Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > cntz2ss | Structured version Visualization version GIF version |
Description: Centralizers reverse the subset relation. (Contributed by Mario Carneiro, 3-Oct-2015.) |
Ref | Expression |
---|---|
cntzrec.b | ⊢ 𝐵 = (Base‘𝑀) |
cntzrec.z | ⊢ 𝑍 = (Cntz‘𝑀) |
Ref | Expression |
---|---|
cntz2ss | ⊢ ((𝑆 ⊆ 𝐵 ∧ 𝑇 ⊆ 𝑆) → (𝑍‘𝑆) ⊆ (𝑍‘𝑇)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2738 | . . . . . 6 ⊢ (+g‘𝑀) = (+g‘𝑀) | |
2 | cntzrec.z | . . . . . 6 ⊢ 𝑍 = (Cntz‘𝑀) | |
3 | 1, 2 | cntzi 18935 | . . . . 5 ⊢ ((𝑥 ∈ (𝑍‘𝑆) ∧ 𝑦 ∈ 𝑆) → (𝑥(+g‘𝑀)𝑦) = (𝑦(+g‘𝑀)𝑥)) |
4 | 3 | ralrimiva 3103 | . . . 4 ⊢ (𝑥 ∈ (𝑍‘𝑆) → ∀𝑦 ∈ 𝑆 (𝑥(+g‘𝑀)𝑦) = (𝑦(+g‘𝑀)𝑥)) |
5 | ssralv 3987 | . . . . 5 ⊢ (𝑇 ⊆ 𝑆 → (∀𝑦 ∈ 𝑆 (𝑥(+g‘𝑀)𝑦) = (𝑦(+g‘𝑀)𝑥) → ∀𝑦 ∈ 𝑇 (𝑥(+g‘𝑀)𝑦) = (𝑦(+g‘𝑀)𝑥))) | |
6 | 5 | adantl 482 | . . . 4 ⊢ ((𝑆 ⊆ 𝐵 ∧ 𝑇 ⊆ 𝑆) → (∀𝑦 ∈ 𝑆 (𝑥(+g‘𝑀)𝑦) = (𝑦(+g‘𝑀)𝑥) → ∀𝑦 ∈ 𝑇 (𝑥(+g‘𝑀)𝑦) = (𝑦(+g‘𝑀)𝑥))) |
7 | 4, 6 | syl5 34 | . . 3 ⊢ ((𝑆 ⊆ 𝐵 ∧ 𝑇 ⊆ 𝑆) → (𝑥 ∈ (𝑍‘𝑆) → ∀𝑦 ∈ 𝑇 (𝑥(+g‘𝑀)𝑦) = (𝑦(+g‘𝑀)𝑥))) |
8 | 7 | ralrimiv 3102 | . 2 ⊢ ((𝑆 ⊆ 𝐵 ∧ 𝑇 ⊆ 𝑆) → ∀𝑥 ∈ (𝑍‘𝑆)∀𝑦 ∈ 𝑇 (𝑥(+g‘𝑀)𝑦) = (𝑦(+g‘𝑀)𝑥)) |
9 | cntzrec.b | . . . 4 ⊢ 𝐵 = (Base‘𝑀) | |
10 | 9, 2 | cntzssv 18934 | . . 3 ⊢ (𝑍‘𝑆) ⊆ 𝐵 |
11 | sstr 3929 | . . . 4 ⊢ ((𝑇 ⊆ 𝑆 ∧ 𝑆 ⊆ 𝐵) → 𝑇 ⊆ 𝐵) | |
12 | 11 | ancoms 459 | . . 3 ⊢ ((𝑆 ⊆ 𝐵 ∧ 𝑇 ⊆ 𝑆) → 𝑇 ⊆ 𝐵) |
13 | 9, 1, 2 | sscntz 18932 | . . 3 ⊢ (((𝑍‘𝑆) ⊆ 𝐵 ∧ 𝑇 ⊆ 𝐵) → ((𝑍‘𝑆) ⊆ (𝑍‘𝑇) ↔ ∀𝑥 ∈ (𝑍‘𝑆)∀𝑦 ∈ 𝑇 (𝑥(+g‘𝑀)𝑦) = (𝑦(+g‘𝑀)𝑥))) |
14 | 10, 12, 13 | sylancr 587 | . 2 ⊢ ((𝑆 ⊆ 𝐵 ∧ 𝑇 ⊆ 𝑆) → ((𝑍‘𝑆) ⊆ (𝑍‘𝑇) ↔ ∀𝑥 ∈ (𝑍‘𝑆)∀𝑦 ∈ 𝑇 (𝑥(+g‘𝑀)𝑦) = (𝑦(+g‘𝑀)𝑥))) |
15 | 8, 14 | mpbird 256 | 1 ⊢ ((𝑆 ⊆ 𝐵 ∧ 𝑇 ⊆ 𝑆) → (𝑍‘𝑆) ⊆ (𝑍‘𝑇)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 396 = wceq 1539 ∈ wcel 2106 ∀wral 3064 ⊆ wss 3887 ‘cfv 6433 (class class class)co 7275 Basecbs 16912 +gcplusg 16962 Cntzccntz 18921 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-rep 5209 ax-sep 5223 ax-nul 5230 ax-pow 5288 ax-pr 5352 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ne 2944 df-ral 3069 df-rex 3070 df-reu 3072 df-rab 3073 df-v 3434 df-sbc 3717 df-csb 3833 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-nul 4257 df-if 4460 df-pw 4535 df-sn 4562 df-pr 4564 df-op 4568 df-uni 4840 df-iun 4926 df-br 5075 df-opab 5137 df-mpt 5158 df-id 5489 df-xp 5595 df-rel 5596 df-cnv 5597 df-co 5598 df-dm 5599 df-rn 5600 df-res 5601 df-ima 5602 df-iota 6391 df-fun 6435 df-fn 6436 df-f 6437 df-f1 6438 df-fo 6439 df-f1o 6440 df-fv 6441 df-ov 7278 df-cntz 18923 |
This theorem is referenced by: cntzidss 18944 gsumzadd 19523 dprdfadd 19623 dprdss 19632 dprd2da 19645 dmdprdsplit2lem 19648 cntzsdrg 20070 |
Copyright terms: Public domain | W3C validator |