . 5 ⊢ (((𝐾 ∈ (TopOn‘𝑋) ∧ 𝐽 ⊆ 𝐾) ∧ 𝑓 ∈ (𝐽 Cn 𝐿)) → 𝐿 ∈ (TopOn‘∪ 𝐿)) |
| 15 | iscn 23120 | . . . . 5 ⊢ ((𝐾 ∈ (TopOn‘𝑋) ∧ 𝐿 ∈ (TopOn‘∪ 𝐿)) → (𝑓 ∈ (𝐾 Cn 𝐿) ↔ (𝑓:𝑋⟶∪ 𝐿 ∧ ∀𝑥 ∈ 𝐿 (◡𝑓 “ 𝑥) ∈ 𝐾))) | |
| 16 | 10, 14, 15 | syl2anc 584 | . . . 4 ⊢ (((𝐾 ∈ (TopOn‘𝑋) ∧ 𝐽 ⊆ 𝐾) ∧ 𝑓 ∈ (𝐽 Cn 𝐿)) → (𝑓 ∈ (𝐾 Cn 𝐿) ↔ (𝑓:𝑋⟶∪ 𝐿 ∧ ∀𝑥 ∈ 𝐿 (◡𝑓 “ 𝑥) ∈ 𝐾))) |
| 17 | 4, 9, 16 | mpbir2and 713 | . . 3 ⊢ (((𝐾 ∈ (TopOn‘𝑋) ∧ 𝐽 ⊆ 𝐾) ∧ 𝑓 ∈ (𝐽 Cn 𝐿)) → 𝑓 ∈ (𝐾 Cn 𝐿)) |
| 18 | 17 | ex 412 | . 2 ⊢ ((𝐾 ∈ (TopOn‘𝑋) ∧ 𝐽 ⊆ 𝐾) → (𝑓 ∈ (𝐽 Cn 𝐿) → 𝑓 ∈ (𝐾 Cn 𝐿))) |
| 19 | 18 | ssrdv 3941 | 1 ⊢ ((𝐾 ∈ (TopOn‘𝑋) ∧ 𝐽 ⊆ 𝐾) → (𝐽 Cn 𝐿) ⊆ (𝐾 Cn 𝐿)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ∀wral 3044 ⊆ wss 3903 ∪ cuni 4858 ◡ccnv 5618 “ cima 5622 ⟶wf 6478 ‘cfv 6482 (class class class)co 7349 Topctop 22778 TopOnctopon 22795 Cn ccn 23109 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5235 ax-nul 5245 ax-pow 5304 ax-pr 5371 ax-un 7671 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-rab 3395 df-v 3438 df-sbc 3743 df-dif 3906 df-un 3908 df-in 3910 df-ss 3920 df-nul 4285 df-if 4477 df-pw 4553 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4859 df-br 5093 df-opab 5155 df-mpt 5174 df-id 5514 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-rn 5630 df-res 5631 df-ima 5632 df-iota 6438 df-fun 6484 df-fn 6485 df-f 6486 df-fv 6490 df-ov 7352 df-oprab 7353 df-mpo 7354 df-map 8755 df-top 22779 df-topon 22796 df-cn 23112 |
| This theorem is referenced by: kgen2cn 23444 xkopjcn 23541 |
| Copyright terms: Public domain | W3C validator |