![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > lsmcntzr | Structured version Visualization version GIF version |
Description: The "subgroups commute" predicate applied to a subgroup sum. (Contributed by Mario Carneiro, 21-Apr-2016.) |
Ref | Expression |
---|---|
lsmcntz.p | ⊢ ⊕ = (LSSum‘𝐺) |
lsmcntz.s | ⊢ (𝜑 → 𝑆 ∈ (SubGrp‘𝐺)) |
lsmcntz.t | ⊢ (𝜑 → 𝑇 ∈ (SubGrp‘𝐺)) |
lsmcntz.u | ⊢ (𝜑 → 𝑈 ∈ (SubGrp‘𝐺)) |
lsmcntz.z | ⊢ 𝑍 = (Cntz‘𝐺) |
Ref | Expression |
---|---|
lsmcntzr | ⊢ (𝜑 → (𝑆 ⊆ (𝑍‘(𝑇 ⊕ 𝑈)) ↔ (𝑆 ⊆ (𝑍‘𝑇) ∧ 𝑆 ⊆ (𝑍‘𝑈)))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | lsmcntz.p | . . 3 ⊢ ⊕ = (LSSum‘𝐺) | |
2 | lsmcntz.t | . . 3 ⊢ (𝜑 → 𝑇 ∈ (SubGrp‘𝐺)) | |
3 | lsmcntz.u | . . 3 ⊢ (𝜑 → 𝑈 ∈ (SubGrp‘𝐺)) | |
4 | lsmcntz.s | . . 3 ⊢ (𝜑 → 𝑆 ∈ (SubGrp‘𝐺)) | |
5 | lsmcntz.z | . . 3 ⊢ 𝑍 = (Cntz‘𝐺) | |
6 | 1, 2, 3, 4, 5 | lsmcntz 19595 | . 2 ⊢ (𝜑 → ((𝑇 ⊕ 𝑈) ⊆ (𝑍‘𝑆) ↔ (𝑇 ⊆ (𝑍‘𝑆) ∧ 𝑈 ⊆ (𝑍‘𝑆)))) |
7 | subgrcl 19054 | . . . . 5 ⊢ (𝑆 ∈ (SubGrp‘𝐺) → 𝐺 ∈ Grp) | |
8 | grpmnd 18868 | . . . . 5 ⊢ (𝐺 ∈ Grp → 𝐺 ∈ Mnd) | |
9 | 4, 7, 8 | 3syl 18 | . . . 4 ⊢ (𝜑 → 𝐺 ∈ Mnd) |
10 | eqid 2731 | . . . . . 6 ⊢ (Base‘𝐺) = (Base‘𝐺) | |
11 | 10 | subgss 19050 | . . . . 5 ⊢ (𝑇 ∈ (SubGrp‘𝐺) → 𝑇 ⊆ (Base‘𝐺)) |
12 | 2, 11 | syl 17 | . . . 4 ⊢ (𝜑 → 𝑇 ⊆ (Base‘𝐺)) |
13 | 10 | subgss 19050 | . . . . 5 ⊢ (𝑈 ∈ (SubGrp‘𝐺) → 𝑈 ⊆ (Base‘𝐺)) |
14 | 3, 13 | syl 17 | . . . 4 ⊢ (𝜑 → 𝑈 ⊆ (Base‘𝐺)) |
15 | 10, 1 | lsmssv 19559 | . . . 4 ⊢ ((𝐺 ∈ Mnd ∧ 𝑇 ⊆ (Base‘𝐺) ∧ 𝑈 ⊆ (Base‘𝐺)) → (𝑇 ⊕ 𝑈) ⊆ (Base‘𝐺)) |
16 | 9, 12, 14, 15 | syl3anc 1370 | . . 3 ⊢ (𝜑 → (𝑇 ⊕ 𝑈) ⊆ (Base‘𝐺)) |
17 | 10 | subgss 19050 | . . . 4 ⊢ (𝑆 ∈ (SubGrp‘𝐺) → 𝑆 ⊆ (Base‘𝐺)) |
18 | 4, 17 | syl 17 | . . 3 ⊢ (𝜑 → 𝑆 ⊆ (Base‘𝐺)) |
19 | 10, 5 | cntzrec 19248 | . . 3 ⊢ (((𝑇 ⊕ 𝑈) ⊆ (Base‘𝐺) ∧ 𝑆 ⊆ (Base‘𝐺)) → ((𝑇 ⊕ 𝑈) ⊆ (𝑍‘𝑆) ↔ 𝑆 ⊆ (𝑍‘(𝑇 ⊕ 𝑈)))) |
20 | 16, 18, 19 | syl2anc 583 | . 2 ⊢ (𝜑 → ((𝑇 ⊕ 𝑈) ⊆ (𝑍‘𝑆) ↔ 𝑆 ⊆ (𝑍‘(𝑇 ⊕ 𝑈)))) |
21 | 10, 5 | cntzrec 19248 | . . . 4 ⊢ ((𝑇 ⊆ (Base‘𝐺) ∧ 𝑆 ⊆ (Base‘𝐺)) → (𝑇 ⊆ (𝑍‘𝑆) ↔ 𝑆 ⊆ (𝑍‘𝑇))) |
22 | 12, 18, 21 | syl2anc 583 | . . 3 ⊢ (𝜑 → (𝑇 ⊆ (𝑍‘𝑆) ↔ 𝑆 ⊆ (𝑍‘𝑇))) |
23 | 10, 5 | cntzrec 19248 | . . . 4 ⊢ ((𝑈 ⊆ (Base‘𝐺) ∧ 𝑆 ⊆ (Base‘𝐺)) → (𝑈 ⊆ (𝑍‘𝑆) ↔ 𝑆 ⊆ (𝑍‘𝑈))) |
24 | 14, 18, 23 | syl2anc 583 | . . 3 ⊢ (𝜑 → (𝑈 ⊆ (𝑍‘𝑆) ↔ 𝑆 ⊆ (𝑍‘𝑈))) |
