MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cnss1 Structured version   Visualization version   GIF version

Theorem cnss1 22427
Description: If the topology 𝐾 is finer than 𝐽, then there are more continuous functions from 𝐾 than from 𝐽. (Contributed by Mario Carneiro, 19-Mar-2015.) (Revised by Mario Carneiro, 21-Aug-2015.)
Hypothesis
Ref Expression
cnss1.1 𝑋 = 𝐽
Assertion
Ref Expression
cnss1 ((𝐾 ∈ (TopOn‘𝑋) ∧ 𝐽𝐾) → (𝐽 Cn 𝐿) ⊆ (𝐾 Cn 𝐿))

Proof of Theorem cnss1
Dummy variables 𝑥 𝑓 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 cnss1.1 . . . . . 6 𝑋 = 𝐽
2 eqid 2738 . . . . . 6 𝐿 = 𝐿
31, 2cnf 22397 . . . . 5 (𝑓 ∈ (𝐽 Cn 𝐿) → 𝑓:𝑋 𝐿)
43adantl 482 . . . 4 (((𝐾 ∈ (TopOn‘𝑋) ∧ 𝐽𝐾) ∧ 𝑓 ∈ (𝐽 Cn 𝐿)) → 𝑓:𝑋 𝐿)
5 simpllr 773 . . . . . 6 ((((𝐾 ∈ (TopOn‘𝑋) ∧ 𝐽𝐾) ∧ 𝑓 ∈ (𝐽 Cn 𝐿)) ∧ 𝑥𝐿) → 𝐽𝐾)
6 cnima 22416 . . . . . . 7 ((𝑓 ∈ (𝐽 Cn 𝐿) ∧ 𝑥𝐿) → (𝑓𝑥) ∈ 𝐽)
76adantll 711 . . . . . 6 ((((𝐾 ∈ (TopOn‘𝑋) ∧ 𝐽𝐾) ∧ 𝑓 ∈ (𝐽 Cn 𝐿)) ∧ 𝑥𝐿) → (𝑓𝑥) ∈ 𝐽)
85, 7sseldd 3922 . . . . 5 ((((𝐾 ∈ (TopOn‘𝑋) ∧ 𝐽𝐾) ∧ 𝑓 ∈ (𝐽 Cn 𝐿)) ∧ 𝑥𝐿) → (𝑓𝑥) ∈ 𝐾)
98ralrimiva 3103 . . . 4 (((𝐾 ∈ (TopOn‘𝑋) ∧ 𝐽𝐾) ∧ 𝑓 ∈ (𝐽 Cn 𝐿)) → ∀𝑥𝐿 (𝑓𝑥) ∈ 𝐾)
10 simpll 764 . . . . 5 (((𝐾 ∈ (TopOn‘𝑋) ∧ 𝐽𝐾) ∧ 𝑓 ∈ (𝐽 Cn 𝐿)) → 𝐾 ∈ (TopOn‘𝑋))
11 cntop2 22392 . . . . . . 7 (𝑓 ∈ (𝐽 Cn 𝐿) → 𝐿 ∈ Top)
1211adantl 482 . . . . . 6 (((𝐾 ∈ (TopOn‘𝑋) ∧ 𝐽𝐾) ∧ 𝑓 ∈ (𝐽 Cn 𝐿)) → 𝐿 ∈ Top)
13 toptopon2 22067 . . . . . 6 (𝐿 ∈ Top ↔ 𝐿 ∈ (TopOn‘ 𝐿))
1412, 13sylib 217 . . . . 5 (((𝐾 ∈ (TopOn‘𝑋) ∧ 𝐽𝐾) ∧ 𝑓 ∈ (𝐽 Cn 𝐿)) → 𝐿 ∈ (TopOn‘ 𝐿))
15 iscn 22386 . . . . 5 ((𝐾 ∈ (TopOn‘𝑋) ∧ 𝐿 ∈ (TopOn‘ 𝐿)) → (𝑓 ∈ (𝐾 Cn 𝐿) ↔ (𝑓:𝑋 𝐿 ∧ ∀𝑥𝐿 (𝑓𝑥) ∈ 𝐾)))
1610, 14, 15syl2anc 584 . . . 4 (((𝐾 ∈ (TopOn‘𝑋) ∧ 𝐽𝐾) ∧ 𝑓 ∈ (𝐽 Cn 𝐿)) → (𝑓 ∈ (𝐾 Cn 𝐿) ↔ (𝑓:𝑋 𝐿 ∧ ∀𝑥𝐿 (𝑓𝑥) ∈ 𝐾)))
174, 9, 16mpbir2and 710 . . 3 (((𝐾 ∈ (TopOn‘𝑋) ∧ 𝐽𝐾) ∧ 𝑓 ∈ (𝐽 Cn 𝐿)) → 𝑓 ∈ (𝐾 Cn 𝐿))
1817ex 413 . 2 ((𝐾 ∈ (TopOn‘𝑋) ∧ 𝐽𝐾) → (𝑓 ∈ (𝐽 Cn 𝐿) → 𝑓 ∈ (𝐾 Cn 𝐿)))
1918ssrdv 3927 1 ((𝐾 ∈ (TopOn‘𝑋) ∧ 𝐽𝐾) → (𝐽 Cn 𝐿) ⊆ (𝐾 Cn 𝐿))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396   = wceq 1539  wcel 2106  wral 3064  wss 3887   cuni 4839  ccnv 5588  cima 5592  wf 6429  cfv 6433  (class class class)co 7275  Topctop 22042  TopOnctopon 22059   Cn ccn 22375
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7588
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ral 3069  df-rex 3070  df-rab 3073  df-v 3434  df-sbc 3717  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-br 5075  df-opab 5137  df-mpt 5158  df-id 5489  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-fv 6441  df-ov 7278  df-oprab 7279  df-mpo 7280  df-map 8617  df-top 22043  df-topon 22060  df-cn 22378
This theorem is referenced by:  kgen2cn  22710  xkopjcn  22807
  Copyright terms: Public domain W3C validator