Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > subgdisj2 | Structured version Visualization version GIF version |
Description: Vectors belonging to disjoint commuting subgroups are uniquely determined by their sum. (Contributed by NM, 12-Jul-2014.) (Revised by Mario Carneiro, 19-Apr-2016.) |
Ref | Expression |
---|---|
subgdisj.p | ⊢ + = (+g‘𝐺) |
subgdisj.o | ⊢ 0 = (0g‘𝐺) |
subgdisj.z | ⊢ 𝑍 = (Cntz‘𝐺) |
subgdisj.t | ⊢ (𝜑 → 𝑇 ∈ (SubGrp‘𝐺)) |
subgdisj.u | ⊢ (𝜑 → 𝑈 ∈ (SubGrp‘𝐺)) |
subgdisj.i | ⊢ (𝜑 → (𝑇 ∩ 𝑈) = { 0 }) |
subgdisj.s | ⊢ (𝜑 → 𝑇 ⊆ (𝑍‘𝑈)) |
subgdisj.a | ⊢ (𝜑 → 𝐴 ∈ 𝑇) |
subgdisj.c | ⊢ (𝜑 → 𝐶 ∈ 𝑇) |
subgdisj.b | ⊢ (𝜑 → 𝐵 ∈ 𝑈) |
subgdisj.d | ⊢ (𝜑 → 𝐷 ∈ 𝑈) |
subgdisj.j | ⊢ (𝜑 → (𝐴 + 𝐵) = (𝐶 + 𝐷)) |
Ref | Expression |
---|---|
subgdisj2 | ⊢ (𝜑 → 𝐵 = 𝐷) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | subgdisj.p | . 2 ⊢ + = (+g‘𝐺) | |
2 | subgdisj.o | . 2 ⊢ 0 = (0g‘𝐺) | |
3 | subgdisj.z | . 2 ⊢ 𝑍 = (Cntz‘𝐺) | |
4 | subgdisj.u | . 2 ⊢ (𝜑 → 𝑈 ∈ (SubGrp‘𝐺)) | |
5 | subgdisj.t | . 2 ⊢ (𝜑 → 𝑇 ∈ (SubGrp‘𝐺)) | |
6 | incom 4139 | . . 3 ⊢ (𝑇 ∩ 𝑈) = (𝑈 ∩ 𝑇) | |
7 | subgdisj.i | . . 3 ⊢ (𝜑 → (𝑇 ∩ 𝑈) = { 0 }) | |
8 | 6, 7 | eqtr3id 2793 | . 2 ⊢ (𝜑 → (𝑈 ∩ 𝑇) = { 0 }) |
9 | subgdisj.s | . . 3 ⊢ (𝜑 → 𝑇 ⊆ (𝑍‘𝑈)) | |
10 | 3, 5, 4, 9 | cntzrecd 19265 | . 2 ⊢ (𝜑 → 𝑈 ⊆ (𝑍‘𝑇)) |
11 | subgdisj.b | . 2 ⊢ (𝜑 → 𝐵 ∈ 𝑈) | |
12 | subgdisj.d | . 2 ⊢ (𝜑 → 𝐷 ∈ 𝑈) | |
13 | subgdisj.a | . 2 ⊢ (𝜑 → 𝐴 ∈ 𝑇) | |
14 | subgdisj.c | . 2 ⊢ (𝜑 → 𝐶 ∈ 𝑇) | |
15 | subgdisj.j | . . 3 ⊢ (𝜑 → (𝐴 + 𝐵) = (𝐶 + 𝐷)) | |
16 | 9, 13 | sseldd 3926 | . . . 4 ⊢ (𝜑 → 𝐴 ∈ (𝑍‘𝑈)) |
17 | 1, 3 | cntzi 18916 | . . . 4 ⊢ ((𝐴 ∈ (𝑍‘𝑈) ∧ 𝐵 ∈ 𝑈) → (𝐴 + 𝐵) = (𝐵 + 𝐴)) |
18 | 16, 11, 17 | syl2anc 583 | . . 3 ⊢ (𝜑 → (𝐴 + 𝐵) = (𝐵 + 𝐴)) |
19 | 9, 14 | sseldd 3926 | . . . 4 ⊢ (𝜑 → 𝐶 ∈ (𝑍‘𝑈)) |
20 | 1, 3 | cntzi 18916 | . . . 4 ⊢ ((𝐶 ∈ (𝑍‘𝑈) ∧ 𝐷 ∈ 𝑈) → (𝐶 + 𝐷) = (𝐷 + 𝐶)) |
21 | 19, 12, 20 | syl2anc 583 | . . 3 ⊢ (𝜑 → (𝐶 + 𝐷) = (𝐷 + 𝐶)) |
22 | 15, 18, 21 | 3eqtr3d 2787 | . 2 ⊢ (𝜑 → (𝐵 + 𝐴) = (𝐷 + 𝐶)) |
