![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > subgdisj2 | Structured version Visualization version GIF version |
Description: Vectors belonging to disjoint commuting subgroups are uniquely determined by their sum. (Contributed by NM, 12-Jul-2014.) (Revised by Mario Carneiro, 19-Apr-2016.) |
Ref | Expression |
---|---|
subgdisj.p | โข + = (+gโ๐บ) |
subgdisj.o | โข 0 = (0gโ๐บ) |
subgdisj.z | โข ๐ = (Cntzโ๐บ) |
subgdisj.t | โข (๐ โ ๐ โ (SubGrpโ๐บ)) |
subgdisj.u | โข (๐ โ ๐ โ (SubGrpโ๐บ)) |
subgdisj.i | โข (๐ โ (๐ โฉ ๐) = { 0 }) |
subgdisj.s | โข (๐ โ ๐ โ (๐โ๐)) |
subgdisj.a | โข (๐ โ ๐ด โ ๐) |
subgdisj.c | โข (๐ โ ๐ถ โ ๐) |
subgdisj.b | โข (๐ โ ๐ต โ ๐) |
subgdisj.d | โข (๐ โ ๐ท โ ๐) |
subgdisj.j | โข (๐ โ (๐ด + ๐ต) = (๐ถ + ๐ท)) |
Ref | Expression |
---|---|
subgdisj2 | โข (๐ โ ๐ต = ๐ท) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | subgdisj.p | . 2 โข + = (+gโ๐บ) | |
2 | subgdisj.o | . 2 โข 0 = (0gโ๐บ) | |
3 | subgdisj.z | . 2 โข ๐ = (Cntzโ๐บ) | |
4 | subgdisj.u | . 2 โข (๐ โ ๐ โ (SubGrpโ๐บ)) | |
5 | subgdisj.t | . 2 โข (๐ โ ๐ โ (SubGrpโ๐บ)) | |
6 | incom 4201 | . . 3 โข (๐ โฉ ๐) = (๐ โฉ ๐) | |
7 | subgdisj.i | . . 3 โข (๐ โ (๐ โฉ ๐) = { 0 }) | |
8 | 6, 7 | eqtr3id 2785 | . 2 โข (๐ โ (๐ โฉ ๐) = { 0 }) |
9 | subgdisj.s | . . 3 โข (๐ โ ๐ โ (๐โ๐)) | |
10 | 3, 5, 4, 9 | cntzrecd 19588 | . 2 โข (๐ โ ๐ โ (๐โ๐)) |
11 | subgdisj.b | . 2 โข (๐ โ ๐ต โ ๐) | |
12 | subgdisj.d | . 2 โข (๐ โ ๐ท โ ๐) | |
13 | subgdisj.a | . 2 โข (๐ โ ๐ด โ ๐) | |
14 | subgdisj.c | . 2 โข (๐ โ ๐ถ โ ๐) | |
15 | subgdisj.j | . . 3 โข (๐ โ (๐ด + ๐ต) = (๐ถ + ๐ท)) | |
16 | 9, 13 | sseldd 3983 | . . . 4 โข (๐ โ ๐ด โ (๐โ๐)) |
17 | 1, 3 | cntzi 19235 | . . . 4 โข ((๐ด โ (๐โ๐) โง ๐ต โ ๐) โ (๐ด + ๐ต) = (๐ต + ๐ด)) |
18 | 16, 11, 17 | syl2anc 583 | . . 3 โข (๐ โ (๐ด + ๐ต) = (๐ต + ๐ด)) |
19 | 9, 14 | sseldd 3983 | . . . 4 โข (๐ โ ๐ถ โ (๐โ๐)) |
20 | 1, 3 | cntzi 19235 | . . . 4 โข ((๐ถ โ (๐โ๐) โง ๐ท โ ๐) โ (๐ถ + ๐ท) = (๐ท + ๐ถ)) |
21 | 19, 12, 20 | syl2anc 583 | . . 3 โข (๐ โ (๐ถ + ๐ท) = (๐ท + ๐ถ)) |
22 | 15, 18, 21 | 3eqtr3d 2779 | . 2 โข (๐ โ (๐ต + ๐ด) = (๐ท + ๐ถ)) |
23 | 1, 2, 3, 4, 5, 8, 10, 11, 12, 13, 14, 22 | subgdisj1 19601 | 1 โข (๐ โ ๐ต = ๐ท) |
Colors of variables: wff setvar class |
Syntax hints: โ wi 4 = wceq 1540 โ wcel 2105 โฉ cin 3947 โ wss 3948 {csn 4628 โcfv 6543 (class class class)co 7412 +gcplusg 17202 0gc0g 17390 SubGrpcsubg 19037 Cntzccntz 19221 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-10 2136 ax-11 2153 ax-12 2170 ax-ext 2702 ax-rep 5285 ax-sep 5299 ax-nul 5306 ax-pow 5363 ax-pr 5427 ax-un 7728 ax-cnex 11169 ax-resscn 11170 ax-1cn 11171 ax-icn 11172 ax-addcl 11173 ax-addrcl 11174 ax-mulcl 11175 ax-mulrcl 11176 ax-mulcom 11177 ax-addass 11178 ax-mulass 11179 ax-distr 11180 ax-i2m1 11181 ax-1ne0 11182 ax-1rid 11183 ax-rnegex 11184 ax-rrecex 11185 ax-cnre 11186 ax-pre-lttri 11187 ax-pre-lttrn 11188 ax-pre-ltadd 11189 ax-pre-mulgt0 11190 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2533 df-eu 2562 df-clab 2709 df-cleq 2723 df-clel 2809 df-nfc 2884 df-ne 2940 df-nel 3046 df-ral 3061 df-rex 3070 df-rmo 3375 df-reu 3376 df-rab 3432 df-v 3475 df-sbc 3778 df-csb 3894 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-pss 3967 df-nul 4323 df-if 4529 df-pw 4604 df-sn 4629 df-pr 4631 df-op 4635 df-uni 4909 df-iun 4999 df-br 5149 df-opab 5211 df-mpt 5232 df-tr 5266 df-id 5574 df-eprel 5580 df-po 5588 df-so 5589 df-fr 5631 df-we 5633 df-xp 5682 df-rel 5683 df-cnv 5684 df-co 5685 df-dm 5686 df-rn 5687 df-res 5688 df-ima 5689 df-pred 6300 df-ord 6367 df-on 6368 df-lim 6369 df-suc 6370 df-iota 6495 df-fun 6545 df-fn 6546 df-f 6547 df-f1 6548 df-fo 6549 df-f1o 6550 df-fv 6551 df-riota 7368 df-ov 7415 df-oprab 7416 df-mpo 7417 df-om 7859 df-1st 7978 df-2nd 7979 df-frecs 8269 df-wrecs 8300 df-recs 8374 df-rdg 8413 df-er 8706 df-en 8943 df-dom 8944 df-sdom 8945 df-pnf 11255 df-mnf 11256 df-xr 11257 df-ltxr 11258 df-le 11259 df-sub 11451 df-neg 11452 df-nn 12218 df-2 12280 df-sets 17102 df-slot 17120 df-ndx 17132 df-base 17150 df-ress 17179 df-plusg 17215 df-0g 17392 df-mgm 18566 df-sgrp 18645 df-mnd 18661 df-grp 18859 df-minusg 18860 df-sbg 18861 df-subg 19040 df-cntz 19223 |
This theorem is referenced by: subgdisjb 19603 lvecindp 20897 lshpsmreu 38283 lshpkrlem5 38288 |
Copyright terms: Public domain | W3C validator |