Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > lsmcntzr | Structured version Visualization version GIF version |
Description: The "subgroups commute" predicate applied to a subgroup sum. (Contributed by Mario Carneiro, 21-Apr-2016.) |
Ref | Expression |
---|---|
lsmcntz.p | ⊢ ⊕ = (LSSum‘𝐺) |
lsmcntz.s | ⊢ (𝜑 → 𝑆 ∈ (SubGrp‘𝐺)) |
lsmcntz.t | ⊢ (𝜑 → 𝑇 ∈ (SubGrp‘𝐺)) |
lsmcntz.u | ⊢ (𝜑 → 𝑈 ∈ (SubGrp‘𝐺)) |
lsmcntz.z | ⊢ 𝑍 = (Cntz‘𝐺) |
Ref | Expression |
---|---|
lsmcntzr | ⊢ (𝜑 → (𝑆 ⊆ (𝑍‘(𝑇 ⊕ 𝑈)) ↔ (𝑆 ⊆ (𝑍‘𝑇) ∧ 𝑆 ⊆ (𝑍‘𝑈)))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | lsmcntz.p | . . 3 ⊢ ⊕ = (LSSum‘𝐺) | |
2 | lsmcntz.t | . . 3 ⊢ (𝜑 → 𝑇 ∈ (SubGrp‘𝐺)) | |
3 | lsmcntz.u | . . 3 ⊢ (𝜑 → 𝑈 ∈ (SubGrp‘𝐺)) | |
4 | lsmcntz.s | . . 3 ⊢ (𝜑 → 𝑆 ∈ (SubGrp‘𝐺)) | |
5 | lsmcntz.z | . . 3 ⊢ 𝑍 = (Cntz‘𝐺) | |
6 | 1, 2, 3, 4, 5 | lsmcntz 18935 | . 2 ⊢ (𝜑 → ((𝑇 ⊕ 𝑈) ⊆ (𝑍‘𝑆) ↔ (𝑇 ⊆ (𝑍‘𝑆) ∧ 𝑈 ⊆ (𝑍‘𝑆)))) |
7 | subgrcl 18414 | . . . . 5 ⊢ (𝑆 ∈ (SubGrp‘𝐺) → 𝐺 ∈ Grp) | |
8 | grpmnd 18238 | . . . . 5 ⊢ (𝐺 ∈ Grp → 𝐺 ∈ Mnd) | |
9 | 4, 7, 8 | 3syl 18 | . . . 4 ⊢ (𝜑 → 𝐺 ∈ Mnd) |
10 | eqid 2739 | . . . . . 6 ⊢ (Base‘𝐺) = (Base‘𝐺) | |
11 | 10 | subgss 18410 | . . . . 5 ⊢ (𝑇 ∈ (SubGrp‘𝐺) → 𝑇 ⊆ (Base‘𝐺)) |
12 | 2, 11 | syl 17 | . . . 4 ⊢ (𝜑 → 𝑇 ⊆ (Base‘𝐺)) |
13 | 10 | subgss 18410 | . . . . 5 ⊢ (𝑈 ∈ (SubGrp‘𝐺) → 𝑈 ⊆ (Base‘𝐺)) |
14 | 3, 13 | syl 17 | . . . 4 ⊢ (𝜑 → 𝑈 ⊆ (Base‘𝐺)) |
15 | 10, 1 | lsmssv 18898 | . . . 4 ⊢ ((𝐺 ∈ Mnd ∧ 𝑇 ⊆ (Base‘𝐺) ∧ 𝑈 ⊆ (Base‘𝐺)) → (𝑇 ⊕ 𝑈) ⊆ (Base‘𝐺)) |
16 | 9, 12, 14, 15 | syl3anc 1372 | . . 3 ⊢ (𝜑 → (𝑇 ⊕ 𝑈) ⊆ (Base‘𝐺)) |
17 | 10 | subgss 18410 | . . . 4 ⊢ (𝑆 ∈ (SubGrp‘𝐺) → 𝑆 ⊆ (Base‘𝐺)) |
18 | 4, 17 | syl 17 | . . 3 ⊢ (𝜑 → 𝑆 ⊆ (Base‘𝐺)) |
19 | 10, 5 | cntzrec 18594 | . . 3 ⊢ (((𝑇 ⊕ 𝑈) ⊆ (Base‘𝐺) ∧ 𝑆 ⊆ (Base‘𝐺)) → ((𝑇 ⊕ 𝑈) ⊆ (𝑍‘𝑆) ↔ 𝑆 ⊆ (𝑍‘(𝑇 ⊕ 𝑈)))) |
20 | 16, 18, 19 | syl2anc 587 | . 2 ⊢ (𝜑 → ((𝑇 ⊕ 𝑈) ⊆ (𝑍‘𝑆) ↔ 𝑆 ⊆ (𝑍‘(𝑇 ⊕ 𝑈)))) |
21 | 10, 5 | cntzrec 18594 | . . . 4 ⊢ ((𝑇 ⊆ (Base‘𝐺) ∧ 𝑆 ⊆ (Base‘𝐺)) → (𝑇 ⊆ (𝑍‘𝑆) ↔ 𝑆 ⊆ (𝑍‘𝑇))) |
22 | 12, 18, 21 | syl2anc 587 | . . 3 ⊢ (𝜑 → (𝑇 ⊆ (𝑍‘𝑆) ↔ 𝑆 ⊆ (𝑍‘𝑇))) |
23 | 10, 5 | cntzrec 18594 | . . . 4 ⊢ ((𝑈 ⊆ (Base‘𝐺) ∧ 𝑆 ⊆ (Base‘𝐺)) → (𝑈 ⊆ (𝑍‘𝑆) ↔ 𝑆 ⊆ (𝑍‘𝑈))) |
24 | 14, 18, 23 | syl2anc 587 | . . 3 ⊢ (𝜑 → (𝑈 ⊆ (𝑍‘𝑆) ↔ 𝑆 ⊆ (𝑍‘𝑈))) |
25 | 22, 24 | anbi12d 634 | . 2 ⊢ (𝜑 → ((𝑇 ⊆ (𝑍‘𝑆) ∧ 𝑈 ⊆ (𝑍‘𝑆)) ↔ (𝑆 ⊆ (𝑍‘𝑇) ∧ 𝑆 ⊆ (𝑍‘𝑈)))) |