23 | 1, 2, 3, 4, 5, 8, 10, 11, 12, 13, 14, 22 | subgdisj1 19278 | 1 ⊢ (𝜑 → 𝐵 = 𝐷) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1541 ∈ wcel 2109 ∩ cin 3890 ⊆ wss 3891 {csn 4566 ‘cfv 6430 (class class class)co 7268 +gcplusg 16943 0gc0g 17131 SubGrpcsubg 18730 Cntzccntz 18902 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1801 ax-4 1815 ax-5 1916 ax-6 1974 ax-7 2014 ax-8 2111 ax-9 2119 ax-10 2140 ax-11 2157 ax-12 2174 ax-ext 2710 ax-rep 5213 ax-sep 5226 ax-nul 5233 ax-pow 5291 ax-pr 5355 ax-un 7579 ax-cnex 10911 ax-resscn 10912 ax-1cn 10913 ax-icn 10914 ax-addcl 10915 ax-addrcl 10916 ax-mulcl 10917 ax-mulrcl 10918 ax-mulcom 10919 ax-addass 10920 ax-mulass 10921 ax-distr 10922 ax-i2m1 10923 ax-1ne0 10924 ax-1rid 10925 ax-rnegex 10926 ax-rrecex 10927 ax-cnre 10928 ax-pre-lttri 10929 ax-pre-lttrn 10930 ax-pre-ltadd 10931 ax-pre-mulgt0 10932 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3or 1086 df-3an 1087 df-tru 1544 df-fal 1554 df-ex 1786 df-nf 1790 df-sb 2071 df-mo 2541 df-eu 2570 df-clab 2717 df-cleq 2731 df-clel 2817 df-nfc 2890 df-ne 2945 df-nel 3051 df-ral 3070 df-rex 3071 df-reu 3072 df-rmo 3073 df-rab 3074 df-v 3432 df-sbc 3720 df-csb 3837 df-dif 3894 df-un 3896 df-in 3898 df-ss 3908 df-pss 3910 df-nul 4262 df-if 4465 df-pw 4540 df-sn 4567 df-pr 4569 df-tp 4571 df-op 4573 df-uni 4845 df-iun 4931 df-br 5079 df-opab 5141 df-mpt 5162 df-tr 5196 df-id 5488 df-eprel 5494 df-po 5502 df-so 5503 df-fr 5543 df-we 5545 df-xp 5594 df-rel 5595 df-cnv 5596 df-co 5597 df-dm 5598 df-rn 5599 df-res 5600 df-ima 5601 df-pred 6199 df-ord 6266 df-on 6267 df-lim 6268 df-suc 6269 df-iota 6388 df-fun 6432 df-fn 6433 df-f 6434 df-f1 6435 df-fo 6436 df-f1o 6437 df-fv 6438 df-riota 7225 df-ov 7271 df-oprab 7272 df-mpo 7273 df-om 7701 df-1st 7817 df-2nd 7818 df-frecs 8081 df-wrecs 8112 df-recs 8186 df-rdg 8225 df-er 8472 df-en 8708 df-dom 8709 df-sdom 8710 df-pnf 10995 df-mnf 10996 df-xr 10997 df-ltxr 10998 df-le 10999 df-sub 11190 df-neg 11191 df-nn 11957 df-2 12019 df-sets 16846 df-slot 16864 df-ndx 16876 df-base 16894 df-ress 16923 df-plusg 16956 df-0g 17133 df-mgm 18307 df-sgrp 18356 df-mnd 18367 df-grp 18561 df-minusg 18562 df-sbg 18563 df-subg 18733 df-cntz 18904 |
This theorem is referenced by: subgdisjb 19280 lvecindp 20381 lshpsmreu 37102 lshpkrlem5 37107 |
Copyright terms: Public domain | W3C validator |