Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > cnss1 | Structured version Visualization version GIF version |
Description: If the topology 𝐾 is finer than 𝐽, then there are more continuous functions from 𝐾 than from 𝐽. (Contributed by Mario Carneiro, 19-Mar-2015.) (Revised by Mario Carneiro, 21-Aug-2015.) |
Ref | Expression |
---|---|
cnss1.1 | ⊢ 𝑋 = ∪ 𝐽 |
Ref | Expression |
---|---|
cnss1 | ⊢ ((𝐾 ∈ (TopOn‘𝑋) ∧ 𝐽 ⊆ 𝐾) → (𝐽 Cn 𝐿) ⊆ (𝐾 Cn 𝐿)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cnss1.1 | . . . . . 6 ⊢ 𝑋 = ∪ 𝐽 | |
2 | eqid 2736 | . . . . . 6 ⊢ ∪ 𝐿 = ∪ 𝐿 | |
3 | 1, 2 | cnf 22477 | . . . . 5 ⊢ (𝑓 ∈ (𝐽 Cn 𝐿) → 𝑓:𝑋⟶∪ 𝐿) |
4 | 3 | adantl 482 | . . . 4 ⊢ (((𝐾 ∈ (TopOn‘𝑋) ∧ 𝐽 ⊆ 𝐾) ∧ 𝑓 ∈ (𝐽 Cn 𝐿)) → 𝑓:𝑋⟶∪ 𝐿) |
5 | simpllr 773 | . . . . . 6 ⊢ ((((𝐾 ∈ (TopOn‘𝑋) ∧ 𝐽 ⊆ 𝐾) ∧ 𝑓 ∈ (𝐽 Cn 𝐿)) ∧ 𝑥 ∈ 𝐿) → 𝐽 ⊆ 𝐾) | |
6 | cnima 22496 | . . . . . . 7 ⊢ ((𝑓 ∈ (𝐽 Cn 𝐿) ∧ 𝑥 ∈ 𝐿) → (◡𝑓 “ 𝑥) ∈ 𝐽) | |
7 | 6 | adantll 711 | . . . . . 6 ⊢ ((((𝐾 ∈ (TopOn‘𝑋) ∧ 𝐽 ⊆ 𝐾) ∧ 𝑓 ∈ (𝐽 Cn 𝐿)) ∧ 𝑥 ∈ 𝐿) → (◡𝑓 “ 𝑥) ∈ 𝐽) |
8 | 5, 7 | sseldd 3931 | . . . . 5 ⊢ ((((𝐾 ∈ (TopOn‘𝑋) ∧ 𝐽 ⊆ 𝐾) ∧ 𝑓 ∈ (𝐽 Cn 𝐿)) ∧ 𝑥 ∈ 𝐿) → (◡𝑓 “ 𝑥) ∈ 𝐾) |
9 | 8 | ralrimiva 3139 | . . . 4 ⊢ (((𝐾 ∈ (TopOn‘𝑋) ∧ 𝐽 ⊆ 𝐾) ∧ 𝑓 ∈ (𝐽 Cn 𝐿)) → ∀𝑥 ∈ 𝐿 (◡𝑓 “ 𝑥) ∈ 𝐾) |
10 | simpll 764 | . . . . 5 ⊢ (((𝐾 ∈ (TopOn‘𝑋) ∧ 𝐽 ⊆ 𝐾) ∧ 𝑓 ∈ (𝐽 Cn 𝐿)) → 𝐾 ∈ (TopOn‘𝑋)) | |
11 | cntop2 22472 | . . . . . . 7 ⊢ (𝑓 ∈ (𝐽 Cn 𝐿) → 𝐿 ∈ Top) | |
12 | 11 | adantl 482 | . . . . . 6 ⊢ (((𝐾 ∈ (TopOn‘𝑋) ∧ 𝐽 ⊆ 𝐾) ∧ 𝑓 ∈ (𝐽 Cn 𝐿)) → 𝐿 ∈ Top) |
13 | toptopon2 22147 | . . . . . 6 ⊢ (𝐿 ∈ Top ↔ 𝐿 ∈ (TopOn‘∪ 𝐿)) | |
14 | 12, 13 | sylib 217 | . . . . 5 ⊢ (((𝐾 ∈ (TopOn‘𝑋) ∧ 𝐽 ⊆ 𝐾) ∧ 𝑓 ∈ (𝐽 Cn 𝐿)) → 𝐿 ∈ (TopOn‘∪ 𝐿)) |
