![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > cntz2ss | Structured version Visualization version GIF version |
Description: Centralizers reverse the subset relation. (Contributed by Mario Carneiro, 3-Oct-2015.) |
Ref | Expression |
---|---|
cntzrec.b | ⊢ 𝐵 = (Base‘𝑀) |
cntzrec.z | ⊢ 𝑍 = (Cntz‘𝑀) |
Ref | Expression |
---|---|
cntz2ss | ⊢ ((𝑆 ⊆ 𝐵 ∧ 𝑇 ⊆ 𝑆) → (𝑍‘𝑆) ⊆ (𝑍‘𝑇)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2733 | . . . . . 6 ⊢ (+g‘𝑀) = (+g‘𝑀) | |
2 | cntzrec.z | . . . . . 6 ⊢ 𝑍 = (Cntz‘𝑀) | |
3 | 1, 2 | cntzi 19187 | . . . . 5 ⊢ ((𝑥 ∈ (𝑍‘𝑆) ∧ 𝑦 ∈ 𝑆) → (𝑥(+g‘𝑀)𝑦) = (𝑦(+g‘𝑀)𝑥)) |
4 | 3 | ralrimiva 3147 | . . . 4 ⊢ (𝑥 ∈ (𝑍‘𝑆) → ∀𝑦 ∈ 𝑆 (𝑥(+g‘𝑀)𝑦) = (𝑦(+g‘𝑀)𝑥)) |
5 | ssralv 4049 | . . . . 5 ⊢ (𝑇 ⊆ 𝑆 → (∀𝑦 ∈ 𝑆 (𝑥(+g‘𝑀)𝑦) = (𝑦(+g‘𝑀)𝑥) → ∀𝑦 ∈ 𝑇 (𝑥(+g‘𝑀)𝑦) = (𝑦(+g‘𝑀)𝑥))) | |
6 | 5 | adantl 483 | . . . 4 ⊢ ((𝑆 ⊆ 𝐵 ∧ 𝑇 ⊆ 𝑆) → (∀𝑦 ∈ 𝑆 (𝑥(+g‘𝑀)𝑦) = (𝑦(+g‘𝑀)𝑥) → ∀𝑦 ∈ 𝑇 (𝑥(+g‘𝑀)𝑦) = (𝑦(+g‘𝑀)𝑥))) |
7 | 4, 6 | syl5 34 | . . 3 ⊢ ((𝑆 ⊆ 𝐵 ∧ 𝑇 ⊆ 𝑆) → (𝑥 ∈ (𝑍‘𝑆) → ∀𝑦 ∈ 𝑇 (𝑥(+g‘𝑀)𝑦) = (𝑦(+g‘𝑀)𝑥))) |
8 | 7 | ralrimiv 3146 | . 2 ⊢ ((𝑆 ⊆ 𝐵 ∧ 𝑇 ⊆ 𝑆) → ∀𝑥 ∈ (𝑍‘𝑆)∀𝑦 ∈ 𝑇 (𝑥(+g‘𝑀)𝑦) = (𝑦(+g‘𝑀)𝑥)) |
9 | cntzrec.b | . . . 4 ⊢ 𝐵 = (Base‘𝑀) | |
10 | 9, 2 | cntzssv 19186 | . . 3 ⊢ (𝑍‘𝑆) ⊆ 𝐵 |
11 | sstr 3989 | . . . 4 ⊢ ((𝑇 ⊆ 𝑆 ∧ 𝑆 ⊆ 𝐵) → 𝑇 ⊆ 𝐵) | |
12 | 11 | ancoms 460 | . . 3 ⊢ ((𝑆 ⊆ 𝐵 ∧ 𝑇 ⊆ 𝑆) → 𝑇 ⊆ 𝐵) |
13 | 9, 1, 2 | sscntz 19184 | . . 3 ⊢ (((𝑍‘𝑆) ⊆ 𝐵 ∧ 𝑇 ⊆ 𝐵) → ((𝑍‘𝑆) ⊆ (𝑍‘𝑇) ↔ ∀𝑥 ∈ (𝑍‘𝑆)∀𝑦 ∈ 𝑇 (𝑥(+g‘𝑀)𝑦) = (𝑦(+g‘𝑀)𝑥))) |
14 | 10, 12, 13 | sylancr 588 | . 2 ⊢ ((𝑆 ⊆ 𝐵 ∧ 𝑇 ⊆ 𝑆) → ((𝑍‘𝑆) ⊆ (𝑍‘𝑇) ↔ ∀𝑥 ∈ (𝑍‘𝑆)∀𝑦 ∈ 𝑇 (𝑥(+g‘𝑀)𝑦) = (𝑦(+g‘𝑀)𝑥))) |
15 | 8, 14 | mpbird 257 | 1 ⊢ ((𝑆 ⊆ 𝐵 ∧ 𝑇 ⊆ 𝑆) → (𝑍‘𝑆) ⊆ (𝑍‘𝑇)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 397 = wceq 1542 ∈ wcel 2107 ∀wral 3062 ⊆ wss 3947 ‘cfv 6540 (class class class)co 7404 Basecbs 17140 +gcplusg 17193 Cntzccntz 19173 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-10 2138 ax-11 2155 ax-12 2172 ax-ext 2704 ax-rep 5284 ax-sep 5298 ax-nul 5305 ax-pow 5362 ax-pr 5426 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 847 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1783 df-nf 1787 df-sb 2069 df-mo 2535 df-eu 2564 df-clab 2711 df-cleq 2725 df-clel 2811 df-nfc 2886 df-ne 2942 df-ral 3063 df-rex 3072 df-reu 3378 df-rab 3434 df-v 3477 df-sbc 3777 df-csb 3893 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-nul 4322 df-if 4528 df-pw 4603 df-sn 4628 df-pr 4630 df-op 4634 df-uni 4908 df-iun 4998 df-br 5148 df-opab 5210 df-mpt 5231 df-id 5573 df-xp 5681 df-rel 5682 df-cnv 5683 df-co 5684 df-dm 5685 df-rn 5686 df-res 5687 df-ima 5688 df-iota 6492 df-fun 6542 df-fn 6543 df-f 6544 df-f1 6545 df-fo 6546 df-f1o 6547 df-fv 6548 df-ov 7407 df-cntz 19175 |
This theorem is referenced by: cntzidss 19197 gsumzadd 19782 dprdfadd 19882 dprdss 19891 dprd2da 19904 dmdprdsplit2lem 19907 cntzsdrg 20406 |
Copyright terms: Public domain | W3C validator |