| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > subgdisj2 | Structured version Visualization version GIF version | ||
| Description: Vectors belonging to disjoint commuting subgroups are uniquely determined by their sum. (Contributed by NM, 12-Jul-2014.) (Revised by Mario Carneiro, 19-Apr-2016.) |
| Ref | Expression |
|---|---|
| subgdisj.p | ⊢ + = (+g‘𝐺) |
| subgdisj.o | ⊢ 0 = (0g‘𝐺) |
| subgdisj.z | ⊢ 𝑍 = (Cntz‘𝐺) |
| subgdisj.t | ⊢ (𝜑 → 𝑇 ∈ (SubGrp‘𝐺)) |
| subgdisj.u | ⊢ (𝜑 → 𝑈 ∈ (SubGrp‘𝐺)) |
| subgdisj.i | ⊢ (𝜑 → (𝑇 ∩ 𝑈) = { 0 }) |
| subgdisj.s | ⊢ (𝜑 → 𝑇 ⊆ (𝑍‘𝑈)) |
| subgdisj.a | ⊢ (𝜑 → 𝐴 ∈ 𝑇) |
| subgdisj.c | ⊢ (𝜑 → 𝐶 ∈ 𝑇) |
| subgdisj.b | ⊢ (𝜑 → 𝐵 ∈ 𝑈) |
| subgdisj.d | ⊢ (𝜑 → 𝐷 ∈ 𝑈) |
| subgdisj.j | ⊢ (𝜑 → (𝐴 + 𝐵) = (𝐶 + 𝐷)) |
| Ref | Expression |
|---|---|
| subgdisj2 | ⊢ (𝜑 → 𝐵 = 𝐷) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | subgdisj.p | . 2 ⊢ + = (+g‘𝐺) | |
| 2 | subgdisj.o | . 2 ⊢ 0 = (0g‘𝐺) | |
| 3 | subgdisj.z | . 2 ⊢ 𝑍 = (Cntz‘𝐺) | |
| 4 | subgdisj.u | . 2 ⊢ (𝜑 → 𝑈 ∈ (SubGrp‘𝐺)) | |
| 5 | subgdisj.t | . 2 ⊢ (𝜑 → 𝑇 ∈ (SubGrp‘𝐺)) | |
| 6 | incom 4162 | . . 3 ⊢ (𝑇 ∩ 𝑈) = (𝑈 ∩ 𝑇) | |
| 7 | subgdisj.i | . . 3 ⊢ (𝜑 → (𝑇 ∩ 𝑈) = { 0 }) | |
| 8 | 6, 7 | eqtr3id 2778 | . 2 ⊢ (𝜑 → (𝑈 ∩ 𝑇) = { 0 }) |
| 9 | subgdisj.s | . . 3 ⊢ (𝜑 → 𝑇 ⊆ (𝑍‘𝑈)) | |
| 10 | 3, 5, 4, 9 | cntzrecd 19575 | . 2 ⊢ (𝜑 → 𝑈 ⊆ (𝑍‘𝑇)) |
| 11 | subgdisj.b | . 2 ⊢ (𝜑 → 𝐵 ∈ 𝑈) | |
| 12 | subgdisj.d | . 2 ⊢ (𝜑 → 𝐷 ∈ 𝑈) | |
| 13 | subgdisj.a | . 2 ⊢ (𝜑 → 𝐴 ∈ 𝑇) | |
| 14 | subgdisj.c | . 2 ⊢ (𝜑 → 𝐶 ∈ 𝑇) | |
| 15 | subgdisj.j | . . 3 ⊢ (𝜑 → (𝐴 + 𝐵) = (𝐶 + 𝐷)) | |
| 16 | 9, 13 | sseldd 3938 | . . . 4 ⊢ (𝜑 → 𝐴 ∈ (𝑍‘𝑈)) |
| 17 | 1, 3 | cntzi 19226 | . . . 4 ⊢ ((𝐴 ∈ (𝑍‘𝑈) ∧ 𝐵 ∈ 𝑈) → (𝐴 + 𝐵) = (𝐵 + 𝐴)) |
| 18 | 16, 11, 17 | syl2anc 584 | . . 3 ⊢ (𝜑 → (𝐴 + 𝐵) = (𝐵 + 𝐴)) |
| 19 | 9, 14 | sseldd 3938 | . . . 4 ⊢ (𝜑 → 𝐶 ∈ (𝑍‘𝑈)) |
| 20 | 1, 3 | cntzi 19226 | . . . 4 ⊢ ((𝐶 ∈ (𝑍‘𝑈) ∧ 𝐷 ∈ 𝑈) → (𝐶 + 𝐷) = (𝐷 + 𝐶)) |
| 21 | 19, 12, 20 | syl2anc 584 | . . 3 ⊢ (𝜑 → (𝐶 + 𝐷) = (𝐷 + 𝐶)) |
| 22 | 15, 18, 21 | 3eqtr3d 2772 | . 2 ⊢ (𝜑 → (𝐵 + 𝐴) = (𝐷 + 𝐶)) |
