![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > pj2f | Structured version Visualization version GIF version |
Description: The right projection function maps a direct subspace sum onto the right factor. (Contributed by Mario Carneiro, 15-Oct-2015.) |
Ref | Expression |
---|---|
pj1eu.a | ⊢ + = (+g‘𝐺) |
pj1eu.s | ⊢ ⊕ = (LSSum‘𝐺) |
pj1eu.o | ⊢ 0 = (0g‘𝐺) |
pj1eu.z | ⊢ 𝑍 = (Cntz‘𝐺) |
pj1eu.2 | ⊢ (𝜑 → 𝑇 ∈ (SubGrp‘𝐺)) |
pj1eu.3 | ⊢ (𝜑 → 𝑈 ∈ (SubGrp‘𝐺)) |
pj1eu.4 | ⊢ (𝜑 → (𝑇 ∩ 𝑈) = { 0 }) |
pj1eu.5 | ⊢ (𝜑 → 𝑇 ⊆ (𝑍‘𝑈)) |
pj1f.p | ⊢ 𝑃 = (proj1‘𝐺) |
Ref | Expression |
---|---|
pj2f | ⊢ (𝜑 → (𝑈𝑃𝑇):(𝑇 ⊕ 𝑈)⟶𝑈) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | pj1eu.a | . . 3 ⊢ + = (+g‘𝐺) | |
2 | pj1eu.s | . . 3 ⊢ ⊕ = (LSSum‘𝐺) | |
3 | pj1eu.o | . . 3 ⊢ 0 = (0g‘𝐺) | |
4 | pj1eu.z | . . 3 ⊢ 𝑍 = (Cntz‘𝐺) | |
5 | pj1eu.3 | . . 3 ⊢ (𝜑 → 𝑈 ∈ (SubGrp‘𝐺)) | |
6 | pj1eu.2 | . . 3 ⊢ (𝜑 → 𝑇 ∈ (SubGrp‘𝐺)) | |
7 | incom 4034 | . . . 4 ⊢ (𝑈 ∩ 𝑇) = (𝑇 ∩ 𝑈) | |
8 | pj1eu.4 | . . . 4 ⊢ (𝜑 → (𝑇 ∩ 𝑈) = { 0 }) | |
9 | 7, 8 | syl5eq 2873 | . . 3 ⊢ (𝜑 → (𝑈 ∩ 𝑇) = { 0 }) |
10 | pj1eu.5 | . . . 4 ⊢ (𝜑 → 𝑇 ⊆ (𝑍‘𝑈)) | |
11 | 4, 6, 5, 10 | cntzrecd 18449 | . . 3 ⊢ (𝜑 → 𝑈 ⊆ (𝑍‘𝑇)) |
12 | pj1f.p | . . 3 ⊢ 𝑃 = (proj1‘𝐺) | |
13 | 1, 2, 3, 4, 5, 6, 9, 11, 12 | pj1f 18468 | . 2 ⊢ (𝜑 → (𝑈𝑃𝑇):(𝑈 ⊕ 𝑇)⟶𝑈) |
14 | 2, 4 | lsmcom2 18428 | . . . 4 ⊢ ((𝑇 ∈ (SubGrp‘𝐺) ∧ 𝑈 ∈ (SubGrp‘𝐺) ∧ 𝑇 ⊆ (𝑍‘𝑈)) → (𝑇 ⊕ 𝑈) = (𝑈 ⊕ 𝑇)) |
15 | 6, 5, 10, 14 | syl3anc 1494 | . . 3 ⊢ (𝜑 → (𝑇 ⊕ 𝑈) = (𝑈 ⊕ 𝑇)) |
16 | 15 | feq2d 6268 | . 2 ⊢ (𝜑 → ((𝑈𝑃𝑇):(𝑇 ⊕ 𝑈)⟶𝑈 ↔ (𝑈𝑃𝑇):(𝑈 ⊕ 𝑇)⟶𝑈)) |
17 | 13, 16 | mpbird 249 | 1 ⊢ (𝜑 → (𝑈𝑃𝑇):(𝑇 ⊕ 𝑈)⟶𝑈) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1656 ∈ wcel 2164 ∩ cin 3797 ⊆ wss 3798 {csn 4399 ⟶wf 6123 ‘cfv 6127 (class class class)co 6910 +gcplusg 16312 0gc0g 16460 SubGrpcsubg 17946 Cntzccntz 18105 LSSumclsm 18407 proj1cpj1 18408 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1894 ax-4 1908 ax-5 2009 ax-6 2075 ax-7 2112 ax-8 2166 ax-9 2173 ax-10 2192 