![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > cnss1 | Structured version Visualization version GIF version |
Description: If the topology 𝐾 is finer than 𝐽, then there are more continuous functions from 𝐾 than from 𝐽. (Contributed by Mario Carneiro, 19-Mar-2015.) (Revised by Mario Carneiro, 21-Aug-2015.) |
Ref | Expression |
---|---|
cnss1.1 | ⊢ 𝑋 = ∪ 𝐽 |
Ref | Expression |
---|---|
cnss1 | ⊢ ((𝐾 ∈ (TopOn‘𝑋) ∧ 𝐽 ⊆ 𝐾) → (𝐽 Cn 𝐿) ⊆ (𝐾 Cn 𝐿)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cnss1.1 | . . . . . 6 ⊢ 𝑋 = ∪ 𝐽 | |
2 | eqid 2778 | . . . . . 6 ⊢ ∪ 𝐿 = ∪ 𝐿 | |
3 | 1, 2 | cnf 21469 | . . . . 5 ⊢ (𝑓 ∈ (𝐽 Cn 𝐿) → 𝑓:𝑋⟶∪ 𝐿) |
4 | 3 | adantl 475 | . . . 4 ⊢ (((𝐾 ∈ (TopOn‘𝑋) ∧ 𝐽 ⊆ 𝐾) ∧ 𝑓 ∈ (𝐽 Cn 𝐿)) → 𝑓:𝑋⟶∪ 𝐿) |
5 | simpllr 766 | . . . . . 6 ⊢ ((((𝐾 ∈ (TopOn‘𝑋) ∧ 𝐽 ⊆ 𝐾) ∧ 𝑓 ∈ (𝐽 Cn 𝐿)) ∧ 𝑥 ∈ 𝐿) → 𝐽 ⊆ 𝐾) | |
6 | cnima 21488 | . . . . . . 7 ⊢ ((𝑓 ∈ (𝐽 Cn 𝐿) ∧ 𝑥 ∈ 𝐿) → (◡𝑓 “ 𝑥) ∈ 𝐽) | |
7 | 6 | adantll 704 | . . . . . 6 ⊢ ((((𝐾 ∈ (TopOn‘𝑋) ∧ 𝐽 ⊆ 𝐾) ∧ 𝑓 ∈ (𝐽 Cn 𝐿)) ∧ 𝑥 ∈ 𝐿) → (◡𝑓 “ 𝑥) ∈ 𝐽) |
8 | 5, 7 | sseldd 3822 | . . . . 5 ⊢ ((((𝐾 ∈ (TopOn‘𝑋) ∧ 𝐽 ⊆ 𝐾) ∧ 𝑓 ∈ (𝐽 Cn 𝐿)) ∧ 𝑥 ∈ 𝐿) → (◡𝑓 “ 𝑥) ∈ 𝐾) |
9 | 8 | ralrimiva 3148 | . . . 4 ⊢ (((𝐾 ∈ (TopOn‘𝑋) ∧ 𝐽 ⊆ 𝐾) ∧ 𝑓 ∈ (𝐽 Cn 𝐿)) → ∀𝑥 ∈ 𝐿 (◡𝑓 “ 𝑥) ∈ 𝐾) |
10 | simpll 757 | . . . . 5 ⊢ (((𝐾 ∈ (TopOn‘𝑋) ∧ 𝐽 ⊆ 𝐾) ∧ 𝑓 ∈ (𝐽 Cn 𝐿)) → 𝐾 ∈ (TopOn‘𝑋)) | |
11 | cntop2 21464 | . . . . . . 7 ⊢ (𝑓 ∈ (𝐽 Cn 𝐿) → 𝐿 ∈ Top) | |
12 | 11 | adantl 475 | . . . . . 6 ⊢ (((𝐾 ∈ (TopOn‘𝑋) ∧ 𝐽 ⊆ 𝐾) ∧ 𝑓 ∈ (𝐽 Cn 𝐿)) → 𝐿 ∈ Top) |
13 | toptopon2 21141 | . . . . . 6 ⊢ (𝐿 ∈ Top ↔ 𝐿 ∈ (TopOn‘∪ 𝐿)) | |
14 | 12, 13 | sylib 210 | . . . . 5 ⊢ (((𝐾 ∈ (TopOn‘𝑋) ∧ 𝐽 ⊆ 𝐾) ∧ 𝑓 ∈ (𝐽 Cn 𝐿)) → 𝐿 ∈ (TopOn‘∪ 𝐿)) |
15 | iscn 21458 | . . . . 5 ⊢ ((𝐾 ∈ (TopOn‘𝑋) ∧ 𝐿 ∈ (TopOn‘∪ 𝐿)) → (𝑓 ∈ (𝐾 Cn 𝐿) ↔ (𝑓:𝑋⟶∪ 𝐿 ∧ ∀𝑥 ∈ 𝐿 (◡𝑓 “ 𝑥) ∈ 𝐾))) | |