| 23 | 1, 2, 3, 4, 5, 8, 10, 11, 12, 13, 14, 22 | subgdisj1 19588 | 1 ⊢ (𝜑 → 𝐵 = 𝐷) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2109 ∩ cin 3904 ⊆ wss 3905 {csn 4579 ‘cfv 6486 (class class class)co 7353 +gcplusg 17179 0gc0g 17361 SubGrpcsubg 19017 Cntzccntz 19212 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5221 ax-sep 5238 ax-nul 5248 ax-pow 5307 ax-pr 5374 ax-un 7675 ax-cnex 11084 ax-resscn 11085 ax-1cn 11086 ax-icn 11087 ax-addcl 11088 ax-addrcl 11089 ax-mulcl 11090 ax-mulrcl 11091 ax-mulcom 11092 ax-addass 11093 ax-mulass 11094 ax-distr 11095 ax-i2m1 11096 ax-1ne0 11097 ax-1rid 11098 ax-rnegex 11099 ax-rrecex 11100 ax-cnre 11101 ax-pre-lttri 11102 ax-pre-lttrn 11103 ax-pre-ltadd 11104 ax-pre-mulgt0 11105 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rmo 3345 df-reu 3346 df-rab 3397 df-v 3440 df-sbc 3745 df-csb 3854 df-dif 3908 df-un 3910 df-in 3912 df-ss 3922 df-pss 3925 df-nul 4287 df-if 4479 df-pw 4555 df-sn 4580 df-pr 4582 df-op 4586 df-uni 4862 df-iun 4946 df-br 5096 df-opab 5158 df-mpt 5177 df-tr 5203 df-id 5518 df-eprel 5523 df-po 5531 df-so 5532 df-fr 5576 df-we 5578 df-xp 5629 df-rel 5630 df-cnv 5631 df-co 5632 df-dm 5633 df-rn 5634 df-res 5635 df-ima 5636 df-pred 6253 df-ord 6314 df-on 6315 df-lim 6316 df-suc 6317 df-iota 6442 df-fun 6488 df-fn 6489 df-f 6490 df-f1 6491 df-fo 6492 df-f1o 6493 df-fv 6494 df-riota 7310 df-ov 7356 df-oprab 7357 df-mpo 7358 df-om 7807 df-1st 7931 df-2nd 7932 df-frecs 8221 df-wrecs 8252 df-recs 8301 df-rdg 8339 df-er 8632 df-en 8880 df-dom 8881 df-sdom 8882 df-pnf 11170 df-mnf 11171 df-xr 11172 df-ltxr 11173 df-le 11174 df-sub 11367 df-neg 11368 df-nn 12147 df-2 12209 df-sets 17093 df-slot 17111 df-ndx 17123 df-base 17139 df-ress 17160 df-plusg 17192 df-0g 17363 df-mgm 18532 df-sgrp 18611 df-mnd 18627 df-grp 18833 df-minusg 18834 df-sbg 18835 df-subg 19020 df-cntz 19214 |
| This theorem is referenced by: subgdisjb 19590 lvecindp 21063 lshpsmreu 39087 lshpkrlem5 39092 |
| Copyright terms: Public domain | W3C validator |