ax-11 2207 ax-12 2220 ax-13 2389 ax-ext 2803 ax-rep 4996 ax-sep 5007 ax-nul 5015 ax-pow 5067 ax-pr 5129 ax-un 7214 ax-cnex 10315 ax-resscn 10316 ax-1cn 10317 ax-icn 10318 ax-addcl 10319 ax-addrcl 10320 ax-mulcl 10321 ax-mulrcl 10322 ax-mulcom 10323 ax-addass 10324 ax-mulass 10325 ax-distr 10326 ax-i2m1 10327 ax-1ne0 10328 ax-1rid 10329 ax-rnegex 10330 ax-rrecex 10331 ax-cnre 10332 ax-pre-lttri 10333 ax-pre-lttrn 10334 ax-pre-ltadd 10335 ax-pre-mulgt0 10336 |
This theorem depends on definitions: df-bi 199 df-an 387 df-or 879 df-3or 1112 df-3an 1113 df-tru 1660 df-ex 1879 df-nf 1883 df-sb 2068 df-mo 2605 df-eu 2640 df-clab 2812 df-cleq 2818 df-clel 2821 df-nfc 2958 df-ne 3000 df-nel 3103 df-ral 3122 df-rex 3123 df-reu 3124 df-rmo 3125 df-rab 3126 df-v 3416 df-sbc 3663 df-csb 3758 df-dif 3801 df-un 3803 df-in 3805 df-ss 3812 df-pss 3814 df-nul 4147 df-if 4309 df-pw 4382 df-sn 4400 df-pr 4402 df-tp 4404 df-op 4406 df-uni 4661 df-iun 4744 df-br 4876 df-opab 4938 df-mpt 4955 df-tr 4978 df-id 5252 df-eprel 5257 df-po 5265 df-so 5266 df-fr 5305 df-we 5307 df-xp 5352 df-rel 5353 df-cnv 5354 df-co 5355 df-dm 5356 df-rn 5357 df-res 5358 df-ima 5359 df-pred 5924 df-ord 5970 df-on 5971 df-lim 5972 df-suc 5973 df-iota 6090 df-fun 6129 df-fn 6130 df-f 6131 df-f1 6132 df-fo 6133 df-f1o 6134 df-fv 6135 df-riota 6871 df-ov 6913 df-oprab 6914 df-mpt2 6915 df-om 7332 df-1st 7433 df-2nd 7434 df-wrecs 7677 df-recs 7739 df-rdg 7777 df-er 8014 df-en 8229 df-dom 8230 df-sdom 8231 df-pnf 10400 df-mnf 10401 df-xr 10402 df-ltxr 10403 df-le 10404 df-sub 10594 df-neg 10595 df-nn 11358 df-2 11421 df-ndx 16232 df-slot 16233 df-base 16235 df-sets 16236 df-ress 16237 df-plusg 16325 df-0g 16462 df-mgm 17602 df-sgrp 17644 df-mnd 17655 df-grp 17786 df-minusg 17787 df-sbg 17788 df-subg 17949 df-cntz 18107 df-lsm 18409 df-pj1 18410 |
This theorem is referenced by: pj1eq 18471 pj1ghm 18474 lsmhash 18476 pj1lmhm 19466 |
Copyright terms: Public domain | W3C validator |