| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > cntzrecd | Structured version Visualization version GIF version | ||
| Description: Commute the "subgroups commute" predicate. (Contributed by Mario Carneiro, 21-Apr-2016.) |
| Ref | Expression |
|---|---|
| cntzrecd.z | ⊢ 𝑍 = (Cntz‘𝐺) |
| cntzrecd.t | ⊢ (𝜑 → 𝑇 ∈ (SubGrp‘𝐺)) |
| cntzrecd.u | ⊢ (𝜑 → 𝑈 ∈ (SubGrp‘𝐺)) |
| cntzrecd.s | ⊢ (𝜑 → 𝑇 ⊆ (𝑍‘𝑈)) |
| Ref | Expression |
|---|---|
| cntzrecd | ⊢ (𝜑 → 𝑈 ⊆ (𝑍‘𝑇)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cntzrecd.s | . 2 ⊢ (𝜑 → 𝑇 ⊆ (𝑍‘𝑈)) | |
| 2 | cntzrecd.t | . . 3 ⊢ (𝜑 → 𝑇 ∈ (SubGrp‘𝐺)) | |
| 3 | cntzrecd.u | . . 3 ⊢ (𝜑 → 𝑈 ∈ (SubGrp‘𝐺)) | |
| 4 | eqid 2734 | . . . . 5 ⊢ (Base‘𝐺) = (Base‘𝐺) | |
| 5 | 4 | subgss 19113 | . . . 4 ⊢ (𝑇 ∈ (SubGrp‘𝐺) → 𝑇 ⊆ (Base‘𝐺)) |
| 6 | 4 | subgss 19113 | . . . 4 ⊢ (𝑈 ∈ (SubGrp‘𝐺) → 𝑈 ⊆ (Base‘𝐺)) |
| 7 | cntzrecd.z | . . . . 5 ⊢ 𝑍 = (Cntz‘𝐺) | |
| 8 | 4, 7 | cntzrec 19322 | . . . 4 ⊢ ((𝑇 ⊆ (Base‘𝐺) ∧ 𝑈 ⊆ (Base‘𝐺)) → (𝑇 ⊆ (𝑍‘𝑈) ↔ 𝑈 ⊆ (𝑍‘𝑇))) |
| 9 | 5, 6, 8 | syl2an 596 | . . 3 ⊢ ((𝑇 ∈ (SubGrp‘𝐺) ∧ 𝑈 ∈ (SubGrp‘𝐺)) → (𝑇 ⊆ (𝑍‘𝑈) ↔ 𝑈 ⊆ (𝑍‘𝑇))) |
| 10 | 2, 3, 9 | syl2anc 584 | . 2 ⊢ (𝜑 → (𝑇 ⊆ (𝑍‘𝑈) ↔ 𝑈 ⊆ (𝑍‘𝑇))) |
| 11 | 1, 10 | mpbid 232 | 1 ⊢ (𝜑 → 𝑈 ⊆ (𝑍‘𝑇)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 = wceq 1539 ∈ wcel 2107 ⊆ wss 3931 ‘cfv 6540 Basecbs 17228 SubGrpcsubg 19106 Cntzccntz 19301 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-11 2156 ax-12 2176 ax-ext 2706 ax-rep 5259 ax-sep 5276 ax-nul 5286 ax-pow 5345 ax-pr 5412 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2064 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2726 df-clel 2808 df-nfc 2884 df-ne 2932 df-ral 3051 df-rex 3060 df-reu 3364 df-rab 3420 df-v 3465 df-sbc 3771 df-csb 3880 df-dif 3934 df-un 3936 df-in 3938 df-ss 3948 df-nul 4314 df-if 4506 df-pw 4582 df-sn 4607 df-pr 4609 df-op 4613 df-uni 4888 df-iun 4973 df-br 5124 df-opab 5186 df-mpt 5206 df-id 5558 df-xp 5671 df-rel 5672 df-cnv 5673 df-co 5674 df-dm 5675 df-rn 5676 df-res 5677 df-ima 5678 df-iota 6493 df-fun 6542 df-fn 6543 df-f 6544 df-f1 6545 df-fo 6546 df-f1o 6547 df-fv 6548 df-ov 7415 df-subg 19109 df-cntz 19303 |
| This theorem is referenced by: subgdisj2 19677 pj2f 19683 pj1id 19684 dprdcntz2 20025 dmdprdsplit2lem 20032 dmdprdsplit2 20033 |
| Copyright terms: Public domain | W3C validator |