![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > cntz2ss | Structured version Visualization version GIF version |
Description: Centralizers reverse the subset relation. (Contributed by Mario Carneiro, 3-Oct-2015.) |
Ref | Expression |
---|---|
cntzrec.b | ⊢ 𝐵 = (Base‘𝑀) |
cntzrec.z | ⊢ 𝑍 = (Cntz‘𝑀) |
Ref | Expression |
---|---|
cntz2ss | ⊢ ((𝑆 ⊆ 𝐵 ∧ 𝑇 ⊆ 𝑆) → (𝑍‘𝑆) ⊆ (𝑍‘𝑇)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2734 | . . . . . 6 ⊢ (+g‘𝑀) = (+g‘𝑀) | |
2 | cntzrec.z | . . . . . 6 ⊢ 𝑍 = (Cntz‘𝑀) | |
3 | 1, 2 | cntzi 19359 | . . . . 5 ⊢ ((𝑥 ∈ (𝑍‘𝑆) ∧ 𝑦 ∈ 𝑆) → (𝑥(+g‘𝑀)𝑦) = (𝑦(+g‘𝑀)𝑥)) |
4 | 3 | ralrimiva 3143 | . . . 4 ⊢ (𝑥 ∈ (𝑍‘𝑆) → ∀𝑦 ∈ 𝑆 (𝑥(+g‘𝑀)𝑦) = (𝑦(+g‘𝑀)𝑥)) |
5 | ssralv 4063 | . . . . 5 ⊢ (𝑇 ⊆ 𝑆 → (∀𝑦 ∈ 𝑆 (𝑥(+g‘𝑀)𝑦) = (𝑦(+g‘𝑀)𝑥) → ∀𝑦 ∈ 𝑇 (𝑥(+g‘𝑀)𝑦) = (𝑦(+g‘𝑀)𝑥))) | |
6 | 5 | adantl 481 | . . . 4 ⊢ ((𝑆 ⊆ 𝐵 ∧ 𝑇 ⊆ 𝑆) → (∀𝑦 ∈ 𝑆 (𝑥(+g‘𝑀)𝑦) = (𝑦(+g‘𝑀)𝑥) → ∀𝑦 ∈ 𝑇 (𝑥(+g‘𝑀)𝑦) = (𝑦(+g‘𝑀)𝑥))) |
7 | 4, 6 | syl5 34 | . . 3 ⊢ ((𝑆 ⊆ 𝐵 ∧ 𝑇 ⊆ 𝑆) → (𝑥 ∈ (𝑍‘𝑆) → ∀𝑦 ∈ 𝑇 (𝑥(+g‘𝑀)𝑦) = (𝑦(+g‘𝑀)𝑥))) |
8 | 7 | ralrimiv 3142 | . 2 ⊢ ((𝑆 ⊆ 𝐵 ∧ 𝑇 ⊆ 𝑆) → ∀𝑥 ∈ (𝑍‘𝑆)∀𝑦 ∈ 𝑇 (𝑥(+g‘𝑀)𝑦) = (𝑦(+g‘𝑀)𝑥)) |
9 | cntzrec.b | . . . 4 ⊢ 𝐵 = (Base‘𝑀) | |
10 | 9, 2 | cntzssv 19358 | . . 3 ⊢ (𝑍‘𝑆) ⊆ 𝐵 |
11 | sstr 4003 | . . . 4 ⊢ ((𝑇 ⊆ 𝑆 ∧ 𝑆 ⊆ 𝐵) → 𝑇 ⊆ 𝐵) | |
12 | 11 | ancoms 458 | . . 3 ⊢ ((𝑆 ⊆ 𝐵 ∧ 𝑇 ⊆ 𝑆) → 𝑇 ⊆ 𝐵) |
13 | 9, 1, 2 | sscntz 19356 | . . 3 ⊢ (((𝑍‘𝑆) ⊆ 𝐵 ∧ 𝑇 ⊆ 𝐵) → ((𝑍‘𝑆) ⊆ (𝑍‘𝑇) ↔ ∀𝑥 ∈ (𝑍‘𝑆)∀𝑦 ∈ 𝑇 (𝑥(+g‘𝑀)𝑦) = (𝑦(+g‘𝑀)𝑥))) |
14 | 10, 12, 13 | sylancr 587 | . 2 ⊢ ((𝑆 ⊆ 𝐵 ∧ 𝑇 ⊆ 𝑆) → ((𝑍‘𝑆) ⊆ (𝑍‘𝑇) ↔ ∀𝑥 ∈ (𝑍‘𝑆)∀𝑦 ∈ 𝑇 (𝑥(+g‘𝑀)𝑦) = (𝑦(+g‘𝑀)𝑥))) |
15 | 8, 14 | mpbird 257 | 1 ⊢ ((𝑆 ⊆ 𝐵 ∧ 𝑇 ⊆ 𝑆) → (𝑍‘𝑆) ⊆ (𝑍‘𝑇)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1536 ∈ wcel 2105 ∀wral 3058 ⊆ wss 3962 ‘cfv 6562 (class class class)co 7430 Basecbs 17244 +gcplusg 17297 Cntzccntz 19345 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1791 ax-4 1805 ax-5 1907 ax-6 1964 ax-7 2004 ax-8 2107 ax-9 2115 ax-10 2138 ax-11 2154 ax-12 2174 ax-ext 2705 ax-rep 5284 ax-sep 5301 ax-nul 5311 ax-pow 5370 ax-pr 5437 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1539 df-fal 1549 df-ex 1776 df-nf 1780 df-sb 2062 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2726 df-clel 2813 df-nfc 2889 df-ne 2938 df-ral 3059 df-rex 3068 df-reu 3378 df-rab 3433 df-v 3479 df-sbc 3791 df-csb 3908 df-dif 3965 df-un 3967 df-in 3969 df-ss 3979 df-nul 4339 df-if 4531 df-pw 4606 df-sn 4631 df-pr 4633 df-op 4637 df-uni 4912 df-iun 4997 df-br 5148 df-opab 5210 df-mpt 5231 df-id 5582 df-xp 5694 df-rel 5695 df-cnv 5696 df-co 5697 df-dm 5698 df-rn 5699 df-res 5700 df-ima 5701 df-iota 6515 df-fun 6564 df-fn 6565 df-f 6566 df-f1 6567 df-fo 6568 df-f1o 6569 df-fv 6570 df-ov 7433 df-cntz 19347 |
This theorem is referenced by: cntzidss 19370 gsumzadd 19954 dprdfadd 20054 dprdss 20063 dprd2da 20076 dmdprdsplit2lem 20079 cntzsdrg 20819 |
Copyright terms: Public domain | W3C validator |