MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cnss1 Structured version   Visualization version   GIF version

Theorem cnss1 21499
Description: If the topology 𝐾 is finer than 𝐽, then there are more continuous functions from 𝐾 than from 𝐽. (Contributed by Mario Carneiro, 19-Mar-2015.) (Revised by Mario Carneiro, 21-Aug-2015.)
Hypothesis
Ref Expression
cnss1.1 𝑋 = 𝐽
Assertion
Ref Expression
cnss1 ((𝐾 ∈ (TopOn‘𝑋) ∧ 𝐽𝐾) → (𝐽 Cn 𝐿) ⊆ (𝐾 Cn 𝐿))

Proof of Theorem cnss1
Dummy variables 𝑥 𝑓 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 cnss1.1 . . . . . 6 𝑋 = 𝐽
2 eqid 2778 . . . . . 6 𝐿 = 𝐿
31, 2cnf 21469 . . . . 5 (𝑓 ∈ (𝐽 Cn 𝐿) → 𝑓:𝑋 𝐿)
43adantl 475 . . . 4 (((𝐾 ∈ (TopOn‘𝑋) ∧ 𝐽𝐾) ∧ 𝑓 ∈ (𝐽 Cn 𝐿)) → 𝑓:𝑋 𝐿)
5 simpllr 766 . . . . . 6 ((((𝐾 ∈ (TopOn‘𝑋) ∧ 𝐽𝐾) ∧ 𝑓 ∈ (𝐽 Cn 𝐿)) ∧ 𝑥𝐿) → 𝐽𝐾)
6 cnima 21488 . . . . . . 7 ((𝑓 ∈ (𝐽 Cn 𝐿) ∧ 𝑥𝐿) → (𝑓𝑥) ∈ 𝐽)
76adantll 704 . . . . . 6 ((((𝐾 ∈ (TopOn‘𝑋) ∧ 𝐽𝐾) ∧ 𝑓 ∈ (𝐽 Cn 𝐿)) ∧ 𝑥𝐿) → (𝑓𝑥) ∈ 𝐽)
85, 7sseldd 3822 . . . . 5 ((((𝐾 ∈ (TopOn‘𝑋) ∧ 𝐽𝐾) ∧ 𝑓 ∈ (𝐽 Cn 𝐿)) ∧ 𝑥𝐿) → (𝑓𝑥) ∈ 𝐾)
98ralrimiva 3148 . . . 4 (((𝐾 ∈ (TopOn‘𝑋) ∧ 𝐽𝐾) ∧ 𝑓 ∈ (𝐽 Cn 𝐿)) → ∀𝑥𝐿 (𝑓𝑥) ∈ 𝐾)
10 simpll 757 . . . . 5 (((𝐾 ∈ (TopOn‘𝑋) ∧ 𝐽𝐾) ∧ 𝑓 ∈ (𝐽 Cn 𝐿)) → 𝐾 ∈ (TopOn‘𝑋))
11 cntop2 21464 . . . . . . 7 (𝑓 ∈ (𝐽 Cn 𝐿) → 𝐿 ∈ Top)
1211adantl 475 . . . . . 6 (((𝐾 ∈ (TopOn‘𝑋) ∧ 𝐽𝐾) ∧ 𝑓 ∈ (𝐽 Cn 𝐿)) → 𝐿 ∈ Top)
13 toptopon2 21141 . . . . . 6 (𝐿 ∈ Top ↔ 𝐿 ∈ (TopOn‘ 𝐿))
1412, 13sylib 210 . . . . 5 (((𝐾 ∈ (TopOn‘𝑋) ∧ 𝐽𝐾) ∧ 𝑓 ∈ (𝐽 Cn 𝐿)) → 𝐿 ∈ (TopOn‘ 𝐿))
15 iscn 21458 . . . . 5 ((𝐾 ∈ (TopOn‘𝑋) ∧ 𝐿 ∈ (TopOn‘ 𝐿)) → (𝑓 ∈ (𝐾 Cn 𝐿) ↔ (𝑓:𝑋 𝐿 ∧ ∀𝑥𝐿 (𝑓𝑥) ∈ 𝐾)))
1610, 14, 15syl2anc 579 . . . 4 (((𝐾 ∈ (TopOn‘𝑋) ∧ 𝐽𝐾) ∧ 𝑓 ∈ (𝐽 Cn 𝐿)) → (𝑓 ∈ (𝐾 Cn 𝐿) ↔ (𝑓:𝑋 𝐿 ∧ ∀𝑥𝐿 (𝑓𝑥) ∈ 𝐾)))
174, 9, 16mpbir2and 703 . . 3 (((𝐾 ∈ (TopOn‘𝑋) ∧ 𝐽𝐾) ∧ 𝑓 ∈ (𝐽 Cn 𝐿)) → 𝑓 ∈ (𝐾 Cn 𝐿))
1817ex 403 . 2 ((𝐾 ∈ (TopOn‘𝑋) ∧ 𝐽𝐾) → (𝑓 ∈ (𝐽 Cn 𝐿) → 𝑓 ∈ (𝐾 Cn 𝐿)))
1918ssrdv 3827 1 ((𝐾 ∈ (TopOn‘𝑋) ∧ 𝐽𝐾) → (𝐽 Cn 𝐿) ⊆ (𝐾 Cn 𝐿))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 198  wa 386   = wceq 1601  wcel 2107  wral 3090  wss 3792   cuni 4673  ccnv 5356  cima 5360  wf 6133  cfv 6137  (class class class)co 6924  Topctop 21116  TopOnctopon 21133   Cn ccn 21447
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1839  ax-4 1853  ax-5 1953  ax-6 2021  ax-7 2055  ax-8 2109  ax-9 2116  ax-10 2135  ax-11 2150  ax-12 2163  ax-13 2334  ax-ext 2754  ax-sep 5019  ax-nul 5027  ax-pow 5079  ax-pr 5140  ax-un 7228
This theorem depends on definitions:  df-bi 199  df-an 387  df-or 837  df-3an 1073  df-tru 1605  df-ex 1824  df-nf 1828  df-sb 2012  df-mo 2551  df-eu 2587  df-clab 2764  df-cleq 2770  df-clel 2774  df-nfc 2921  df-ral 3095  df-rex 3096  df-rab 3099  df-v 3400  df-sbc 3653  df-dif 3795  df-un 3797  df-in 3799  df-ss 3806  df-nul 4142  df-if 4308  df-pw 4381  df-sn 4399  df-pr 4401  df-op 4405  df-uni 4674  df-br 4889  df-opab 4951  df-mpt 4968  df-id 5263  df-xp 5363  df-rel 5364  df-cnv 5365  df-co 5366  df-dm 5367  df-rn 5368  df-res 5369  df-ima 5370  df-iota 6101  df-fun 6139  df-fn 6140  df-f 6141  df-fv 6145  df-ov 6927  df-oprab 6928  df-mpt2 6929  df-map 8144  df-top 21117  df-topon 21134  df-cn 21450
This theorem is referenced by:  kgen2cn  21782  xkopjcn  21879
  Copyright terms: Public domain W3C validator