MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cnss1 Structured version   Visualization version   GIF version

Theorem cnss1 23000
Description: If the topology 𝐾 is finer than 𝐽, then there are more continuous functions from 𝐾 than from 𝐽. (Contributed by Mario Carneiro, 19-Mar-2015.) (Revised by Mario Carneiro, 21-Aug-2015.)
Hypothesis
Ref Expression
cnss1.1 𝑋 = βˆͺ 𝐽
Assertion
Ref Expression
cnss1 ((𝐾 ∈ (TopOnβ€˜π‘‹) ∧ 𝐽 βŠ† 𝐾) β†’ (𝐽 Cn 𝐿) βŠ† (𝐾 Cn 𝐿))

Proof of Theorem cnss1
Dummy variables π‘₯ 𝑓 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 cnss1.1 . . . . . 6 𝑋 = βˆͺ 𝐽
2 eqid 2732 . . . . . 6 βˆͺ 𝐿 = βˆͺ 𝐿
31, 2cnf 22970 . . . . 5 (𝑓 ∈ (𝐽 Cn 𝐿) β†’ 𝑓:π‘‹βŸΆβˆͺ 𝐿)
43adantl 482 . . . 4 (((𝐾 ∈ (TopOnβ€˜π‘‹) ∧ 𝐽 βŠ† 𝐾) ∧ 𝑓 ∈ (𝐽 Cn 𝐿)) β†’ 𝑓:π‘‹βŸΆβˆͺ 𝐿)
5 simpllr 774 . . . . . 6 ((((𝐾 ∈ (TopOnβ€˜π‘‹) ∧ 𝐽 βŠ† 𝐾) ∧ 𝑓 ∈ (𝐽 Cn 𝐿)) ∧ π‘₯ ∈ 𝐿) β†’ 𝐽 βŠ† 𝐾)
6 cnima 22989 . . . . . . 7 ((𝑓 ∈ (𝐽 Cn 𝐿) ∧ π‘₯ ∈ 𝐿) β†’ (◑𝑓 β€œ π‘₯) ∈ 𝐽)
76adantll 712 . . . . . 6 ((((𝐾 ∈ (TopOnβ€˜π‘‹) ∧ 𝐽 βŠ† 𝐾) ∧ 𝑓 ∈ (𝐽 Cn 𝐿)) ∧ π‘₯ ∈ 𝐿) β†’ (◑𝑓 β€œ π‘₯) ∈ 𝐽)
85, 7sseldd 3983 . . . . 5 ((((𝐾 ∈ (TopOnβ€˜π‘‹) ∧ 𝐽 βŠ† 𝐾) ∧ 𝑓 ∈ (𝐽 Cn 𝐿)) ∧ π‘₯ ∈ 𝐿) β†’ (◑𝑓 β€œ π‘₯) ∈ 𝐾)
98ralrimiva 3146 . . . 4 (((𝐾 ∈ (TopOnβ€˜π‘‹) ∧ 𝐽 βŠ† 𝐾) ∧ 𝑓 ∈ (𝐽 Cn 𝐿)) β†’ βˆ€π‘₯ ∈ 𝐿 (◑𝑓 β€œ π‘₯) ∈ 𝐾)
10 simpll 765 . . . . 5 (((𝐾 ∈ (TopOnβ€˜π‘‹) ∧ 𝐽 βŠ† 𝐾) ∧ 𝑓 ∈ (𝐽 Cn 𝐿)) β†’ 𝐾 ∈ (TopOnβ€˜π‘‹))
11 cntop2 22965 . . . . . . 7 (𝑓 ∈ (𝐽 Cn 𝐿) β†’ 𝐿 ∈ Top)
1211adantl 482 . . . . . 6 (((𝐾 ∈ (TopOnβ€˜π‘‹) ∧ 𝐽 βŠ† 𝐾) ∧ 𝑓 ∈ (𝐽 Cn 𝐿)) β†’ 𝐿 ∈ Top)
13 toptopon2 22640 . . . . . 6 (𝐿 ∈ Top ↔ 𝐿 ∈ (TopOnβ€˜βˆͺ 𝐿))
1412, 13sylib 217 . . . . 5 (((𝐾 ∈ (TopOnβ€˜π‘‹) ∧ 𝐽 βŠ† 𝐾) ∧ 𝑓 ∈ (𝐽 Cn 𝐿)) β†’ 𝐿 ∈ (TopOnβ€˜βˆͺ 𝐿))
