Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > pj2f | Structured version Visualization version GIF version |
Description: The right projection function maps a direct subspace sum onto the right factor. (Contributed by Mario Carneiro, 15-Oct-2015.) |
Ref | Expression |
---|---|
pj1eu.a | โข + = (+gโ๐บ) |
pj1eu.s | โข โ = (LSSumโ๐บ) |
pj1eu.o | โข 0 = (0gโ๐บ) |
pj1eu.z | โข ๐ = (Cntzโ๐บ) |
pj1eu.2 | โข (๐ โ ๐ โ (SubGrpโ๐บ)) |
pj1eu.3 | โข (๐ โ ๐ โ (SubGrpโ๐บ)) |
pj1eu.4 | โข (๐ โ (๐ โฉ ๐) = { 0 }) |
pj1eu.5 | โข (๐ โ ๐ โ (๐โ๐)) |
pj1f.p | โข ๐ = (proj1โ๐บ) |
Ref | Expression |
---|---|
pj2f | โข (๐ โ (๐๐๐):(๐ โ ๐)โถ๐) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | pj1eu.a | . . 3 โข + = (+gโ๐บ) | |
2 | pj1eu.s | . . 3 โข โ = (LSSumโ๐บ) | |
3 | pj1eu.o | . . 3 โข 0 = (0gโ๐บ) | |
4 | pj1eu.z | . . 3 โข ๐ = (Cntzโ๐บ) | |
5 | pj1eu.3 | . . 3 โข (๐ โ ๐ โ (SubGrpโ๐บ)) | |
6 | pj1eu.2 | . . 3 โข (๐ โ ๐ โ (SubGrpโ๐บ)) | |
7 | incom 4148 | . . . 4 โข (๐ โฉ ๐) = (๐ โฉ ๐) | |
8 | pj1eu.4 | . . . 4 โข (๐ โ (๐ โฉ ๐) = { 0 }) | |
9 | 7, 8 | eqtrid 2788 | . . 3 โข (๐ โ (๐ โฉ ๐) = { 0 }) |
10 | pj1eu.5 | . . . 4 โข (๐ โ ๐ โ (๐โ๐)) | |
11 | 4, 6, 5, 10 | cntzrecd 19379 | . . 3 โข (๐ โ ๐ โ (๐โ๐)) |
12 | pj1f.p | . . 3 โข ๐ = (proj1โ๐บ) | |
13 | 1, 2, 3, 4, 5, 6, 9, 11, 12 | pj1f 19398 | . 2 โข (๐ โ (๐๐๐):(๐ โ ๐)โถ๐) |
14 | 2, 4 | lsmcom2 19356 | . . . 4 โข ((๐ โ (SubGrpโ๐บ) โง ๐ โ (SubGrpโ๐บ) โง ๐ โ (๐โ๐)) โ (๐ โ ๐) = (๐ โ ๐)) |
15 | 6, 5, 10, 14 | syl3anc 1370 | . . 3 โข (๐ โ (๐ โ ๐) = (๐ โ ๐)) |
16 | 15 | feq2d 6637 | . 2 โข (๐ โ ((๐๐๐):(๐ โ ๐)โถ๐ โ (๐๐๐):(๐ โ ๐)โถ๐)) |
17 | 13, 16 | mpbird 256 | 1 โข (๐ โ (๐๐๐):(๐ โ ๐)โถ๐) |
Colors of variables: wff setvar class |
Syntax hints: โ wi 4 = wceq 1540 โ wcel 2105 โฉ cin 3897 โ wss 3898 {csn 4573 โถwf 6475 โcfv 6479 (class class class)co 7337 +gcplusg 17059 0gc0g 17247 SubGrpcsubg 18845 Cntzccntz 19017 LSSumclsm 19335 proj1cpj1 19336 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-10 2136 ax-11 2153 ax-12 2170 ax-ext 2707 ax-rep 5229 ax-sep 5243 ax-nul 5250 ax-pow 5308 ax-pr 5372 ax-un 7650 ax-cnex 11028 ax-resscn 11029 ax-1cn 11030 ax-icn 11031 ax-addcl 11032 ax-addrcl 11033 ax-mulcl 11034 ax-mulrcl 11035 ax-mulcom 11036 ax-addass 11037 ax-mulass 11038 ax-distr 11039 ax-i2m1 11040 ax-1ne0 11041 ax-1rid 11042 ax-rnegex 11043 ax-rrecex 11044 ax-cnre 11045 ax-pre-lttri 11046 ax-pre-lttrn 11047 ax-pre-ltadd 11048 ax-pre-mulgt0 11049 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2538 df-eu 2567 df-clab 2714 df-cleq 2728 df-clel 2814 df-nfc 2886 df-ne 2941 df-nel 3047 df-ral 3062 df-rex 3071 df-rmo 3349 df-reu 3350 df-rab 3404 df-v 3443 df-sbc 3728 df-csb 3844 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-pss 3917 df-nul 4270 df-if 4474 df-pw 4549 df-sn 4574 df-pr 4576 df-op 4580 df-uni 4853 df-iun 4943 df-br 5093 df-opab 5155 df-mpt 5176 df-tr 5210 df-id 5518 df-eprel 5524 df-po 5532 df-so 5533 df-fr 5575 df-we 5577 df-xp 5626 df-rel 5627 df-cnv 5628 df-co 5629 df-dm 5630 df-rn 5631 df-res 5632 df-ima 5633 df-pred 6238 df-ord 6305 df-on 6306 df-lim 6307 df-suc 6308 df-iota 6431 df-fun 6481 df-fn 6482 df-f 6483 df-f1 6484 df-fo 6485 df-f1o 6486 df-fv 6487 df-riota 7293 df-ov 7340 df-oprab 7341 df-mpo 7342 df-om 7781 df-1st 7899 df-2nd 7900 df-frecs 8167 df-wrecs 8198 df-recs 8272 df-rdg 8311 df-er 8569 df-en 8805 df-dom 8806 df-sdom 8807 df-pnf 11112 df-mnf 11113 df-xr 11114 df-ltxr 11115 df-le 11116 df-sub 11308 df-neg 11309 df-nn 12075 df-2 12137 df-sets 16962 df-slot 16980 df-ndx 16992 df-base 17010 df-ress 17039 df-plusg 17072 df-0g 17249 df-mgm 18423 df-sgrp 18472 df-mnd 18483 df-grp 18676 df-minusg 18677 df-sbg 18678 df-subg 18848 df-cntz 19019 df-lsm 19337 df-pj1 19338 |
This theorem is referenced by: pj1eq 19401 pj1ghm 19404 lsmhash 19406 pj1lmhm 20468 |
Copyright terms: Public domain | W3C validator |