![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > cntzrecd | Structured version Visualization version GIF version |
Description: Commute the "subgroups commute" predicate. (Contributed by Mario Carneiro, 21-Apr-2016.) |
Ref | Expression |
---|---|
cntzrecd.z | ⊢ 𝑍 = (Cntz‘𝐺) |
cntzrecd.t | ⊢ (𝜑 → 𝑇 ∈ (SubGrp‘𝐺)) |
cntzrecd.u | ⊢ (𝜑 → 𝑈 ∈ (SubGrp‘𝐺)) |
cntzrecd.s | ⊢ (𝜑 → 𝑇 ⊆ (𝑍‘𝑈)) |
Ref | Expression |
---|---|
cntzrecd | ⊢ (𝜑 → 𝑈 ⊆ (𝑍‘𝑇)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cntzrecd.s | . 2 ⊢ (𝜑 → 𝑇 ⊆ (𝑍‘𝑈)) | |
2 | cntzrecd.t | . . 3 ⊢ (𝜑 → 𝑇 ∈ (SubGrp‘𝐺)) | |
3 | cntzrecd.u | . . 3 ⊢ (𝜑 → 𝑈 ∈ (SubGrp‘𝐺)) | |
4 | eqid 2740 | . . . . 5 ⊢ (Base‘𝐺) = (Base‘𝐺) | |
5 | 4 | subgss 19167 | . . . 4 ⊢ (𝑇 ∈ (SubGrp‘𝐺) → 𝑇 ⊆ (Base‘𝐺)) |
6 | 4 | subgss 19167 | . . . 4 ⊢ (𝑈 ∈ (SubGrp‘𝐺) → 𝑈 ⊆ (Base‘𝐺)) |
7 | cntzrecd.z | . . . . 5 ⊢ 𝑍 = (Cntz‘𝐺) | |
8 | 4, 7 | cntzrec 19376 | . . . 4 ⊢ ((𝑇 ⊆ (Base‘𝐺) ∧ 𝑈 ⊆ (Base‘𝐺)) → (𝑇 ⊆ (𝑍‘𝑈) ↔ 𝑈 ⊆ (𝑍‘𝑇))) |
9 | 5, 6, 8 | syl2an 595 | . . 3 ⊢ ((𝑇 ∈ (SubGrp‘𝐺) ∧ 𝑈 ∈ (SubGrp‘𝐺)) → (𝑇 ⊆ (𝑍‘𝑈) ↔ 𝑈 ⊆ (𝑍‘𝑇))) |
10 | 2, 3, 9 | syl2anc 583 | . 2 ⊢ (𝜑 → (𝑇 ⊆ (𝑍‘𝑈) ↔ 𝑈 ⊆ (𝑍‘𝑇))) |
11 | 1, 10 | mpbid 232 | 1 ⊢ (𝜑 → 𝑈 ⊆ (𝑍‘𝑇)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 206 = wceq 1537 ∈ wcel 2108 ⊆ wss 3976 ‘cfv 6573 Basecbs 17258 SubGrpcsubg 19160 Cntzccntz 19355 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-rep 5303 ax-sep 5317 ax-nul 5324 ax-pow 5383 ax-pr 5447 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-ral 3068 df-rex 3077 df-reu 3389 df-rab 3444 df-v 3490 df-sbc 3805 df-csb 3922 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-nul 4353 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-iun 5017 df-br 5167 df-opab 5229 df-mpt 5250 df-id 5593 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-res 5712 df-ima 5713 df-iota 6525 df-fun 6575 df-fn 6576 df-f 6577 df-f1 6578 df-fo 6579 df-f1o 6580 df-fv 6581 df-ov 7451 df-subg 19163 df-cntz 19357 |
This theorem is referenced by: subgdisj2 19734 pj2f 19740 pj1id 19741 dprdcntz2 20082 dmdprdsplit2lem 20089 dmdprdsplit2 20090 |
Copyright terms: Public domain | W3C validator |