15 | iscn 22466 | . . . . 5 ⊢ ((𝐾 ∈ (TopOn‘𝑋) ∧ 𝐿 ∈ (TopOn‘∪ 𝐿)) → (𝑓 ∈ (𝐾 Cn 𝐿) ↔ (𝑓:𝑋⟶∪ 𝐿 ∧ ∀𝑥 ∈ 𝐿 (◡𝑓 “ 𝑥) ∈ 𝐾))) | |
16 | 10, 14, 15 | syl2anc 584 | . . . 4 ⊢ (((𝐾 ∈ (TopOn‘𝑋) ∧ 𝐽 ⊆ 𝐾) ∧ 𝑓 ∈ (𝐽 Cn 𝐿)) → (𝑓 ∈ (𝐾 Cn 𝐿) ↔ (𝑓:𝑋⟶∪ 𝐿 ∧ ∀𝑥 ∈ 𝐿 (◡𝑓 “ 𝑥) ∈ 𝐾))) |
17 | 4, 9, 16 | mpbir2and 710 | . . 3 ⊢ (((𝐾 ∈ (TopOn‘𝑋) ∧ 𝐽 ⊆ 𝐾) ∧ 𝑓 ∈ (𝐽 Cn 𝐿)) → 𝑓 ∈ (𝐾 Cn 𝐿)) |
18 | 17 | ex 413 | . 2 ⊢ ((𝐾 ∈ (TopOn‘𝑋) ∧ 𝐽 ⊆ 𝐾) → (𝑓 ∈ (𝐽 Cn 𝐿) → 𝑓 ∈ (𝐾 Cn 𝐿))) |
19 | 18 | ssrdv 3936 | 1 ⊢ ((𝐾 ∈ (TopOn‘𝑋) ∧ 𝐽 ⊆ 𝐾) → (𝐽 Cn 𝐿) ⊆ (𝐾 Cn 𝐿)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 396 = wceq 1540 ∈ wcel 2105 ∀wral 3061 ⊆ wss 3896 ∪ cuni 4849 ◡ccnv 5606 “ cima 5610 ⟶wf 6461 ‘cfv 6465 (class class class)co 7316 Topctop 22122 TopOnctopon 22139 Cn ccn 22455 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-10 2136 ax-11 2153 ax-12 2170 ax-ext 2707 ax-sep 5237 ax-nul 5244 ax-pow 5302 ax-pr 5366 ax-un 7629 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2538 df-eu 2567 df-clab 2714 df-cleq 2728 df-clel 2814 df-nfc 2886 df-ne 2941 df-ral 3062 df-rex 3071 df-rab 3404 df-v 3442 df-sbc 3726 df-dif 3899 df-un 3901 df-in 3903 df-ss 3913 df-nul 4267 df-if 4471 df-pw 4546 df-sn 4571 df-pr 4573 df-op 4577 df-uni 4850 df-br 5087 df-opab 5149 df-mpt 5170 df-id 5506 df-xp 5613 df-rel 5614 df-cnv 5615 df-co 5616 df-dm 5617 df-rn 5618 df-res 5619 df-ima 5620 df-iota 6417 df-fun 6467 df-fn 6468 df-f 6469 df-fv 6473 df-ov 7319 df-oprab 7320 df-mpo 7321 df-map 8666 df-top 22123 df-topon 22140 df-cn 22458 |
This theorem is referenced by: kgen2cn 22790 xkopjcn 22887 |
Copyright terms: Public domain | W3C validator |