![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > pj2f | Structured version Visualization version GIF version |
Description: The right projection function maps a direct subspace sum onto the right factor. (Contributed by Mario Carneiro, 15-Oct-2015.) |
Ref | Expression |
---|---|
pj1eu.a | โข + = (+gโ๐บ) |
pj1eu.s | โข โ = (LSSumโ๐บ) |
pj1eu.o | โข 0 = (0gโ๐บ) |
pj1eu.z | โข ๐ = (Cntzโ๐บ) |
pj1eu.2 | โข (๐ โ ๐ โ (SubGrpโ๐บ)) |
pj1eu.3 | โข (๐ โ ๐ โ (SubGrpโ๐บ)) |
pj1eu.4 | โข (๐ โ (๐ โฉ ๐) = { 0 }) |
pj1eu.5 | โข (๐ โ ๐ โ (๐โ๐)) |
pj1f.p | โข ๐ = (proj1โ๐บ) |
Ref | Expression |
---|---|
pj2f | โข (๐ โ (๐๐๐):(๐ โ ๐)โถ๐) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | pj1eu.a | . . 3 โข + = (+gโ๐บ) | |
2 | pj1eu.s | . . 3 โข โ = (LSSumโ๐บ) | |
3 | pj1eu.o | . . 3 โข 0 = (0gโ๐บ) | |
4 | pj1eu.z | . . 3 โข ๐ = (Cntzโ๐บ) | |
5 | pj1eu.3 | . . 3 โข (๐ โ ๐ โ (SubGrpโ๐บ)) | |
6 | pj1eu.2 | . . 3 โข (๐ โ ๐ โ (SubGrpโ๐บ)) | |
7 | incom 4201 | . . . 4 โข (๐ โฉ ๐) = (๐ โฉ ๐) | |
8 | pj1eu.4 | . . . 4 โข (๐ โ (๐ โฉ ๐) = { 0 }) | |
9 | 7, 8 | eqtrid 2784 | . . 3 โข (๐ โ (๐ โฉ ๐) = { 0 }) |
10 | pj1eu.5 | . . . 4 โข (๐ โ ๐ โ (๐โ๐)) | |
11 | 4, 6, 5, 10 | cntzrecd 19548 | . . 3 โข (๐ โ ๐ โ (๐โ๐)) |
12 | pj1f.p | . . 3 โข ๐ = (proj1โ๐บ) | |
13 | 1, 2, 3, 4, 5, 6, 9, 11, 12 | pj1f 19567 | . 2 โข (๐ โ (๐๐๐):(๐ โ ๐)โถ๐) |
14 | 2, 4 | lsmcom2 19525 | . . . 4 โข ((๐ โ (SubGrpโ๐บ) โง ๐ โ (SubGrpโ๐บ) โง ๐ โ (๐โ๐)) โ (๐ โ ๐) = (๐ โ ๐)) |
15 | 6, 5, 10, 14 | syl3anc 1371 | . . 3 โข (๐ โ (๐ โ ๐) = (๐ โ ๐)) |
16 | 15 | feq2d 6703 | . 2 โข (๐ โ ((๐๐๐):(๐ โ ๐)โถ๐ โ (๐๐๐):(๐ โ ๐)โถ๐)) |
17 | 13, 16 | mpbird 256 | 1 โข (๐ โ (๐๐๐):(๐ โ ๐)โถ๐) |
Colors of variables: wff setvar class |
Syntax hints: โ wi 4 = wceq 1541 โ wcel 2106 โฉ cin 3947 โ wss 3948 {csn 4628 โถwf 6539 โcfv 6543 (class class class)co 7411 +gcplusg 17199 0gc0g 17387 SubGrpcsubg 19002 Cntzccntz 19181 LSSumclsm 19504 proj1cpj1 19505 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2703 ax-rep 5285 ax-sep 5299 ax-nul 5306 ax-pow 5363 ax-pr 5427 ax-un 7727 ax-cnex 11168 ax-resscn 11169 ax-1cn 11170 ax-icn 11171 ax-addcl 11172 ax-addrcl 11173 ax-mulcl 11174 ax-mulrcl 11175 ax-mulcom 11176 ax-addass 11177 ax-mulass 11178 ax-distr 11179 ax-i2m1 11180 ax-1ne0 11181 ax-1rid 11182 ax-rnegex 11183 ax-rrecex 11184 ax-cnre 11185 ax-pre-lttri 11186 ax-pre-lttrn 11187 ax-pre-ltadd 11188 ax-pre-mulgt0 11189 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3or 1088 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2534 df-eu 2563 df-clab 2710 df-cleq 2724 df-clel 2810 df-nfc 2885 df-ne 2941 df-nel 3047 df-ral 3062 df-rex 3071 df-rmo 3376 df-reu 3377 df-rab 3433 df-v 3476 df-sbc 3778 df-csb 3894 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-pss 3967 df-nul 4323 df-if 4529 df-pw 4604 df-sn 4629 df-pr 4631 df-op 4635 df-uni 4909 df-iun 4999 df-br 5149 df-opab 5211 df-mpt 5232 df-tr 5266 df-id 5574 df-eprel 5580 df-po 5588 df-so 5589 df-fr 5631 df-we 5633 df-xp 5682 df-rel 5683 df-cnv 5684 df-co 5685 df-dm 5686 df-rn 5687 df-res 5688 df-ima 5689 df-pred 6300 df-ord 6367 df-on 6368 df-lim 6369 df-suc 6370 df-iota 6495 df-fun 6545 df-fn 6546 df-f 6547 df-f1 6548 df-fo 6549 df-f1o 6550 df-fv 6551 df-riota 7367 df-ov 7414 df-oprab 7415 df-mpo 7416 df-om 7858 df-1st 7977 df-2nd 7978 df-frecs 8268 df-wrecs 8299 df-recs 8373 df-rdg 8412 df-er 8705 df-en 8942 df-dom 8943 df-sdom 8944 df-pnf 11252 df-mnf 11253 df-xr 11254 df-ltxr 11255 df-le 11256 df-sub 11448 df-neg 11449 df-nn 12215 df-2 12277 df-sets 17099 df-slot 17117 df-ndx 17129 df-base 17147 df-ress 17176 df-plusg 17212 df-0g 17389 df-mgm 18563 df-sgrp 18612 df-mnd 18628 df-grp 18824 df-minusg 18825 df-sbg 18826 df-subg 19005 df-cntz 19183 df-lsm 19506 df-pj1 19507 |
This theorem is referenced by: pj1eq 19570 pj1ghm 19573 lsmhash 19575 pj1lmhm 20716 |
Copyright terms: Public domain | W3C validator |