25 | 22, 24 | anbi12d 630 | . 2 ⊢ (𝜑 → ((𝑇 ⊆ (𝑍‘𝑆) ∧ 𝑈 ⊆ (𝑍‘𝑆)) ↔ (𝑆 ⊆ (𝑍‘𝑇) ∧ 𝑆 ⊆ (𝑍‘𝑈)))) |
26 | 6, 20, 25 | 3bitr3d 309 | 1 ⊢ (𝜑 → (𝑆 ⊆ (𝑍‘(𝑇 ⊕ 𝑈)) ↔ (𝑆 ⊆ (𝑍‘𝑇) ∧ 𝑆 ⊆ (𝑍‘𝑈)))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 395 = wceq 1540 ∈ wcel 2105 ⊆ wss 3948 ‘cfv 6543 (class class class)co 7412 Basecbs 17151 Mndcmnd 18665 Grpcgrp 18861 SubGrpcsubg 19043 Cntzccntz 19227 LSSumclsm 19550 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-10 2136 ax-11 2153 ax-12 2170 ax-ext 2702 ax-rep 5285 ax-sep 5299 ax-nul 5306 ax-pow 5363 ax-pr 5427 ax-un 7729 ax-cnex 11172 ax-resscn 11173 ax-1cn 11174 ax-icn 11175 ax-addcl 11176 ax-addrcl 11177 ax-mulcl 11178 ax-mulrcl 11179 ax-mulcom 11180 ax-addass 11181 ax-mulass 11182 ax-distr 11183 ax-i2m1 11184 ax-1ne0 11185 ax-1rid 11186 ax-rnegex 11187 ax-rrecex 11188 ax-cnre 11189 ax-pre-lttri 11190 ax-pre-lttrn 11191 ax-pre-ltadd 11192 ax-pre-mulgt0 11193 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2533 df-eu 2562 df-clab 2709 df-cleq 2723 df-clel 2809 df-nfc 2884 df-ne 2940 df-nel 3046 df-ral 3061 df-rex 3070 df-rmo 3375 df-reu 3376 df-rab 3432 df-v 3475 df-sbc 3778 df-csb 3894 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-pss 3967 df-nul 4323 df-if 4529 df-pw 4604 df-sn 4629 df-pr 4631 df-op 4635 df-uni 4909 df-iun 4999 df-br 5149 df-opab 5211 df-mpt 5232 df-tr 5266 df-id 5574 df-eprel 5580 df-po 5588 df-so 5589 df-fr 5631 df-we 5633 df-xp 5682 df-rel 5683 df-cnv 5684 df-co 5685 df-dm 5686 df-rn 5687 df-res 5688 df-ima 5689 df-pred 6300 df-ord 6367 df-on 6368 df-lim 6369 df-suc 6370 df-iota 6495 df-fun 6545 df-fn 6546 df-f 6547 df-f1 6548 df-fo 6549 df-f1o 6550 df-fv 6551 df-riota 7368 df-ov 7415 df-oprab 7416 df-mpo 7417 df-om 7860 df-1st 7979 df-2nd 7980 df-frecs 8272 df-wrecs 8303 df-recs 8377 df-rdg 8416 df-er 8709 df-en 8946 df-dom 8947 df-sdom 8948 df-pnf 11257 df-mnf 11258 df-xr 11259 df-ltxr 11260 df-le 11261 df-sub 11453 df-neg 11454 df-nn 12220 df-2 12282 df-sets 17104 df-slot 17122 df-ndx 17134 df-base 17152 df-ress 17181 df-plusg 17217 df-0g 17394 df-mgm 18571 df-sgrp 18650 df-mnd 18666 df-submnd 18712 df-grp 18864 df-minusg 18865 df-subg 19046 df-cntz 19229 df-lsm 19552 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |