![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > lsmcntzr | Structured version Visualization version GIF version |
Description: The "subgroups commute" predicate applied to a subgroup sum. (Contributed by Mario Carneiro, 21-Apr-2016.) |
Ref | Expression |
---|---|
lsmcntz.p | ⊢ ⊕ = (LSSum‘𝐺) |
lsmcntz.s | ⊢ (𝜑 → 𝑆 ∈ (SubGrp‘𝐺)) |
lsmcntz.t | ⊢ (𝜑 → 𝑇 ∈ (SubGrp‘𝐺)) |
lsmcntz.u | ⊢ (𝜑 → 𝑈 ∈ (SubGrp‘𝐺)) |
lsmcntz.z | ⊢ 𝑍 = (Cntz‘𝐺) |
Ref | Expression |
---|---|
lsmcntzr | ⊢ (𝜑 → (𝑆 ⊆ (𝑍‘(𝑇 ⊕ 𝑈)) ↔ (𝑆 ⊆ (𝑍‘𝑇) ∧ 𝑆 ⊆ (𝑍‘𝑈)))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | lsmcntz.p | . . 3 ⊢ ⊕ = (LSSum‘𝐺) | |
2 | lsmcntz.t | . . 3 ⊢ (𝜑 → 𝑇 ∈ (SubGrp‘𝐺)) | |
3 | lsmcntz.u | . . 3 ⊢ (𝜑 → 𝑈 ∈ (SubGrp‘𝐺)) | |
4 | lsmcntz.s | . . 3 ⊢ (𝜑 → 𝑆 ∈ (SubGrp‘𝐺)) | |
5 | lsmcntz.z | . . 3 ⊢ 𝑍 = (Cntz‘𝐺) | |
6 | 1, 2, 3, 4, 5 | lsmcntz 19721 | . 2 ⊢ (𝜑 → ((𝑇 ⊕ 𝑈) ⊆ (𝑍‘𝑆) ↔ (𝑇 ⊆ (𝑍‘𝑆) ∧ 𝑈 ⊆ (𝑍‘𝑆)))) |
7 | subgrcl 19171 | . . . . 5 ⊢ (𝑆 ∈ (SubGrp‘𝐺) → 𝐺 ∈ Grp) | |
8 | grpmnd 18980 | . . . . 5 ⊢ (𝐺 ∈ Grp → 𝐺 ∈ Mnd) | |
9 | 4, 7, 8 | 3syl 18 | . . . 4 ⊢ (𝜑 → 𝐺 ∈ Mnd) |
10 | eqid 2737 | . . . . . 6 ⊢ (Base‘𝐺) = (Base‘𝐺) | |
11 | 10 | subgss 19167 | . . . . 5 ⊢ (𝑇 ∈ (SubGrp‘𝐺) → 𝑇 ⊆ (Base‘𝐺)) |
12 | 2, 11 | syl 17 | . . . 4 ⊢ (𝜑 → 𝑇 ⊆ (Base‘𝐺)) |
13 | 10 | subgss 19167 | . . . . 5 ⊢ (𝑈 ∈ (SubGrp‘𝐺) → 𝑈 ⊆ (Base‘𝐺)) |
14 | 3, 13 | syl 17 | . . . 4 ⊢ (𝜑 → 𝑈 ⊆ (Base‘𝐺)) |
15 | 10, 1 | lsmssv 19685 | . . . 4 ⊢ ((𝐺 ∈ Mnd ∧ 𝑇 ⊆ (Base‘𝐺) ∧ 𝑈 ⊆ (Base‘𝐺)) → (𝑇 ⊕ 𝑈) ⊆ (Base‘𝐺)) |
16 | 9, 12, 14, 15 | syl3anc 1372 | . . 3 ⊢ (𝜑 → (𝑇 ⊕ 𝑈) ⊆ (Base‘𝐺)) |
17 | 10 | subgss 19167 | . . . 4 ⊢ (𝑆 ∈ (SubGrp‘𝐺) → 𝑆 ⊆ (Base‘𝐺)) |
18 | 4, 17 | syl 17 | . . 3 ⊢ (𝜑 → 𝑆 ⊆ (Base‘𝐺)) |
19 | 10, 5 | cntzrec 19376 | . . 3 ⊢ (((𝑇 ⊕ 𝑈) ⊆ (Base‘𝐺) ∧ 𝑆 ⊆ (Base‘𝐺)) → ((𝑇 ⊕ 𝑈) ⊆ (𝑍‘𝑆) ↔ 𝑆 ⊆ (𝑍‘(𝑇 ⊕ 𝑈)))) |
20 | 16, 18, 19 | syl2anc 584 | . 2 ⊢ (𝜑 → ((𝑇 ⊕ 𝑈) ⊆ (𝑍‘𝑆) ↔ 𝑆 ⊆ (𝑍‘(𝑇 ⊕ 𝑈)))) |
21 | 10, 5 | cntzrec 19376 | . . . 4 ⊢ ((𝑇 ⊆ (Base‘𝐺) ∧ 𝑆 ⊆ (Base‘𝐺)) → (𝑇 ⊆ (𝑍‘𝑆) ↔ 𝑆 ⊆ (𝑍‘𝑇))) |
22 | 12, 18, 21 | syl2anc 584 | . . 3 ⊢ (𝜑 → (𝑇 ⊆ (𝑍‘𝑆) ↔ 𝑆 ⊆ (𝑍‘𝑇))) |
23 | 10, 5 | cntzrec 19376 | . . . 4 ⊢ ((𝑈 ⊆ (Base‘𝐺) ∧ 𝑆 ⊆ (Base‘𝐺)) → (𝑈 ⊆ (𝑍‘𝑆) ↔ 𝑆 ⊆ (𝑍‘𝑈))) |
24 | 14, 18, 23 | syl2anc 584 | . . 3 ⊢ (𝜑 → (𝑈 ⊆ (𝑍‘𝑆) ↔ 𝑆 ⊆ (𝑍‘𝑈))) |
25 | 22, 24 | anbi12d 632 | . 2 ⊢ (𝜑 → ((𝑇 ⊆ (𝑍‘𝑆) ∧ 𝑈 ⊆ (𝑍‘𝑆)) ↔ (𝑆 ⊆ (𝑍‘𝑇) ∧ 𝑆 ⊆ (𝑍‘𝑈)))) |
26 | 6, 20, 25 | 3bitr3d 309 | 1 ⊢ (𝜑 → (𝑆 ⊆ (𝑍‘(𝑇 ⊕ 𝑈)) ↔ (𝑆 ⊆ (𝑍‘𝑇) ∧ 𝑆 ⊆ (𝑍‘𝑈)))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1539 ∈ wcel 2108 ⊆ wss 3966 ‘cfv 6569 (class class class)co 7438 Basecbs 17254 Mndcmnd 18769 Grpcgrp 18973 SubGrpcsubg 19160 Cntzccntz 19355 LSSumclsm 19676 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2708 ax-rep 5288 ax-sep 5305 ax-nul 5315 ax-pow 5374 ax-pr 5441 ax-un 7761 ax-cnex 11218 ax-resscn 11219 ax-1cn 11220 ax-icn 11221 ax-addcl 11222 ax-addrcl 11223 ax-mulcl 11224 ax-mulrcl 11225 ax-mulcom 11226 ax-addass 11227 ax-mulass 11228 ax-distr 11229 ax-i2m1 11230 ax-1ne0 11231 ax-1rid 11232 ax-rnegex 11233 ax-rrecex 11234 ax-cnre 11235 ax-pre-lttri 11236 ax-pre-lttrn 11237 ax-pre-ltadd 11238 ax-pre-mulgt0 11239 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 849 df-3or 1088 df-3an 1089 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2065 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2729 df-clel 2816 df-nfc 2892 df-ne 2941 df-nel 3047 df-ral 3062 df-rex 3071 df-rmo 3380 df-reu 3381 df-rab 3437 df-v 3483 df-sbc 3795 df-csb 3912 df-dif 3969 df-un 3971 df-in 3973 df-ss 3983 df-pss 3986 df-nul 4343 df-if 4535 df-pw 4610 df-sn 4635 df-pr 4637 df-op 4641 df-uni 4916 df-iun 5001 df-br 5152 df-opab 5214 df-mpt 5235 df-tr 5269 df-id 5587 df-eprel 5593 df-po 5601 df-so 5602 df-fr 5645 df-we 5647 df-xp 5699 df-rel 5700 df-cnv 5701 df-co 5702 df-dm 5703 df-rn 5704 df-res 5705 df-ima 5706 df-pred 6329 df-ord 6395 df-on 6396 df-lim 6397 df-suc 6398 df-iota 6522 df-fun 6571 df-fn 6572 df-f 6573 df-f1 6574 df-fo 6575 df-f1o 6576 df-fv 6577 df-riota 7395 df-ov 7441 df-oprab 7442 df-mpo 7443 df-om 7895 df-1st 8022 df-2nd 8023 df-frecs 8314 df-wrecs 8345 df-recs 8419 df-rdg 8458 df-er 8753 df-en 8994 df-dom 8995 df-sdom 8996 df-pnf 11304 df-mnf 11305 df-xr 11306 df-ltxr 11307 df-le 11308 df-sub 11501 df-neg 11502 df-nn 12274 df-2 12336 df-sets 17207 df-slot 17225 df-ndx 17237 df-base 17255 df-ress 17284 df-plusg 17320 df-0g 17497 df-mgm 18675 df-sgrp 18754 df-mnd 18770 df-submnd 18819 df-grp 18976 df-minusg 18977 df-subg 19163 df-cntz 19357 df-lsm 19678 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |