| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > cntzrecd | Structured version Visualization version GIF version | ||
| Description: Commute the "subgroups commute" predicate. (Contributed by Mario Carneiro, 21-Apr-2016.) |
| Ref | Expression |
|---|---|
| cntzrecd.z | ⊢ 𝑍 = (Cntz‘𝐺) |
| cntzrecd.t | ⊢ (𝜑 → 𝑇 ∈ (SubGrp‘𝐺)) |
| cntzrecd.u | ⊢ (𝜑 → 𝑈 ∈ (SubGrp‘𝐺)) |
| cntzrecd.s | ⊢ (𝜑 → 𝑇 ⊆ (𝑍‘𝑈)) |
| Ref | Expression |
|---|---|
| cntzrecd | ⊢ (𝜑 → 𝑈 ⊆ (𝑍‘𝑇)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cntzrecd.s | . 2 ⊢ (𝜑 → 𝑇 ⊆ (𝑍‘𝑈)) | |
| 2 | cntzrecd.t | . . 3 ⊢ (𝜑 → 𝑇 ∈ (SubGrp‘𝐺)) | |
| 3 | cntzrecd.u | . . 3 ⊢ (𝜑 → 𝑈 ∈ (SubGrp‘𝐺)) | |
| 4 | eqid 2730 | . . . . 5 ⊢ (Base‘𝐺) = (Base‘𝐺) | |
| 5 | 4 | subgss 19065 | . . . 4 ⊢ (𝑇 ∈ (SubGrp‘𝐺) → 𝑇 ⊆ (Base‘𝐺)) |
| 6 | 4 | subgss 19065 | . . . 4 ⊢ (𝑈 ∈ (SubGrp‘𝐺) → 𝑈 ⊆ (Base‘𝐺)) |
| 7 | cntzrecd.z | . . . . 5 ⊢ 𝑍 = (Cntz‘𝐺) | |
| 8 | 4, 7 | cntzrec 19274 | . . . 4 ⊢ ((𝑇 ⊆ (Base‘𝐺) ∧ 𝑈 ⊆ (Base‘𝐺)) → (𝑇 ⊆ (𝑍‘𝑈) ↔ 𝑈 ⊆ (𝑍‘𝑇))) |
| 9 | 5, 6, 8 | syl2an 596 | . . 3 ⊢ ((𝑇 ∈ (SubGrp‘𝐺) ∧ 𝑈 ∈ (SubGrp‘𝐺)) → (𝑇 ⊆ (𝑍‘𝑈) ↔ 𝑈 ⊆ (𝑍‘𝑇))) |
| 10 | 2, 3, 9 | syl2anc 584 | . 2 ⊢ (𝜑 → (𝑇 ⊆ (𝑍‘𝑈) ↔ 𝑈 ⊆ (𝑍‘𝑇))) |
| 11 | 1, 10 | mpbid 232 | 1 ⊢ (𝜑 → 𝑈 ⊆ (𝑍‘𝑇)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 = wceq 1540 ∈ wcel 2109 ⊆ wss 3922 ‘cfv 6519 Basecbs 17185 SubGrpcsubg 19058 Cntzccntz 19253 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-rep 5242 ax-sep 5259 ax-nul 5269 ax-pow 5328 ax-pr 5395 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2880 df-ne 2928 df-ral 3047 df-rex 3056 df-reu 3358 df-rab 3412 df-v 3457 df-sbc 3762 df-csb 3871 df-dif 3925 df-un 3927 df-in 3929 df-ss 3939 df-nul 4305 df-if 4497 df-pw 4573 df-sn 4598 df-pr 4600 df-op 4604 df-uni 4880 df-iun 4965 df-br 5116 df-opab 5178 df-mpt 5197 df-id 5541 df-xp 5652 df-rel 5653 df-cnv 5654 df-co 5655 df-dm 5656 df-rn 5657 df-res 5658 df-ima 5659 df-iota 6472 df-fun 6521 df-fn 6522 df-f 6523 df-f1 6524 df-fo 6525 df-f1o 6526 df-fv 6527 df-ov 7397 df-subg 19061 df-cntz 19255 |
| This theorem is referenced by: subgdisj2 19628 pj2f 19634 pj1id 19635 dprdcntz2 19976 dmdprdsplit2lem 19983 dmdprdsplit2 19984 |
| Copyright terms: Public domain | W3C validator |