| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > cnss1 | Structured version Visualization version GIF version | ||
| Description: If the topology 𝐾 is finer than 𝐽, then there are more continuous functions from 𝐾 than from 𝐽. (Contributed by Mario Carneiro, 19-Mar-2015.) (Revised by Mario Carneiro, 21-Aug-2015.) |
| Ref | Expression |
|---|---|
| cnss1.1 | ⊢ 𝑋 = ∪ 𝐽 |
| Ref | Expression |
|---|---|
| cnss1 | ⊢ ((𝐾 ∈ (TopOn‘𝑋) ∧ 𝐽 ⊆ 𝐾) → (𝐽 Cn 𝐿) ⊆ (𝐾 Cn 𝐿)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cnss1.1 | . . . . . 6 ⊢ 𝑋 = ∪ 𝐽 | |
| 2 | eqid 2735 | . . . . . 6 ⊢ ∪ 𝐿 = ∪ 𝐿 | |
| 3 | 1, 2 | cnf 23182 | . . . . 5 ⊢ (𝑓 ∈ (𝐽 Cn 𝐿) → 𝑓:𝑋⟶∪ 𝐿) |
| 4 | 3 | adantl 481 | . . . 4 ⊢ (((𝐾 ∈ (TopOn‘𝑋) ∧ 𝐽 ⊆ 𝐾) ∧ 𝑓 ∈ (𝐽 Cn 𝐿)) → 𝑓:𝑋⟶∪ 𝐿) |
| 5 | simpllr 775 | . . . . . 6 ⊢ ((((𝐾 ∈ (TopOn‘𝑋) ∧ 𝐽 ⊆ 𝐾) ∧ 𝑓 ∈ (𝐽 Cn 𝐿)) ∧ 𝑥 ∈ 𝐿) → 𝐽 ⊆ 𝐾) | |
| 6 | cnima 23201 | . . . . . . 7 ⊢ ((𝑓 ∈ (𝐽 Cn 𝐿) ∧ 𝑥 ∈ 𝐿) → (◡𝑓 “ 𝑥) ∈ 𝐽) | |
| 7 | 6 | adantll 714 | . . . . . 6 ⊢ ((((𝐾 ∈ (TopOn‘𝑋) ∧ 𝐽 ⊆ 𝐾) ∧ 𝑓 ∈ (𝐽 Cn 𝐿)) ∧ 𝑥 ∈ 𝐿) → (◡𝑓 “ 𝑥) ∈ 𝐽) |
| 8 | 5, 7 | sseldd 3959 | . . . . 5 ⊢ ((((𝐾 ∈ (TopOn‘𝑋) ∧ 𝐽 ⊆ 𝐾) ∧ 𝑓 ∈ (𝐽 Cn 𝐿)) ∧ 𝑥 ∈ 𝐿) → (◡𝑓 “ 𝑥) ∈ 𝐾) |
| 9 | 8 | ralrimiva 3132 | . . . 4 ⊢ (((𝐾 ∈ (TopOn‘𝑋) ∧ 𝐽 ⊆ 𝐾) ∧ 𝑓 ∈ (𝐽 Cn 𝐿)) → ∀𝑥 ∈ 𝐿 (◡𝑓 “ 𝑥) ∈ 𝐾) |
| 10 | simpll 766 | . . . . 5 ⊢ (((𝐾 ∈ (TopOn‘𝑋) ∧ 𝐽 ⊆ 𝐾) ∧ 𝑓 ∈ (𝐽 Cn 𝐿)) → 𝐾 ∈ (TopOn‘𝑋)) | |
| 11 | cntop2 23177 | . . . . . . 7 ⊢ (𝑓 ∈ (𝐽 Cn 𝐿) → 𝐿 ∈ Top) | |
| 12 | 11 | adantl 481 | . . . . . 6 ⊢ (((𝐾 ∈ (TopOn‘𝑋) ∧ 𝐽 ⊆ 𝐾) ∧ 𝑓 ∈ (𝐽 Cn 𝐿)) → 𝐿 ∈ Top) |
| 13 | toptopon2 22854 | . . . . . 6 ⊢ (𝐿 ∈ Top ↔ 𝐿 ∈ (TopOn‘∪ 𝐿)) | |
