![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > pj2f | Structured version Visualization version GIF version |
Description: The right projection function maps a direct subspace sum onto the right factor. (Contributed by Mario Carneiro, 15-Oct-2015.) |
Ref | Expression |
---|---|
pj1eu.a | ⊢ + = (+g‘𝐺) |
pj1eu.s | ⊢ ⊕ = (LSSum‘𝐺) |
pj1eu.o | ⊢ 0 = (0g‘𝐺) |
pj1eu.z | ⊢ 𝑍 = (Cntz‘𝐺) |
pj1eu.2 | ⊢ (𝜑 → 𝑇 ∈ (SubGrp‘𝐺)) |
pj1eu.3 | ⊢ (𝜑 → 𝑈 ∈ (SubGrp‘𝐺)) |
pj1eu.4 | ⊢ (𝜑 → (𝑇 ∩ 𝑈) = { 0 }) |
pj1eu.5 | ⊢ (𝜑 → 𝑇 ⊆ (𝑍‘𝑈)) |
pj1f.p | ⊢ 𝑃 = (proj1‘𝐺) |
Ref | Expression |
---|---|
pj2f | ⊢ (𝜑 → (𝑈𝑃𝑇):(𝑇 ⊕ 𝑈)⟶𝑈) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | pj1eu.a | . . 3 ⊢ + = (+g‘𝐺) | |
2 | pj1eu.s | . . 3 ⊢ ⊕ = (LSSum‘𝐺) | |
3 | pj1eu.o | . . 3 ⊢ 0 = (0g‘𝐺) | |
4 | pj1eu.z | . . 3 ⊢ 𝑍 = (Cntz‘𝐺) | |
5 | pj1eu.3 | . . 3 ⊢ (𝜑 → 𝑈 ∈ (SubGrp‘𝐺)) | |
6 | pj1eu.2 | . . 3 ⊢ (𝜑 → 𝑇 ∈ (SubGrp‘𝐺)) | |
7 | incom 4202 | . . . 4 ⊢ (𝑈 ∩ 𝑇) = (𝑇 ∩ 𝑈) | |
8 | pj1eu.4 | . . . 4 ⊢ (𝜑 → (𝑇 ∩ 𝑈) = { 0 }) | |
9 | 7, 8 | eqtrid 2778 | . . 3 ⊢ (𝜑 → (𝑈 ∩ 𝑇) = { 0 }) |
10 | pj1eu.5 | . . . 4 ⊢ (𝜑 → 𝑇 ⊆ (𝑍‘𝑈)) | |
11 | 4, 6, 5, 10 | cntzrecd 19676 | . . 3 ⊢ (𝜑 → 𝑈 ⊆ (𝑍‘𝑇)) |
12 | pj1f.p | . . 3 ⊢ 𝑃 = (proj1‘𝐺) | |
13 | 1, 2, 3, 4, 5, 6, 9, 11, 12 | pj1f 19695 | . 2 ⊢ (𝜑 → (𝑈𝑃𝑇):(𝑈 ⊕ 𝑇)⟶𝑈) |
14 | 2, 4 | lsmcom2 19653 | . . . 4 ⊢ ((𝑇 ∈ (SubGrp‘𝐺) ∧ 𝑈 ∈ (SubGrp‘𝐺) ∧ 𝑇 ⊆ (𝑍‘𝑈)) → (𝑇 ⊕ 𝑈) = (𝑈 ⊕ 𝑇)) |
15 | 6, 5, 10, 14 | syl3anc 1368 | . . 3 ⊢ (𝜑 → (𝑇 ⊕ 𝑈) = (𝑈 ⊕ 𝑇)) |
16 | 15 | feq2d 6714 | . 2 ⊢ (𝜑 → ((𝑈𝑃𝑇):(𝑇 ⊕ 𝑈)⟶𝑈 ↔ (𝑈𝑃𝑇):(𝑈 ⊕ 𝑇)⟶𝑈)) |
17 | 13, 16 | mpbird 256 | 1 ⊢ (𝜑 → (𝑈𝑃𝑇):(𝑇 ⊕ 𝑈)⟶𝑈) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1534 ∈ wcel 2099 ∩ cin 3946 ⊆ wss 3947 {csn 4633 ⟶wf 6550 ‘cfv 6554 (class class class)co 7424 +gcplusg 17266 0gc0g 17454 SubGrpcsubg 19114 Cntzccntz 19309 LSSumclsm 19632 proj1cpj1 19633 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-10 2130 ax-11 2147 ax-12 2167 ax-ext 2697 ax-rep 5290 ax-sep 5304 ax-nul 5311 ax-pow 5369 ax-pr 5433 ax-un 7746 ax-cnex 11214 ax-resscn 11215 ax-1cn 11216 ax-icn 11217 ax-addcl 11218 ax-addrcl 11219 ax-mulcl 11220 ax-mulrcl 11221 ax-mulcom 11222 ax-addass 11223 ax-mulass 11224 ax-distr 11225 ax-i2m1 11226 ax-1ne0 11227 ax-1rid 11228 ax-rnegex 11229 ax-rrecex 11230 ax-cnre 11231 ax-pre-lttri 11232 ax-pre-lttrn 11233 ax-pre-ltadd 11234 ax-pre-mulgt0 11235 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3or 1085 df-3an 1086 df-tru 1537 df-fal 1547 df-ex 1775 df-nf 1779 df-sb 2061 df-mo 2529 df-eu 2558 df-clab 2704 df-cleq 2718 df-clel 2803 df-nfc 2878 df-ne 2931 df-nel 3037 df-ral 3052 df-rex 3061 df-rmo 3364 df-reu 3365 df-rab 3420 df-v 3464 df-sbc 3777 df-csb 3893 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-pss 3967 df-nul 4326 df-if 4534 df-pw 4609 df-sn 4634 df-pr 4636 df-op 4640 df-uni 4914 df-iun 5003 df-br 5154 df-opab 5216 df-mpt 5237 df-tr 5271 df-id 5580 df-eprel 5586 df-po 5594 df-so 5595 df-fr 5637 df-we 5639 df-xp 5688 df-rel 5689 df-cnv 5690 df-co 5691 df-dm 5692 df-rn 5693 df-res 5694 df-ima 5695 df-pred 6312 df-ord 6379 df-on 6380 df-lim 6381 df-suc 6382 df-iota 6506 df-fun 6556 df-fn 6557 df-f 6558 df-f1 6559 df-fo 6560 df-f1o 6561 df-fv 6562 df-riota 7380 df-ov 7427 df-oprab 7428 df-mpo 7429 df-om 7877 df-1st 8003 df-2nd 8004 df-frecs 8296 df-wrecs 8327 df-recs 8401 df-rdg 8440 df-er 8734 df-en 8975 df-dom 8976 df-sdom 8977 df-pnf 11300 df-mnf 11301 df-xr 11302 df-ltxr 11303 df-le 11304 df-sub 11496 df-neg 11497 df-nn 12265 df-2 12327 df-sets 17166 df-slot 17184 df-ndx 17196 df-base 17214 df-ress 17243 df-plusg 17279 df-0g 17456 df-mgm 18633 df-sgrp 18712 df-mnd 18728 df-grp 18931 df-minusg 18932 df-sbg 18933 df-subg 19117 df-cntz 19311 df-lsm 19634 df-pj1 19635 |
This theorem is referenced by: pj1eq 19698 pj1ghm 19701 lsmhash 19703 pj1lmhm 21078 |
Copyright terms: Public domain | W3C validator |