|   | Metamath Proof Explorer | < Previous  
      Next > Nearby theorems | |
| Mirrors > Home > MPE Home > Th. List > lsmcntz | Structured version Visualization version GIF version | ||
| Description: The "subgroups commute" predicate applied to a subgroup sum. (Contributed by Mario Carneiro, 21-Apr-2016.) | 
| Ref | Expression | 
|---|---|
| lsmcntz.p | ⊢ ⊕ = (LSSum‘𝐺) | 
| lsmcntz.s | ⊢ (𝜑 → 𝑆 ∈ (SubGrp‘𝐺)) | 
| lsmcntz.t | ⊢ (𝜑 → 𝑇 ∈ (SubGrp‘𝐺)) | 
| lsmcntz.u | ⊢ (𝜑 → 𝑈 ∈ (SubGrp‘𝐺)) | 
| lsmcntz.z | ⊢ 𝑍 = (Cntz‘𝐺) | 
| Ref | Expression | 
|---|---|
| lsmcntz | ⊢ (𝜑 → ((𝑆 ⊕ 𝑇) ⊆ (𝑍‘𝑈) ↔ (𝑆 ⊆ (𝑍‘𝑈) ∧ 𝑇 ⊆ (𝑍‘𝑈)))) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | lsmcntz.s | . . 3 ⊢ (𝜑 → 𝑆 ∈ (SubGrp‘𝐺)) | |
| 2 | lsmcntz.t | . . 3 ⊢ (𝜑 → 𝑇 ∈ (SubGrp‘𝐺)) | |
| 3 | lsmcntz.u | . . . 4 ⊢ (𝜑 → 𝑈 ∈ (SubGrp‘𝐺)) | |
| 4 | subgrcl 19150 | . . . . 5 ⊢ (𝑈 ∈ (SubGrp‘𝐺) → 𝐺 ∈ Grp) | |
| 5 | eqid 2736 | . . . . . 6 ⊢ (Base‘𝐺) = (Base‘𝐺) | |
| 6 | 5 | subgss 19146 | . . . . 5 ⊢ (𝑈 ∈ (SubGrp‘𝐺) → 𝑈 ⊆ (Base‘𝐺)) | 
| 7 | lsmcntz.z | . . . . . 6 ⊢ 𝑍 = (Cntz‘𝐺) | |
| 8 | 5, 7 | cntzsubg 19358 | . . . . 5 ⊢ ((𝐺 ∈ Grp ∧ 𝑈 ⊆ (Base‘𝐺)) → (𝑍‘𝑈) ∈ (SubGrp‘𝐺)) | 
| 9 | 4, 6, 8 | syl2anc 584 | . . . 4 ⊢ (𝑈 ∈ (SubGrp‘𝐺) → (𝑍‘𝑈) ∈ (SubGrp‘𝐺)) | 
| 10 | 3, 9 | syl 17 | . . 3 ⊢ (𝜑 → (𝑍‘𝑈) ∈ (SubGrp‘𝐺)) | 
| 11 | lsmcntz.p | . . . 4 ⊢ ⊕ = (LSSum‘𝐺) | |
| 12 | 11 | lsmlub 19683 | . . 3 ⊢ ((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝑇 ∈ (SubGrp‘𝐺) ∧ (𝑍‘𝑈) ∈ (SubGrp‘𝐺)) → ((𝑆 ⊆ (𝑍‘𝑈) ∧ 𝑇 ⊆ (𝑍‘𝑈)) ↔ (𝑆 ⊕ 𝑇) ⊆ (𝑍‘𝑈))) | 
| 13 | 1, 2, 10, 12 | syl3anc 1372 | . 2 ⊢ (𝜑 → ((𝑆 ⊆ (𝑍‘𝑈) ∧ 𝑇 ⊆ (𝑍‘𝑈)) ↔ (𝑆 ⊕ 𝑇) ⊆ (𝑍‘𝑈))) | 
| 14 | 13 | bicomd 223 | 1 ⊢ (𝜑 → ((𝑆 ⊕ 𝑇) ⊆ (𝑍‘𝑈) ↔ (𝑆 ⊆ (𝑍‘𝑈) ∧ 𝑇 ⊆ (𝑍‘𝑈)))) | 
| Colors of variables: wff setvar class | 
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1539 ∈ wcel 2107 ⊆ wss 3950 ‘cfv 6560 (class class class)co 7432 Basecbs 17248 Grpcgrp 18952 SubGrpcsubg 19139 Cntzccntz 19334 LSSumclsm 19653 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-11 2156 ax-12 2176 ax-ext 2707 ax-rep 5278 ax-sep 5295 ax-nul 5305 ax-pow 5364 ax-pr 5431 ax-un 7756 ax-cnex 11212 ax-resscn 11213 ax-1cn 11214 ax-icn 11215 ax-addcl 11216 ax-addrcl 11217 ax-mulcl 11218 ax-mulrcl 11219 ax-mulcom 11220 ax-addass 11221 ax-mulass 11222 ax-distr 11223 ax-i2m1 11224 ax-1ne0 11225 ax-1rid 11226 ax-rnegex 11227 ax-rrecex 11228 ax-cnre 11229 ax-pre-lttri 11230 ax-pre-lttrn 11231 ax-pre-ltadd 11232 ax-pre-mulgt0 11233 | 
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2064 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2728 df-clel 2815 df-nfc 2891 df-ne 2940 df-nel 3046 df-ral 3061 df-rex 3070 df-rmo 3379 df-reu 3380 df-rab 3436 df-v 3481 df-sbc 3788 df-csb 3899 df-dif 3953 df-un 3955 df-in 3957 df-ss 3967 df-pss 3970 df-nul 4333 df-if 4525 df-pw 4601 df-sn 4626 df-pr 4628 df-op 4632 df-uni 4907 df-iun 4992 df-br 5143 df-opab 5205 df-mpt 5225 df-tr 5259 df-id 5577 df-eprel 5583 df-po 5591 df-so 5592 df-fr 5636 df-we 5638 df-xp 5690 df-rel 5691 df-cnv 5692 df-co 5693 df-dm 5694 df-rn 5695 df-res 5696 df-ima 5697 df-pred 6320 df-ord 6386 df-on 6387 df-lim 6388 df-suc 6389 df-iota 6513 df-fun 6562 df-fn 6563 df-f 6564 df-f1 6565 df-fo 6566 df-f1o 6567 df-fv 6568 df-riota 7389 df-ov 7435 df-oprab 7436 df-mpo 7437 df-om 7889 df-1st 8015 df-2nd 8016 df-frecs 8307 df-wrecs 8338 df-recs 8412 df-rdg 8451 df-er 8746 df-en 8987 df-dom 8988 df-sdom 8989 df-pnf 11298 df-mnf 11299 df-xr 11300 df-ltxr 11301 df-le 11302 df-sub 11495 df-neg 11496 df-nn 12268 df-2 12330 df-sets 17202 df-slot 17220 df-ndx 17232 df-base 17249 df-ress 17276 df-plusg 17311 df-0g 17487 df-mgm 18654 df-sgrp 18733 df-mnd 18749 df-submnd 18798 df-grp 18955 df-minusg 18956 df-subg 19142 df-cntz 19336 df-lsm 19655 | 
| This theorem is referenced by: lsmcntzr 19699 | 
| Copyright terms: Public domain | W3C validator |