| 14 | 12, 13 | sylib 218 | . . . . 5 ⊢ (((𝐾 ∈ (TopOn‘𝑋) ∧ 𝐽 ⊆ 𝐾) ∧ 𝑓 ∈ (𝐽 Cn 𝐿)) → 𝐿 ∈ (TopOn‘∪ 𝐿)) |
| 15 | iscn 23171 | . . . . 5 ⊢ ((𝐾 ∈ (TopOn‘𝑋) ∧ 𝐿 ∈ (TopOn‘∪ 𝐿)) → (𝑓 ∈ (𝐾 Cn 𝐿) ↔ (𝑓:𝑋⟶∪ 𝐿 ∧ ∀𝑥 ∈ 𝐿 (◡𝑓 “ 𝑥) ∈ 𝐾))) | |
| 16 | 10, 14, 15 | syl2anc 584 | . . . 4 ⊢ (((𝐾 ∈ (TopOn‘𝑋) ∧ 𝐽 ⊆ 𝐾) ∧ 𝑓 ∈ (𝐽 Cn 𝐿)) → (𝑓 ∈ (𝐾 Cn 𝐿) ↔ (𝑓:𝑋⟶∪ 𝐿 ∧ ∀𝑥 ∈ 𝐿 (◡𝑓 “ 𝑥) ∈ 𝐾))) |
| 17 | 4, 9, 16 | mpbir2and 713 | . . 3 ⊢ (((𝐾 ∈ (TopOn‘𝑋) ∧ 𝐽 ⊆ 𝐾) ∧ 𝑓 ∈ (𝐽 Cn 𝐿)) → 𝑓 ∈ (𝐾 Cn 𝐿)) |
| 18 | 17 | ex 412 | . 2 ⊢ ((𝐾 ∈ (TopOn‘𝑋) ∧ 𝐽 ⊆ 𝐾) → (𝑓 ∈ (𝐽 Cn 𝐿) → 𝑓 ∈ (𝐾 Cn 𝐿))) |
| 19 | 18 | ssrdv 3964 | 1 ⊢ ((𝐾 ∈ (TopOn‘𝑋) ∧ 𝐽 ⊆ 𝐾) → (𝐽 Cn 𝐿) ⊆ (𝐾 Cn 𝐿)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1540 ∈ wcel 2108 ∀wral 3051 ⊆ wss 3926 ∪ cuni 4883 ◡ccnv 5653 “ cima 5657 ⟶wf 6526 ‘cfv 6530 (class class class)co 7403 Topctop 22829 TopOnctopon 22846 Cn ccn 23160 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2707 ax-sep 5266 ax-nul 5276 ax-pow 5335 ax-pr 5402 ax-un 7727 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2727 df-clel 2809 df-nfc 2885 df-ne 2933 df-ral 3052 df-rex 3061 df-rab 3416 df-v 3461 df-sbc 3766 df-dif 3929 df-un 3931 df-in 3933 df-ss 3943 df-nul 4309 df-if 4501 df-pw 4577 df-sn 4602 df-pr 4604 df-op 4608 df-uni 4884 df-br 5120 df-opab 5182 df-mpt 5202 df-id 5548 df-xp 5660 df-rel 5661 df-cnv 5662 df-co 5663 df-dm 5664 df-rn 5665 df-res 5666 df-ima 5667 df-iota 6483 df-fun 6532 df-fn 6533 df-f 6534 df-fv 6538 df-ov 7406 df-oprab 7407 df-mpo 7408 df-map 8840 df-top 22830 df-topon 22847 df-cn 23163 |
| This theorem is referenced by: kgen2cn 23495 xkopjcn 23592 |
| Copyright terms: Public domain | W3C validator |