MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cntz2ss Structured version   Visualization version   GIF version

Theorem cntz2ss 19214
Description: Centralizers reverse the subset relation. (Contributed by Mario Carneiro, 3-Oct-2015.)
Hypotheses
Ref Expression
cntzrec.b 𝐵 = (Base‘𝑀)
cntzrec.z 𝑍 = (Cntz‘𝑀)
Assertion
Ref Expression
cntz2ss ((𝑆𝐵𝑇𝑆) → (𝑍𝑆) ⊆ (𝑍𝑇))

Proof of Theorem cntz2ss
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2729 . . . . . 6 (+g𝑀) = (+g𝑀)
2 cntzrec.z . . . . . 6 𝑍 = (Cntz‘𝑀)
31, 2cntzi 19208 . . . . 5 ((𝑥 ∈ (𝑍𝑆) ∧ 𝑦𝑆) → (𝑥(+g𝑀)𝑦) = (𝑦(+g𝑀)𝑥))
43ralrimiva 3121 . . . 4 (𝑥 ∈ (𝑍𝑆) → ∀𝑦𝑆 (𝑥(+g𝑀)𝑦) = (𝑦(+g𝑀)𝑥))
5 ssralv 4004 . . . . 5 (𝑇𝑆 → (∀𝑦𝑆 (𝑥(+g𝑀)𝑦) = (𝑦(+g𝑀)𝑥) → ∀𝑦𝑇 (𝑥(+g𝑀)𝑦) = (𝑦(+g𝑀)𝑥)))
65adantl 481 . . . 4 ((𝑆𝐵𝑇𝑆) → (∀𝑦𝑆 (𝑥(+g𝑀)𝑦) = (𝑦(+g𝑀)𝑥) → ∀𝑦𝑇 (𝑥(+g𝑀)𝑦) = (𝑦(+g𝑀)𝑥)))
74, 6syl5 34 . . 3 ((𝑆𝐵𝑇𝑆) → (𝑥 ∈ (𝑍𝑆) → ∀𝑦𝑇 (𝑥(+g𝑀)𝑦) = (𝑦(+g𝑀)𝑥)))
87ralrimiv 3120 . 2 ((𝑆𝐵𝑇𝑆) → ∀𝑥 ∈ (𝑍𝑆)∀𝑦𝑇 (𝑥(+g𝑀)𝑦) = (𝑦(+g𝑀)𝑥))
9 cntzrec.b . . . 4 𝐵 = (Base‘𝑀)
109, 2cntzssv 19207 . . 3 (𝑍𝑆) ⊆ 𝐵
11 sstr 3944 . . . 4 ((𝑇𝑆𝑆𝐵) → 𝑇𝐵)
1211ancoms 458 . . 3 ((𝑆𝐵𝑇𝑆) → 𝑇𝐵)
139, 1, 2sscntz 19205 . . 3 (((𝑍𝑆) ⊆ 𝐵𝑇𝐵) → ((𝑍𝑆) ⊆ (𝑍𝑇) ↔ ∀𝑥 ∈ (𝑍𝑆)∀𝑦𝑇 (𝑥(+g𝑀)𝑦) = (𝑦(+g𝑀)𝑥)))
1410, 12, 13sylancr 587 . 2 ((𝑆𝐵𝑇𝑆) → ((𝑍𝑆) ⊆ (𝑍𝑇) ↔ ∀𝑥 ∈ (𝑍𝑆)∀𝑦𝑇 (𝑥(+g𝑀)𝑦) = (𝑦(+g𝑀)𝑥)))
158, 14mpbird 257 1 ((𝑆𝐵𝑇𝑆) → (𝑍𝑆) ⊆ (𝑍𝑇))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wcel 2109  wral 3044  wss 3903  cfv 6482  (class class class)co 7349  Basecbs 17120  +gcplusg 17161  Cntzccntz 19194
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5218  ax-sep 5235  ax-nul 5245  ax-pow 5304  ax-pr 5371
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-reu 3344  df-rab 3395  df-v 3438  df-sbc 3743  df-csb 3852  df-dif 3906  df-un 3908  df-in 3910  df-ss 3920  df-nul 4285  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4859  df-iun 4943  df-br 5093  df-opab 5155  df-mpt 5174  df-id 5514  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-iota 6438  df-fun 6484  df-fn 6485  df-f 6486  df-f1 6487  df-fo 6488  df-f1o 6489  df-fv 6490  df-ov 7352  df-cntz 19196
This theorem is referenced by:  cntzidss  19219  gsumzadd  19801  dprdfadd  19901  dprdss  19910  dprd2da  19923  dmdprdsplit2lem  19926  cntzsdrg  20687
  Copyright terms: Public domain W3C validator