| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > cntz2ss | Structured version Visualization version GIF version | ||
| Description: Centralizers reverse the subset relation. (Contributed by Mario Carneiro, 3-Oct-2015.) |
| Ref | Expression |
|---|---|
| cntzrec.b | ⊢ 𝐵 = (Base‘𝑀) |
| cntzrec.z | ⊢ 𝑍 = (Cntz‘𝑀) |
| Ref | Expression |
|---|---|
| cntz2ss | ⊢ ((𝑆 ⊆ 𝐵 ∧ 𝑇 ⊆ 𝑆) → (𝑍‘𝑆) ⊆ (𝑍‘𝑇)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid 2729 | . . . . . 6 ⊢ (+g‘𝑀) = (+g‘𝑀) | |
| 2 | cntzrec.z | . . . . . 6 ⊢ 𝑍 = (Cntz‘𝑀) | |
| 3 | 1, 2 | cntzi 19243 | . . . . 5 ⊢ ((𝑥 ∈ (𝑍‘𝑆) ∧ 𝑦 ∈ 𝑆) → (𝑥(+g‘𝑀)𝑦) = (𝑦(+g‘𝑀)𝑥)) |
| 4 | 3 | ralrimiva 3125 | . . . 4 ⊢ (𝑥 ∈ (𝑍‘𝑆) → ∀𝑦 ∈ 𝑆 (𝑥(+g‘𝑀)𝑦) = (𝑦(+g‘𝑀)𝑥)) |
| 5 | ssralv 4012 | . . . . 5 ⊢ (𝑇 ⊆ 𝑆 → (∀𝑦 ∈ 𝑆 (𝑥(+g‘𝑀)𝑦) = (𝑦(+g‘𝑀)𝑥) → ∀𝑦 ∈ 𝑇 (𝑥(+g‘𝑀)𝑦) = (𝑦(+g‘𝑀)𝑥))) | |
| 6 | 5 | adantl 481 | . . . 4 ⊢ ((𝑆 ⊆ 𝐵 ∧ 𝑇 ⊆ 𝑆) → (∀𝑦 ∈ 𝑆 (𝑥(+g‘𝑀)𝑦) = (𝑦(+g‘𝑀)𝑥) → ∀𝑦 ∈ 𝑇 (𝑥(+g‘𝑀)𝑦) = (𝑦(+g‘𝑀)𝑥))) |
| 7 | 4, 6 | syl5 34 | . . 3 ⊢ ((𝑆 ⊆ 𝐵 ∧ 𝑇 ⊆ 𝑆) → (𝑥 ∈ (𝑍‘𝑆) → ∀𝑦 ∈ 𝑇 (𝑥(+g‘𝑀)𝑦) = (𝑦(+g‘𝑀)𝑥))) |
| 8 | 7 | ralrimiv 3124 | . 2 ⊢ ((𝑆 ⊆ 𝐵 ∧ 𝑇 ⊆ 𝑆) → ∀𝑥 ∈ (𝑍‘𝑆)∀𝑦 ∈ 𝑇 (𝑥(+g‘𝑀)𝑦) = (𝑦(+g‘𝑀)𝑥)) |
| 9 | cntzrec.b | . . . 4 ⊢ 𝐵 = (Base‘𝑀) | |
| 10 | 9, 2 | cntzssv 19242 | . . 3 ⊢ (𝑍‘𝑆) ⊆ 𝐵 |
| 11 | sstr 3952 | . . . 4 ⊢ ((𝑇 ⊆ 𝑆 ∧ 𝑆 ⊆ 𝐵) → 𝑇 ⊆ 𝐵) | |
| 12 | 11 | ancoms 458 | . . 3 ⊢ ((𝑆 ⊆ 𝐵 ∧ 𝑇 ⊆ 𝑆) → 𝑇 ⊆ 𝐵) |
| 13 | 9, 1, 2 | sscntz 19240 | . . 3 ⊢ (((𝑍‘𝑆) ⊆ 𝐵 ∧ 𝑇 ⊆ 𝐵) → ((𝑍‘𝑆) ⊆ (𝑍‘𝑇) ↔ ∀𝑥 ∈ (𝑍‘𝑆)∀𝑦 ∈ 𝑇 (𝑥(+g‘𝑀)𝑦) = (𝑦(+g‘𝑀)𝑥))) |
| 14 | 10, 12, 13 | sylancr 587 | . 2 ⊢ ((𝑆 ⊆ 𝐵 ∧ 𝑇 ⊆ 𝑆) → ((𝑍‘𝑆) ⊆ (𝑍‘𝑇) ↔ ∀𝑥 ∈ (𝑍‘𝑆)∀𝑦 ∈ 𝑇 (𝑥(+g‘𝑀)𝑦) = (𝑦(+g‘𝑀)𝑥))) |
| 15 | 8, 14 | mpbird 257 | 1 ⊢ ((𝑆 ⊆ 𝐵 ∧ 𝑇 ⊆ 𝑆) → (𝑍‘𝑆) ⊆ (𝑍‘𝑇)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ∀wral 3044 ⊆ wss 3911 ‘cfv 6499 (class class class)co 7369 Basecbs 17155 +gcplusg 17196 Cntzccntz 19229 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5229 ax-sep 5246 ax-nul 5256 ax-pow 5315 ax-pr 5382 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-reu 3352 df-rab 3403 df-v 3446 df-sbc 3751 df-csb 3860 df-dif 3914 df-un 3916 df-in 3918 df-ss 3928 df-nul 4293 df-if 4485 df-pw 4561 df-sn 4586 df-pr 4588 df-op 4592 df-uni 4868 df-iun 4953 df-br 5103 df-opab 5165 df-mpt 5184 df-id 5526 df-xp 5637 df-rel 5638 df-cnv 5639 df-co 5640 df-dm 5641 df-rn 5642 df-res 5643 df-ima 5644 df-iota 6452 df-fun 6501 df-fn 6502 df-f 6503 df-f1 6504 df-fo 6505 df-f1o 6506 df-fv 6507 df-ov 7372 df-cntz 19231 |
| This theorem is referenced by: cntzidss 19254 gsumzadd 19836 dprdfadd 19936 dprdss 19945 dprd2da 19958 dmdprdsplit2lem 19961 cntzsdrg 20722 |
| Copyright terms: Public domain | W3C validator |