MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pj2f Structured version   Visualization version   GIF version

Theorem pj2f 18802
Description: The right projection function maps a direct subspace sum onto the right factor. (Contributed by Mario Carneiro, 15-Oct-2015.)
Hypotheses
Ref Expression
pj1eu.a + = (+g𝐺)
pj1eu.s = (LSSum‘𝐺)
pj1eu.o 0 = (0g𝐺)
pj1eu.z 𝑍 = (Cntz‘𝐺)
pj1eu.2 (𝜑𝑇 ∈ (SubGrp‘𝐺))
pj1eu.3 (𝜑𝑈 ∈ (SubGrp‘𝐺))
pj1eu.4 (𝜑 → (𝑇𝑈) = { 0 })
pj1eu.5 (𝜑𝑇 ⊆ (𝑍𝑈))
pj1f.p 𝑃 = (proj1𝐺)
Assertion
Ref Expression
pj2f (𝜑 → (𝑈𝑃𝑇):(𝑇 𝑈)⟶𝑈)

Proof of Theorem pj2f
StepHypRef Expression
1 pj1eu.a . . 3 + = (+g𝐺)
2 pj1eu.s . . 3 = (LSSum‘𝐺)
3 pj1eu.o . . 3 0 = (0g𝐺)
4 pj1eu.z . . 3 𝑍 = (Cntz‘𝐺)
5 pj1eu.3 . . 3 (𝜑𝑈 ∈ (SubGrp‘𝐺))
6 pj1eu.2 . . 3 (𝜑𝑇 ∈ (SubGrp‘𝐺))
7 incom 4153 . . . 4 (𝑈𝑇) = (𝑇𝑈)
8 pj1eu.4 . . . 4 (𝜑 → (𝑇𝑈) = { 0 })
97, 8syl5eq 2868 . . 3 (𝜑 → (𝑈𝑇) = { 0 })
10 pj1eu.5 . . . 4 (𝜑𝑇 ⊆ (𝑍𝑈))
114, 6, 5, 10cntzrecd 18782 . . 3 (𝜑𝑈 ⊆ (𝑍𝑇))
12 pj1f.p . . 3 𝑃 = (proj1𝐺)
131, 2, 3, 4, 5, 6, 9, 11, 12pj1f 18801 . 2 (𝜑 → (𝑈𝑃𝑇):(𝑈 𝑇)⟶𝑈)
142, 4lsmcom2 18758 . . . 4 ((𝑇 ∈ (SubGrp‘𝐺) ∧ 𝑈 ∈ (SubGrp‘𝐺) ∧ 𝑇 ⊆ (𝑍𝑈)) → (𝑇 𝑈) = (𝑈 𝑇))
156, 5, 10, 14syl3anc 1368 . . 3 (𝜑 → (𝑇 𝑈) = (𝑈 𝑇))
1615feq2d 6473 . 2 (𝜑 → ((𝑈𝑃𝑇):(𝑇 𝑈)⟶𝑈 ↔ (𝑈𝑃𝑇):(𝑈 𝑇)⟶𝑈))
1713, 16mpbird 260 1 (𝜑 → (𝑈𝑃𝑇):(𝑇 𝑈)⟶𝑈)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1538  wcel 2115  cin 3909  wss 3910  {csn 4540  wf 6324  cfv 6328  (class class class)co 7130  +gcplusg 16543  0gc0g 16691  SubGrpcsubg 18251  Cntzccntz 18423  LSSumclsm 18737  proj1cpj1 18738
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1912  ax-6 1971  ax-7 2016  ax-8 2117  ax-9 2125  ax-10 2146  ax-11 2162  ax-12 2178  ax-ext 2793  ax-rep 5163  ax-sep 5176  ax-nul 5183  ax-pow 5239  ax-pr 5303  ax-un 7436  ax-cnex 10570  ax-resscn 10571  ax-1cn 10572  ax-icn 10573  ax-addcl 10574  ax-addrcl 10575  ax-mulcl 10576  ax-mulrcl 10577  ax-mulcom 10578  ax-addass 10579  ax-mulass 10580  ax-distr 10581  ax-i2m1 10582  ax-1ne0 10583  ax-1rid 10584  ax-rnegex 10585  ax-rrecex 10586  ax-cnre 10587  ax-pre-lttri 10588  ax-pre-lttrn 10589  ax-pre-ltadd 10590  ax-pre-mulgt0 10591
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2071  df-mo 2623  df-eu 2654  df-clab 2800  df-cleq 2814  df-clel 2892  df-nfc 2960  df-ne 3008  df-nel 3112  df-ral 3131  df-rex 3132  df-reu 3133  df-rmo 3134  df-rab 3135  df-v 3473  df-sbc 3750  df-csb 3858  df-dif 3913  df-un 3915  df-in 3917  df-ss 3927  df-pss 3929  df-nul 4267  df-if 4441  df-pw 4514  df-sn 4541  df-pr 4543  df-tp 4545  df-op 4547  df-uni 4812  df-iun 4894  df-br 5040  df-opab 5102  df-mpt 5120  df-tr 5146  df-id 5433  df-eprel 5438  df-po 5447  df-so 5448  df-fr 5487  df-we 5489  df-xp 5534  df-rel 5535  df-cnv 5536  df-co 5537  df-dm 5538  df-rn 5539  df-res 5540  df-ima 5541  df-pred 6121  df-ord 6167  df-on 6168  df-lim 6169  df-suc 6170  df-iota 6287  df-fun 6330  df-fn 6331  df-f 6332  df-f1 6333  df-fo 6334  df-f1o 6335  df-fv 6336  df-riota 7088  df-ov 7133  df-oprab 7134  df-mpo 7135  df-om 7556  df-1st 7664  df-2nd 7665  df-wrecs 7922  df-recs 7983  df-rdg 8021  df-er 8264  df-en 8485  df-dom 8486  df-sdom 8487  df-pnf 10654  df-mnf 10655  df-xr 10656  df-ltxr 10657  df-le 10658  df-sub 10849  df-neg 10850  df-nn 11616  df-2 11678  df-ndx 16464  df-slot 16465  df-base 16467  df-sets 16468  df-ress 16469  df-plusg 16556  df-0g 16693  df-mgm 17830  df-sgrp 17879  df-mnd 17890  df-grp 18084  df-minusg 18085  df-sbg 18086  df-subg 18254  df-cntz 18425  df-lsm 18739  df-pj1 18740
This theorem is referenced by:  pj1eq  18804  pj1ghm  18807  lsmhash  18809  pj1lmhm  19847
  Copyright terms: Public domain W3C validator