15 iscn 22959 . . . . 5 ((𝐾 ∈ (TopOnβ€˜π‘‹) ∧ 𝐿 ∈ (TopOnβ€˜βˆͺ 𝐿)) β†’ (𝑓 ∈ (𝐾 Cn 𝐿) ↔ (𝑓:π‘‹βŸΆβˆͺ 𝐿 ∧ βˆ€π‘₯ ∈ 𝐿 (◑𝑓 β€œ π‘₯) ∈ 𝐾)))
1610, 14, 15syl2anc 584 . . . 4 (((𝐾 ∈ (TopOnβ€˜π‘‹) ∧ 𝐽 βŠ† 𝐾) ∧ 𝑓 ∈ (𝐽 Cn 𝐿)) β†’ (𝑓 ∈ (𝐾 Cn 𝐿) ↔ (𝑓:π‘‹βŸΆβˆͺ 𝐿 ∧ βˆ€π‘₯ ∈ 𝐿 (◑𝑓 β€œ π‘₯) ∈ 𝐾)))
174, 9, 16mpbir2and 711 . . 3 (((𝐾 ∈ (TopOnβ€˜π‘‹) ∧ 𝐽 βŠ† 𝐾) ∧ 𝑓 ∈ (𝐽 Cn 𝐿)) β†’ 𝑓 ∈ (𝐾 Cn 𝐿))
1817ex 413 . 2 ((𝐾 ∈ (TopOnβ€˜π‘‹) ∧ 𝐽 βŠ† 𝐾) β†’ (𝑓 ∈ (𝐽 Cn 𝐿) β†’ 𝑓 ∈ (𝐾 Cn 𝐿)))
1918ssrdv 3988 1 ((𝐾 ∈ (TopOnβ€˜π‘‹) ∧ 𝐽 βŠ† 𝐾) β†’ (𝐽 Cn 𝐿) βŠ† (𝐾 Cn 𝐿))
Colors of variables: wff setvar class
Syntax hints:   β†’ wi 4   ↔ wb 205   ∧ wa 396   = wceq 1541   ∈ wcel 2106  βˆ€wral 3061   βŠ† wss 3948  βˆͺ cuni 4908  β—‘ccnv 5675   β€œ cima 5679  βŸΆwf 6539  β€˜cfv 6543  (class class class)co 7411  Topctop 22615  TopOnctopon 22632   Cn ccn 22948
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2703  ax-sep 5299  ax-nul 5306  ax-pow 5363  ax-pr 5427  ax-un 7727
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2534  df-eu 2563  df-clab 2710  df-cleq 2724  df-clel 2810  df-nfc 2885  df-ne 2941  df-ral 3062  df-rex 3071  df-rab 3433  df-v 3476  df-sbc 3778  df-dif 3951  df-un 3953  df-in 3955  df-ss 3965  df-nul 4323  df-if 4529  df-pw 4604  df-sn 4629  df-pr 4631  df-op 4635  df-uni 4909  df-br 5149  df-opab 5211  df-mpt 5232  df-id 5574  df-xp 5682  df-rel 5683  df-cnv 5684  df-co 5685  df-dm 5686  df-rn 5687  df-res 5688  df-ima 5689  df-iota 6495  df-fun 6545  df-fn 6546  df-f 6547  df-fv 6551  df-ov 7414  df-oprab 7415  df-mpo 7416  df-map 8824  df-top 22616  df-topon 22633  df-cn 22951
This theorem is referenced by:  kgen2cn  23283  xkopjcn  23380
  Copyright terms: Public domain W3C validator