MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cntzrecd Structured version   Visualization version   GIF version

Theorem cntzrecd 19614
Description: Commute the "subgroups commute" predicate. (Contributed by Mario Carneiro, 21-Apr-2016.)
Hypotheses
Ref Expression
cntzrecd.z 𝑍 = (Cntz‘𝐺)
cntzrecd.t (𝜑𝑇 ∈ (SubGrp‘𝐺))
cntzrecd.u (𝜑𝑈 ∈ (SubGrp‘𝐺))
cntzrecd.s (𝜑𝑇 ⊆ (𝑍𝑈))
Assertion
Ref Expression
cntzrecd (𝜑𝑈 ⊆ (𝑍𝑇))

Proof of Theorem cntzrecd
StepHypRef Expression
1 cntzrecd.s . 2 (𝜑𝑇 ⊆ (𝑍𝑈))
2 cntzrecd.t . . 3 (𝜑𝑇 ∈ (SubGrp‘𝐺))
3 cntzrecd.u . . 3 (𝜑𝑈 ∈ (SubGrp‘𝐺))
4 eqid 2730 . . . . 5 (Base‘𝐺) = (Base‘𝐺)
54subgss 19065 . . . 4 (𝑇 ∈ (SubGrp‘𝐺) → 𝑇 ⊆ (Base‘𝐺))
64subgss 19065 . . . 4 (𝑈 ∈ (SubGrp‘𝐺) → 𝑈 ⊆ (Base‘𝐺))
7 cntzrecd.z . . . . 5 𝑍 = (Cntz‘𝐺)
84, 7cntzrec 19274 . . . 4 ((𝑇 ⊆ (Base‘𝐺) ∧ 𝑈 ⊆ (Base‘𝐺)) → (𝑇 ⊆ (𝑍𝑈) ↔ 𝑈 ⊆ (𝑍𝑇)))
95, 6, 8syl2an 596 . . 3 ((𝑇 ∈ (SubGrp‘𝐺) ∧ 𝑈 ∈ (SubGrp‘𝐺)) → (𝑇 ⊆ (𝑍𝑈) ↔ 𝑈 ⊆ (𝑍𝑇)))
102, 3, 9syl2anc 584 . 2 (𝜑 → (𝑇 ⊆ (𝑍𝑈) ↔ 𝑈 ⊆ (𝑍𝑇)))
111, 10mpbid 232 1 (𝜑𝑈 ⊆ (𝑍𝑇))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206   = wceq 1540  wcel 2109  wss 3922  cfv 6519  Basecbs 17185  SubGrpcsubg 19058  Cntzccntz 19253
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-rep 5242  ax-sep 5259  ax-nul 5269  ax-pow 5328  ax-pr 5395
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2880  df-ne 2928  df-ral 3047  df-rex 3056  df-reu 3358  df-rab 3412  df-v 3457  df-sbc 3762  df-csb 3871  df-dif 3925  df-un 3927  df-in 3929  df-ss 3939  df-nul 4305  df-if 4497  df-pw 4573  df-sn 4598  df-pr 4600  df-op 4604  df-uni 4880  df-iun 4965  df-br 5116  df-opab 5178  df-mpt 5197  df-id 5541  df-xp 5652  df-rel 5653  df-cnv 5654  df-co 5655  df-dm 5656  df-rn 5657  df-res 5658  df-ima 5659  df-iota 6472  df-fun 6521  df-fn 6522  df-f 6523  df-f1 6524  df-fo 6525  df-f1o 6526  df-fv 6527  df-ov 7397  df-subg 19061  df-cntz 19255
This theorem is referenced by:  subgdisj2  19628  pj2f  19634  pj1id  19635  dprdcntz2  19976  dmdprdsplit2lem  19983  dmdprdsplit2  19984
  Copyright terms: Public domain W3C validator