| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > subgdisj2 | Structured version Visualization version GIF version | ||
| Description: Vectors belonging to disjoint commuting subgroups are uniquely determined by their sum. (Contributed by NM, 12-Jul-2014.) (Revised by Mario Carneiro, 19-Apr-2016.) |
| Ref | Expression |
|---|---|
| subgdisj.p | ⊢ + = (+g‘𝐺) |
| subgdisj.o | ⊢ 0 = (0g‘𝐺) |
| subgdisj.z | ⊢ 𝑍 = (Cntz‘𝐺) |
| subgdisj.t | ⊢ (𝜑 → 𝑇 ∈ (SubGrp‘𝐺)) |
| subgdisj.u | ⊢ (𝜑 → 𝑈 ∈ (SubGrp‘𝐺)) |
| subgdisj.i | ⊢ (𝜑 → (𝑇 ∩ 𝑈) = { 0 }) |
| subgdisj.s | ⊢ (𝜑 → 𝑇 ⊆ (𝑍‘𝑈)) |
| subgdisj.a | ⊢ (𝜑 → 𝐴 ∈ 𝑇) |
| subgdisj.c | ⊢ (𝜑 → 𝐶 ∈ 𝑇) |
| subgdisj.b | ⊢ (𝜑 → 𝐵 ∈ 𝑈) |
| subgdisj.d | ⊢ (𝜑 → 𝐷 ∈ 𝑈) |
| subgdisj.j | ⊢ (𝜑 → (𝐴 + 𝐵) = (𝐶 + 𝐷)) |
| Ref | Expression |
|---|---|
| subgdisj2 | ⊢ (𝜑 → 𝐵 = 𝐷) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | subgdisj.p | . 2 ⊢ + = (+g‘𝐺) | |
| 2 | subgdisj.o | . 2 ⊢ 0 = (0g‘𝐺) | |
| 3 | subgdisj.z | . 2 ⊢ 𝑍 = (Cntz‘𝐺) | |
| 4 | subgdisj.u | . 2 ⊢ (𝜑 → 𝑈 ∈ (SubGrp‘𝐺)) | |
| 5 | subgdisj.t | . 2 ⊢ (𝜑 → 𝑇 ∈ (SubGrp‘𝐺)) | |
| 6 | incom 4158 | . . 3 ⊢ (𝑇 ∩ 𝑈) = (𝑈 ∩ 𝑇) | |
| 7 | subgdisj.i | . . 3 ⊢ (𝜑 → (𝑇 ∩ 𝑈) = { 0 }) | |
| 8 | 6, 7 | eqtr3id 2782 | . 2 ⊢ (𝜑 → (𝑈 ∩ 𝑇) = { 0 }) |
| 9 | subgdisj.s | . . 3 ⊢ (𝜑 → 𝑇 ⊆ (𝑍‘𝑈)) | |
| 10 | 3, 5, 4, 9 | cntzrecd 19594 | . 2 ⊢ (𝜑 → 𝑈 ⊆ (𝑍‘𝑇)) |
| 11 | subgdisj.b | . 2 ⊢ (𝜑 → 𝐵 ∈ 𝑈) | |
| 12 | subgdisj.d | . 2 ⊢ (𝜑 → 𝐷 ∈ 𝑈) | |
| 13 | subgdisj.a | . 2 ⊢ (𝜑 → 𝐴 ∈ 𝑇) | |
| 14 | subgdisj.c | . 2 ⊢ (𝜑 → 𝐶 ∈ 𝑇) | |
| 15 | subgdisj.j | . . 3 ⊢ (𝜑 → (𝐴 + 𝐵) = (𝐶 + 𝐷)) | |
| 16 | 9, 13 | sseldd 3931 | . . . 4 ⊢ (𝜑 → 𝐴 ∈ (𝑍‘𝑈)) |
| 17 | 1, 3 | cntzi 19245 | . . . 4 ⊢ ((𝐴 ∈ (𝑍‘𝑈) ∧ 𝐵 ∈ 𝑈) → (𝐴 + 𝐵) = (𝐵 + 𝐴)) |
| 18 | 16, 11, 17 | syl2anc 584 | . . 3 ⊢ (𝜑 → (𝐴 + 𝐵) = (𝐵 + 𝐴)) |
| 19 | 9, 14 | sseldd 3931 | . . . 4 ⊢ (𝜑 → 𝐶 ∈ (𝑍‘𝑈)) |
| 20 | 1, 3 | cntzi 19245 | . . . 4 ⊢ ((𝐶 ∈ (𝑍‘𝑈) ∧ 𝐷 ∈ 𝑈) → (𝐶 + 𝐷) = (𝐷 + 𝐶)) |
| 21 | 19, 12, 20 | syl2anc 584 | . . 3 ⊢ (𝜑 → (𝐶 + 𝐷) = (𝐷 + 𝐶)) |
| 22 | 15, 18, 21 | 3eqtr3d 2776 | . 2 ⊢ (𝜑 → (𝐵 + 𝐴) = (𝐷 + 𝐶)) |
