MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cnss1 Structured version   Visualization version   GIF version

Theorem cnss1 23163
Description: If the topology 𝐾 is finer than 𝐽, then there are more continuous functions from 𝐾 than from 𝐽. (Contributed by Mario Carneiro, 19-Mar-2015.) (Revised by Mario Carneiro, 21-Aug-2015.)
Hypothesis
Ref Expression
cnss1.1 𝑋 = 𝐽
Assertion
Ref Expression
cnss1 ((𝐾 ∈ (TopOn‘𝑋) ∧ 𝐽𝐾) → (𝐽 Cn 𝐿) ⊆ (𝐾 Cn 𝐿))

Proof of Theorem cnss1
Dummy variables 𝑥 𝑓 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 cnss1.1 . . . . . 6 𝑋 = 𝐽
2 eqid 2729 . . . . . 6 𝐿 = 𝐿
31, 2cnf 23133 . . . . 5 (𝑓 ∈ (𝐽 Cn 𝐿) → 𝑓:𝑋 𝐿)
43adantl 481 . . . 4 (((𝐾 ∈ (TopOn‘𝑋) ∧ 𝐽𝐾) ∧ 𝑓 ∈ (𝐽 Cn 𝐿)) → 𝑓:𝑋 𝐿)
5 simpllr 775 . . . . . 6 ((((𝐾 ∈ (TopOn‘𝑋) ∧ 𝐽𝐾) ∧ 𝑓 ∈ (𝐽 Cn 𝐿)) ∧ 𝑥𝐿) → 𝐽𝐾)
6 cnima 23152 . . . . . . 7 ((𝑓 ∈ (𝐽 Cn 𝐿) ∧ 𝑥𝐿) → (𝑓𝑥) ∈ 𝐽)
76adantll 714 . . . . . 6 ((((𝐾 ∈ (TopOn‘𝑋) ∧ 𝐽𝐾) ∧ 𝑓 ∈ (𝐽 Cn 𝐿)) ∧ 𝑥𝐿) → (𝑓𝑥) ∈ 𝐽)
85, 7sseldd 3947 . . . . 5 ((((𝐾 ∈ (TopOn‘𝑋) ∧ 𝐽𝐾) ∧ 𝑓 ∈ (𝐽 Cn 𝐿)) ∧ 𝑥𝐿) → (𝑓𝑥) ∈ 𝐾)
98ralrimiva 3125 . . . 4 (((𝐾 ∈ (TopOn‘𝑋) ∧ 𝐽𝐾) ∧ 𝑓 ∈ (𝐽 Cn 𝐿)) → ∀𝑥𝐿 (𝑓𝑥) ∈ 𝐾)
10 simpll 766 . . . . 5 (((𝐾 ∈ (TopOn‘𝑋) ∧ 𝐽𝐾) ∧ 𝑓 ∈ (𝐽 Cn 𝐿)) → 𝐾 ∈ (TopOn‘𝑋))
11 cntop2 23128 . . . . . . 7 (𝑓 ∈ (𝐽 Cn 𝐿) → 𝐿 ∈ Top)
1211adantl 481 . . . . . 6 (((𝐾 ∈ (TopOn‘𝑋) ∧ 𝐽𝐾) ∧ 𝑓 ∈ (𝐽 Cn 𝐿)) → 𝐿 ∈ Top)
13 toptopon2 22805 . . . . . 6 (𝐿 ∈ Top ↔ 𝐿 ∈ (TopOn‘ 𝐿))
1412, 13sylib 218 . . . . 5 (((𝐾 ∈ (TopOn‘𝑋) ∧ 𝐽𝐾) ∧ 𝑓 ∈ (𝐽 Cn 𝐿)) → 𝐿 ∈ (TopOn‘ 𝐿))
15 iscn 23122 . . . . 5 ((𝐾 ∈ (TopOn‘𝑋) ∧ 𝐿 ∈ (TopOn‘ 𝐿)) → (𝑓 ∈ (𝐾 Cn 𝐿) ↔ (𝑓:𝑋 𝐿 ∧ ∀𝑥𝐿 (𝑓𝑥) ∈ 𝐾)))
1610, 14, 15syl2anc 584 . . . 4 (((𝐾 ∈ (TopOn‘𝑋) ∧ 𝐽𝐾) ∧ 𝑓 ∈ (𝐽 Cn 𝐿)) → (𝑓 ∈ (𝐾 Cn 𝐿) ↔ (𝑓:𝑋 𝐿 ∧ ∀𝑥𝐿 (𝑓𝑥) ∈ 𝐾)))
174, 9, 16mpbir2and 713 . . 3 (((𝐾 ∈ (TopOn‘𝑋) ∧ 𝐽𝐾) ∧ 𝑓 ∈ (𝐽 Cn 𝐿)) → 𝑓 ∈ (𝐾 Cn 𝐿))
1817ex 412 . 2 ((𝐾 ∈ (TopOn‘𝑋) ∧ 𝐽𝐾) → (𝑓 ∈ (𝐽 Cn 𝐿) → 𝑓 ∈ (𝐾 Cn 𝐿)))
1918ssrdv 3952 1 ((𝐾 ∈ (TopOn‘𝑋) ∧ 𝐽𝐾) → (𝐽 Cn 𝐿) ⊆ (𝐾 Cn 𝐿))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wcel 2109  wral 3044  wss 3914   cuni 4871  ccnv 5637  cima 5641  wf 6507  cfv 6511  (class class class)co 7387  Topctop 22780  TopOnctopon 22797   Cn ccn 23111
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387  ax-un 7711
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rab 3406  df-v 3449  df-sbc 3754  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-br 5108  df-opab 5170  df-mpt 5189  df-id 5533  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-fv 6519  df-ov 7390  df-oprab 7391  df-mpo 7392  df-map 8801  df-top 22781  df-topon 22798  df-cn 23114
This theorem is referenced by:  kgen2cn  23446  xkopjcn  23543
  Copyright terms: Public domain W3C validator