MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  subgdisj2 Structured version   Visualization version   GIF version

Theorem subgdisj2 18890
Description: Vectors belonging to disjoint commuting subgroups are uniquely determined by their sum. (Contributed by NM, 12-Jul-2014.) (Revised by Mario Carneiro, 19-Apr-2016.)
Hypotheses
Ref Expression
subgdisj.p + = (+g𝐺)
subgdisj.o 0 = (0g𝐺)
subgdisj.z 𝑍 = (Cntz‘𝐺)
subgdisj.t (𝜑𝑇 ∈ (SubGrp‘𝐺))
subgdisj.u (𝜑𝑈 ∈ (SubGrp‘𝐺))
subgdisj.i (𝜑 → (𝑇𝑈) = { 0 })
subgdisj.s (𝜑𝑇 ⊆ (𝑍𝑈))
subgdisj.a (𝜑𝐴𝑇)
subgdisj.c (𝜑𝐶𝑇)
subgdisj.b (𝜑𝐵𝑈)
subgdisj.d (𝜑𝐷𝑈)
subgdisj.j (𝜑 → (𝐴 + 𝐵) = (𝐶 + 𝐷))
Assertion
Ref Expression
subgdisj2 (𝜑𝐵 = 𝐷)

Proof of Theorem subgdisj2
StepHypRef Expression
1 subgdisj.p . 2 + = (+g𝐺)
2 subgdisj.o . 2 0 = (0g𝐺)
3 subgdisj.z . 2 𝑍 = (Cntz‘𝐺)
4 subgdisj.u . 2 (𝜑𝑈 ∈ (SubGrp‘𝐺))
5 subgdisj.t . 2 (𝜑𝑇 ∈ (SubGrp‘𝐺))
6 incom 4108 . . 3 (𝑇𝑈) = (𝑈𝑇)
7 subgdisj.i . . 3 (𝜑 → (𝑇𝑈) = { 0 })
86, 7syl5eqr 2807 . 2 (𝜑 → (𝑈𝑇) = { 0 })
9 subgdisj.s . . 3 (𝜑𝑇 ⊆ (𝑍𝑈))
103, 5, 4, 9cntzrecd 18876 . 2 (𝜑𝑈 ⊆ (𝑍𝑇))
11 subgdisj.b . 2 (𝜑𝐵𝑈)
12 subgdisj.d . 2 (𝜑𝐷𝑈)
13 subgdisj.a . 2 (𝜑𝐴𝑇)
14 subgdisj.c . 2 (𝜑𝐶𝑇)
15 subgdisj.j . . 3 (𝜑 → (𝐴 + 𝐵) = (𝐶 + 𝐷))
169, 13sseldd 3895 . . . 4 (𝜑𝐴 ∈ (𝑍𝑈))
171, 3cntzi 18531 . . . 4 ((𝐴 ∈ (𝑍𝑈) ∧ 𝐵𝑈) → (𝐴 + 𝐵) = (𝐵 + 𝐴))
1816, 11, 17syl2anc 587 . . 3 (𝜑 → (𝐴 + 𝐵) = (𝐵 + 𝐴))
199, 14sseldd 3895 . . . 4 (𝜑𝐶 ∈ (𝑍𝑈))
201, 3cntzi 18531 . . . 4 ((𝐶 ∈ (𝑍𝑈) ∧ 𝐷𝑈) → (𝐶 + 𝐷) = (𝐷 + 𝐶))
2119, 12, 20syl2anc 587 . . 3 (𝜑 → (𝐶 + 𝐷) = (𝐷 + 𝐶))
2215, 18, 213eqtr3d 2801 . 2 (𝜑 → (𝐵 + 𝐴) = (𝐷 + 𝐶))
231, 2, 3, 4, 5, 8, 10, 11, 12, 13, 14, 22subgdisj1 18889 1 (𝜑𝐵 = 𝐷)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1538  wcel 2111  cin 3859  wss 3860  {csn 4525  cfv 6339  (class class class)co 7155  +gcplusg 16628  0gc0g 16776  SubGrpcsubg 18345  Cntzccntz 18517
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2729  ax-rep 5159  ax-sep 5172  ax-nul 5179  ax-pow 5237  ax-pr 5301  ax-un 7464  ax-cnex 10636  ax-resscn 10637  ax-1cn 10638  ax-icn 10639  ax-addcl 10640  ax-addrcl 10641  ax-mulcl 10642  ax-mulrcl 10643  ax-mulcom 10644  ax-addass 10645  ax-mulass 10646  ax-distr 10647  ax-i2m1 10648  ax-1ne0 10649  ax-1rid 10650  ax-rnegex 10651  ax-rrecex 10652  ax-cnre 10653  ax-pre-lttri 10654  ax-pre-lttrn 10655  ax-pre-ltadd 10656  ax-pre-mulgt0 10657
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-fal 1551  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2557  df-eu 2588  df-clab 2736  df-cleq 2750  df-clel 2830  df-nfc 2901  df-ne 2952  df-nel 3056  df-ral 3075  df-rex 3076  df-reu 3077  df-rmo 3078  df-rab 3079  df-v 3411  df-sbc 3699  df-csb 3808  df-dif 3863  df-un 3865  df-in 3867  df-ss 3877  df-pss 3879  df-nul 4228  df-if 4424  df-pw 4499  df-sn 4526  df-pr 4528  df-tp 4530  df-op 4532  df-uni 4802  df-iun 4888  df-br 5036  df-opab 5098  df-mpt 5116  df-tr 5142  df-id 5433  df-eprel 5438  df-po 5446  df-so 5447  df-fr 5486  df-we 5488  df-xp 5533  df-rel 5534  df-cnv 5535  df-co 5536  df-dm 5537  df-rn 5538  df-res 5539  df-ima 5540  df-pred 6130  df-ord 6176  df-on 6177  df-lim 6178  df-suc 6179  df-iota 6298  df-fun 6341  df-fn 6342  df-f 6343  df-f1 6344  df-fo 6345  df-f1o 6346  df-fv 6347  df-riota 7113  df-ov 7158  df-oprab 7159  df-mpo 7160  df-om 7585  df-1st 7698  df-2nd 7699  df-wrecs 7962  df-recs 8023  df-rdg 8061  df-er 8304  df-en 8533  df-dom 8534  df-sdom 8535  df-pnf 10720  df-mnf 10721  df-xr 10722  df-ltxr 10723  df-le 10724  df-sub 10915  df-neg 10916  df-nn 11680  df-2 11742  df-ndx 16549  df-slot 16550  df-base 16552  df-sets 16553  df-ress 16554  df-plusg 16641  df-0g 16778  df-mgm 17923  df-sgrp 17972  df-mnd 17983  df-grp 18177  df-minusg 18178  df-sbg 18179  df-subg 18348  df-cntz 18519
This theorem is referenced by:  subgdisjb  18891  lvecindp  19983  lshpsmreu  36711  lshpkrlem5  36716
  Copyright terms: Public domain W3C validator