| 23 | 1, 2, 3, 4, 5, 8, 10, 11, 12, 13, 14, 22 | subgdisj1 19607 | 1 ⊢ (𝜑 → 𝐵 = 𝐷) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1541 ∈ wcel 2113 ∩ cin 3897 ⊆ wss 3898 {csn 4577 ‘cfv 6488 (class class class)co 7354 +gcplusg 17165 0gc0g 17347 SubGrpcsubg 19037 Cntzccntz 19231 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-10 2146 ax-11 2162 ax-12 2182 ax-ext 2705 ax-rep 5221 ax-sep 5238 ax-nul 5248 ax-pow 5307 ax-pr 5374 ax-un 7676 ax-cnex 11071 ax-resscn 11072 ax-1cn 11073 ax-icn 11074 ax-addcl 11075 ax-addrcl 11076 ax-mulcl 11077 ax-mulrcl 11078 ax-mulcom 11079 ax-addass 11080 ax-mulass 11081 ax-distr 11082 ax-i2m1 11083 ax-1ne0 11084 ax-1rid 11085 ax-rnegex 11086 ax-rrecex 11087 ax-cnre 11088 ax-pre-lttri 11089 ax-pre-lttrn 11090 ax-pre-ltadd 11091 ax-pre-mulgt0 11092 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2725 df-clel 2808 df-nfc 2882 df-ne 2930 df-nel 3034 df-ral 3049 df-rex 3058 df-rmo 3347 df-reu 3348 df-rab 3397 df-v 3439 df-sbc 3738 df-csb 3847 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-pss 3918 df-nul 4283 df-if 4477 df-pw 4553 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4861 df-iun 4945 df-br 5096 df-opab 5158 df-mpt 5177 df-tr 5203 df-id 5516 df-eprel 5521 df-po 5529 df-so 5530 df-fr 5574 df-we 5576 df-xp 5627 df-rel 5628 df-cnv 5629 df-co 5630 df-dm 5631 df-rn 5632 df-res 5633 df-ima 5634 df-pred 6255 df-ord 6316 df-on 6317 df-lim 6318 df-suc 6319 df-iota 6444 df-fun 6490 df-fn 6491 df-f 6492 df-f1 6493 df-fo 6494 df-f1o 6495 df-fv 6496 df-riota 7311 df-ov 7357 df-oprab 7358 df-mpo 7359 df-om 7805 df-1st 7929 df-2nd 7930 df-frecs 8219 df-wrecs 8250 df-recs 8299 df-rdg 8337 df-er 8630 df-en 8878 df-dom 8879 df-sdom 8880 df-pnf 11157 df-mnf 11158 df-xr 11159 df-ltxr 11160 df-le 11161 df-sub 11355 df-neg 11356 df-nn 12135 df-2 12197 df-sets 17079 df-slot 17097 df-ndx 17109 df-base 17125 df-ress 17146 df-plusg 17178 df-0g 17349 df-mgm 18552 df-sgrp 18631 df-mnd 18647 df-grp 18853 df-minusg 18854 df-sbg 18855 df-subg 19040 df-cntz 19233 |
| This theorem is referenced by: subgdisjb 19609 lvecindp 21079 lshpsmreu 39231 lshpkrlem5 39236 |
| Copyright terms: Public domain | W3C validator |