MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cntz2ss Structured version   Visualization version   GIF version

Theorem cntz2ss 19353
Description: Centralizers reverse the subset relation. (Contributed by Mario Carneiro, 3-Oct-2015.)
Hypotheses
Ref Expression
cntzrec.b 𝐵 = (Base‘𝑀)
cntzrec.z 𝑍 = (Cntz‘𝑀)
Assertion
Ref Expression
cntz2ss ((𝑆𝐵𝑇𝑆) → (𝑍𝑆) ⊆ (𝑍𝑇))

Proof of Theorem cntz2ss
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2737 . . . . . 6 (+g𝑀) = (+g𝑀)
2 cntzrec.z . . . . . 6 𝑍 = (Cntz‘𝑀)
31, 2cntzi 19347 . . . . 5 ((𝑥 ∈ (𝑍𝑆) ∧ 𝑦𝑆) → (𝑥(+g𝑀)𝑦) = (𝑦(+g𝑀)𝑥))
43ralrimiva 3146 . . . 4 (𝑥 ∈ (𝑍𝑆) → ∀𝑦𝑆 (𝑥(+g𝑀)𝑦) = (𝑦(+g𝑀)𝑥))
5 ssralv 4052 . . . . 5 (𝑇𝑆 → (∀𝑦𝑆 (𝑥(+g𝑀)𝑦) = (𝑦(+g𝑀)𝑥) → ∀𝑦𝑇 (𝑥(+g𝑀)𝑦) = (𝑦(+g𝑀)𝑥)))
65adantl 481 . . . 4 ((𝑆𝐵𝑇𝑆) → (∀𝑦𝑆 (𝑥(+g𝑀)𝑦) = (𝑦(+g𝑀)𝑥) → ∀𝑦𝑇 (𝑥(+g𝑀)𝑦) = (𝑦(+g𝑀)𝑥)))
74, 6syl5 34 . . 3 ((𝑆𝐵𝑇𝑆) → (𝑥 ∈ (𝑍𝑆) → ∀𝑦𝑇 (𝑥(+g𝑀)𝑦) = (𝑦(+g𝑀)𝑥)))
87ralrimiv 3145 . 2 ((𝑆𝐵𝑇𝑆) → ∀𝑥 ∈ (𝑍𝑆)∀𝑦𝑇 (𝑥(+g𝑀)𝑦) = (𝑦(+g𝑀)𝑥))
9 cntzrec.b . . . 4 𝐵 = (Base‘𝑀)
109, 2cntzssv 19346 . . 3 (𝑍𝑆) ⊆ 𝐵
11 sstr 3992 . . . 4 ((𝑇𝑆𝑆𝐵) → 𝑇𝐵)
1211ancoms 458 . . 3 ((𝑆𝐵𝑇𝑆) → 𝑇𝐵)
139, 1, 2sscntz 19344 . . 3 (((𝑍𝑆) ⊆ 𝐵𝑇𝐵) → ((𝑍𝑆) ⊆ (𝑍𝑇) ↔ ∀𝑥 ∈ (𝑍𝑆)∀𝑦𝑇 (𝑥(+g𝑀)𝑦) = (𝑦(+g𝑀)𝑥)))
1410, 12, 13sylancr 587 . 2 ((𝑆𝐵𝑇𝑆) → ((𝑍𝑆) ⊆ (𝑍𝑇) ↔ ∀𝑥 ∈ (𝑍𝑆)∀𝑦𝑇 (𝑥(+g𝑀)𝑦) = (𝑦(+g𝑀)𝑥)))
158, 14mpbird 257 1 ((𝑆𝐵𝑇𝑆) → (𝑍𝑆) ⊆ (𝑍𝑇))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wcel 2108  wral 3061  wss 3951  cfv 6561  (class class class)co 7431  Basecbs 17247  +gcplusg 17297  Cntzccntz 19333
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2708  ax-rep 5279  ax-sep 5296  ax-nul 5306  ax-pow 5365  ax-pr 5432
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3an 1089  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2892  df-ne 2941  df-ral 3062  df-rex 3071  df-reu 3381  df-rab 3437  df-v 3482  df-sbc 3789  df-csb 3900  df-dif 3954  df-un 3956  df-in 3958  df-ss 3968  df-nul 4334  df-if 4526  df-pw 4602  df-sn 4627  df-pr 4629  df-op 4633  df-uni 4908  df-iun 4993  df-br 5144  df-opab 5206  df-mpt 5226  df-id 5578  df-xp 5691  df-rel 5692  df-cnv 5693  df-co 5694  df-dm 5695  df-rn 5696  df-res 5697  df-ima 5698  df-iota 6514  df-fun 6563  df-fn 6564  df-f 6565  df-f1 6566  df-fo 6567  df-f1o 6568  df-fv 6569  df-ov 7434  df-cntz 19335
This theorem is referenced by:  cntzidss  19358  gsumzadd  19940  dprdfadd  20040  dprdss  20049  dprd2da  20062  dmdprdsplit2lem  20065  cntzsdrg  20803
  Copyright terms: Public domain W3C validator