![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > cntzrecd | Structured version Visualization version GIF version |
Description: Commute the "subgroups commute" predicate. (Contributed by Mario Carneiro, 21-Apr-2016.) |
Ref | Expression |
---|---|
cntzrecd.z | ⊢ 𝑍 = (Cntz‘𝐺) |
cntzrecd.t | ⊢ (𝜑 → 𝑇 ∈ (SubGrp‘𝐺)) |
cntzrecd.u | ⊢ (𝜑 → 𝑈 ∈ (SubGrp‘𝐺)) |
cntzrecd.s | ⊢ (𝜑 → 𝑇 ⊆ (𝑍‘𝑈)) |
Ref | Expression |
---|---|
cntzrecd | ⊢ (𝜑 → 𝑈 ⊆ (𝑍‘𝑇)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cntzrecd.s | . 2 ⊢ (𝜑 → 𝑇 ⊆ (𝑍‘𝑈)) | |
2 | cntzrecd.t | . . 3 ⊢ (𝜑 → 𝑇 ∈ (SubGrp‘𝐺)) | |
3 | cntzrecd.u | . . 3 ⊢ (𝜑 → 𝑈 ∈ (SubGrp‘𝐺)) | |
4 | eqid 2728 | . . . . 5 ⊢ (Base‘𝐺) = (Base‘𝐺) | |
5 | 4 | subgss 19076 | . . . 4 ⊢ (𝑇 ∈ (SubGrp‘𝐺) → 𝑇 ⊆ (Base‘𝐺)) |
6 | 4 | subgss 19076 | . . . 4 ⊢ (𝑈 ∈ (SubGrp‘𝐺) → 𝑈 ⊆ (Base‘𝐺)) |
7 | cntzrecd.z | . . . . 5 ⊢ 𝑍 = (Cntz‘𝐺) | |
8 | 4, 7 | cntzrec 19281 | . . . 4 ⊢ ((𝑇 ⊆ (Base‘𝐺) ∧ 𝑈 ⊆ (Base‘𝐺)) → (𝑇 ⊆ (𝑍‘𝑈) ↔ 𝑈 ⊆ (𝑍‘𝑇))) |
9 | 5, 6, 8 | syl2an 595 | . . 3 ⊢ ((𝑇 ∈ (SubGrp‘𝐺) ∧ 𝑈 ∈ (SubGrp‘𝐺)) → (𝑇 ⊆ (𝑍‘𝑈) ↔ 𝑈 ⊆ (𝑍‘𝑇))) |
10 | 2, 3, 9 | syl2anc 583 | . 2 ⊢ (𝜑 → (𝑇 ⊆ (𝑍‘𝑈) ↔ 𝑈 ⊆ (𝑍‘𝑇))) |
11 | 1, 10 | mpbid 231 | 1 ⊢ (𝜑 → 𝑈 ⊆ (𝑍‘𝑇)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 = wceq 1534 ∈ wcel 2099 ⊆ wss 3945 ‘cfv 6543 Basecbs 17174 SubGrpcsubg 19069 Cntzccntz 19260 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-10 2130 ax-11 2147 ax-12 2167 ax-ext 2699 ax-rep 5280 ax-sep 5294 ax-nul 5301 ax-pow 5360 ax-pr 5424 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 847 df-3an 1087 df-tru 1537 df-fal 1547 df-ex 1775 df-nf 1779 df-sb 2061 df-mo 2530 df-eu 2559 df-clab 2706 df-cleq 2720 df-clel 2806 df-nfc 2881 df-ne 2937 df-ral 3058 df-rex 3067 df-reu 3373 df-rab 3429 df-v 3472 df-sbc 3776 df-csb 3891 df-dif 3948 df-un 3950 df-in 3952 df-ss 3962 df-nul 4320 df-if 4526 df-pw 4601 df-sn 4626 df-pr 4628 df-op 4632 df-uni 4905 df-iun 4994 df-br 5144 df-opab 5206 df-mpt 5227 df-id 5571 df-xp 5679 df-rel 5680 df-cnv 5681 df-co 5682 df-dm 5683 df-rn 5684 df-res 5685 df-ima 5686 df-iota 6495 df-fun 6545 df-fn 6546 df-f 6547 df-f1 6548 df-fo 6549 df-f1o 6550 df-fv 6551 df-ov 7418 df-subg 19072 df-cntz 19262 |
This theorem is referenced by: subgdisj2 19641 pj2f 19647 pj1id 19648 dprdcntz2 19989 dmdprdsplit2lem 19996 dmdprdsplit2 19997 |
Copyright terms: Public domain | W3C validator |