16 | 10, 14, 15 | syl2anc 579 | . . . 4 ⊢ (((𝐾 ∈ (TopOn‘𝑋) ∧ 𝐽 ⊆ 𝐾) ∧ 𝑓 ∈ (𝐽 Cn 𝐿)) → (𝑓 ∈ (𝐾 Cn 𝐿) ↔ (𝑓:𝑋⟶∪ 𝐿 ∧ ∀𝑥 ∈ 𝐿 (◡𝑓 “ 𝑥) ∈ 𝐾))) |
17 | 4, 9, 16 | mpbir2and 703 | . . 3 ⊢ (((𝐾 ∈ (TopOn‘𝑋) ∧ 𝐽 ⊆ 𝐾) ∧ 𝑓 ∈ (𝐽 Cn 𝐿)) → 𝑓 ∈ (𝐾 Cn 𝐿)) |
18 | 17 | ex 403 | . 2 ⊢ ((𝐾 ∈ (TopOn‘𝑋) ∧ 𝐽 ⊆ 𝐾) → (𝑓 ∈ (𝐽 Cn 𝐿) → 𝑓 ∈ (𝐾 Cn 𝐿))) |
19 | 18 | ssrdv 3827 | 1 ⊢ ((𝐾 ∈ (TopOn‘𝑋) ∧ 𝐽 ⊆ 𝐾) → (𝐽 Cn 𝐿) ⊆ (𝐾 Cn 𝐿)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 198 ∧ wa 386 = wceq 1601 ∈ wcel 2107 ∀wral 3090 ⊆ wss 3792 ∪ cuni 4673 ◡ccnv 5356 “ cima 5360 ⟶wf 6133 ‘cfv 6137 (class class class)co 6924 Topctop 21116 TopOnctopon 21133 Cn ccn 21447 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1839 ax-4 1853 ax-5 1953 ax-6 2021 ax-7 2055 ax-8 2109 ax-9 2116 ax-10 2135 ax-11 2150 ax-12 2163 ax-13 2334 ax-ext 2754 ax-sep 5019 ax-nul 5027 ax-pow 5079 ax-pr 5140 ax-un 7228 |
This theorem depends on definitions: df-bi 199 df-an 387 df-or 837 df-3an 1073 df-tru 1605 df-ex 1824 df-nf 1828 df-sb 2012 df-mo 2551 df-eu 2587 df-clab 2764 df-cleq 2770 df-clel 2774 df-nfc 2921 df-ral 3095 df-rex 3096 df-rab 3099 df-v 3400 df-sbc 3653 df-dif 3795 df-un 3797 df-in 3799 df-ss 3806 df-nul 4142 df-if 4308 df-pw 4381 df-sn 4399 df-pr 4401 df-op 4405 df-uni 4674 df-br 4889 df-opab 4951 df-mpt 4968 df-id 5263 df-xp 5363 df-rel 5364 df-cnv 5365 df-co 5366 df-dm 5367 df-rn 5368 df-res 5369 df-ima 5370 df-iota 6101 df-fun 6139 df-fn 6140 df-f 6141 df-fv 6145 df-ov 6927 df-oprab 6928 df-mpt2 6929 df-map 8144 df-top 21117 df-topon 21134 df-cn 21450 |
This theorem is referenced by: kgen2cn 21782 xkopjcn 21879 |
Copyright terms: Public domain | W3C validator |