26 | 6, 20, 25 | 3bitr3d 312 | 1 ⊢ (𝜑 → (𝑆 ⊆ (𝑍‘(𝑇 ⊕ 𝑈)) ↔ (𝑆 ⊆ (𝑍‘𝑇) ∧ 𝑆 ⊆ (𝑍‘𝑈)))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 209 ∧ wa 399 = wceq 1542 ∈ wcel 2114 ⊆ wss 3853 ‘cfv 6349 (class class class)co 7182 Basecbs 16598 Mndcmnd 18039 Grpcgrp 18231 SubGrpcsubg 18403 Cntzccntz 18575 LSSumclsm 18889 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1802 ax-4 1816 ax-5 1917 ax-6 1975 ax-7 2020 ax-8 2116 ax-9 2124 ax-10 2145 ax-11 2162 ax-12 2179 ax-ext 2711 ax-rep 5164 ax-sep 5177 ax-nul 5184 ax-pow 5242 ax-pr 5306 ax-un 7491 ax-cnex 10683 ax-resscn 10684 ax-1cn 10685 ax-icn 10686 ax-addcl 10687 ax-addrcl 10688 ax-mulcl 10689 ax-mulrcl 10690 ax-mulcom 10691 ax-addass 10692 ax-mulass 10693 ax-distr 10694 ax-i2m1 10695 ax-1ne0 10696 ax-1rid 10697 ax-rnegex 10698 ax-rrecex 10699 ax-cnre 10700 ax-pre-lttri 10701 ax-pre-lttrn 10702 ax-pre-ltadd 10703 ax-pre-mulgt0 10704 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 847 df-3or 1089 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1787 df-nf 1791 df-sb 2075 df-mo 2541 df-eu 2571 df-clab 2718 df-cleq 2731 df-clel 2812 df-nfc 2882 df-ne 2936 df-nel 3040 df-ral 3059 df-rex 3060 df-reu 3061 df-rmo 3062 df-rab 3063 df-v 3402 df-sbc 3686 df-csb 3801 df-dif 3856 df-un 3858 df-in 3860 df-ss 3870 df-pss 3872 df-nul 4222 df-if 4425 df-pw 4500 df-sn 4527 df-pr 4529 df-tp 4531 df-op 4533 df-uni 4807 df-iun 4893 df-br 5041 df-opab 5103 df-mpt 5121 df-tr 5147 df-id 5439 df-eprel 5444 df-po 5452 df-so 5453 df-fr 5493 df-we 5495 df-xp 5541 df-rel 5542 df-cnv 5543 df-co 5544 df-dm 5545 df-rn 5546 df-res 5547 df-ima 5548 df-pred 6139 df-ord 6185 df-on 6186 df-lim 6187 df-suc 6188 df-iota 6307 df-fun 6351 df-fn 6352 df-f 6353 df-f1 6354 df-fo 6355 df-f1o 6356 df-fv 6357 df-riota 7139 df-ov 7185 df-oprab 7186 df-mpo 7187 df-om 7612 df-1st 7726 df-2nd 7727 df-wrecs 7988 df-recs 8049 df-rdg 8087 df-er 8332 df-en 8568 df-dom 8569 df-sdom 8570 df-pnf 10767 df-mnf 10768 df-xr 10769 df-ltxr 10770 df-le 10771 df-sub 10962 df-neg 10963 df-nn 11729 df-2 11791 df-ndx 16601 df-slot 16602 df-base 16604 df-sets 16605 df-ress 16606 df-plusg 16693 df-0g 16830 df-mgm 17980 df-sgrp 18029 df-mnd 18040 df-submnd 18085 df-grp 18234 df-minusg 18235 df-subg 18406 df-cntz 18577 df-lsm 18891 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |