MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dprdcntz2 Structured version   Visualization version   GIF version

Theorem dprdcntz2 19956
Description: The function 𝑆 is a family of subgroups. (Contributed by Mario Carneiro, 26-Apr-2016.)
Hypotheses
Ref Expression
dprdcntz2.1 (𝜑𝐺dom DProd 𝑆)
dprdcntz2.2 (𝜑 → dom 𝑆 = 𝐼)
dprdcntz2.c (𝜑𝐶𝐼)
dprdcntz2.d (𝜑𝐷𝐼)
dprdcntz2.i (𝜑 → (𝐶𝐷) = ∅)
dprdcntz2.z 𝑍 = (Cntz‘𝐺)
Assertion
Ref Expression
dprdcntz2 (𝜑 → (𝐺 DProd (𝑆𝐶)) ⊆ (𝑍‘(𝐺 DProd (𝑆𝐷))))

Proof of Theorem dprdcntz2
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 dprdcntz2.1 . . . 4 (𝜑𝐺dom DProd 𝑆)
2 dprdcntz2.2 . . . 4 (𝜑 → dom 𝑆 = 𝐼)
3 dprdcntz2.c . . . 4 (𝜑𝐶𝐼)
41, 2, 3dprdres 19946 . . 3 (𝜑 → (𝐺dom DProd (𝑆𝐶) ∧ (𝐺 DProd (𝑆𝐶)) ⊆ (𝐺 DProd 𝑆)))
54simpld 494 . 2 (𝜑𝐺dom DProd (𝑆𝐶))
6 dmres 5967 . . 3 dom (𝑆𝐶) = (𝐶 ∩ dom 𝑆)
73, 2sseqtrrd 3968 . . . 4 (𝜑𝐶 ⊆ dom 𝑆)
8 dfss2 3916 . . . 4 (𝐶 ⊆ dom 𝑆 ↔ (𝐶 ∩ dom 𝑆) = 𝐶)
97, 8sylib 218 . . 3 (𝜑 → (𝐶 ∩ dom 𝑆) = 𝐶)
106, 9eqtrid 2780 . 2 (𝜑 → dom (𝑆𝐶) = 𝐶)
11 dprdgrp 19923 . . . 4 (𝐺dom DProd 𝑆𝐺 ∈ Grp)
121, 11syl 17 . . 3 (𝜑𝐺 ∈ Grp)
13 eqid 2733 . . . 4 (Base‘𝐺) = (Base‘𝐺)
1413dprdssv 19934 . . 3 (𝐺 DProd (𝑆𝐷)) ⊆ (Base‘𝐺)
15 dprdcntz2.z . . . 4 𝑍 = (Cntz‘𝐺)
1613, 15cntzsubg 19255 . . 3 ((𝐺 ∈ Grp ∧ (𝐺 DProd (𝑆𝐷)) ⊆ (Base‘𝐺)) → (𝑍‘(𝐺 DProd (𝑆𝐷))) ∈ (SubGrp‘𝐺))
1712, 14, 16sylancl 586 . 2 (𝜑 → (𝑍‘(𝐺 DProd (𝑆𝐷))) ∈ (SubGrp‘𝐺))
18 fvres 6849 . . . 4 (𝑥𝐶 → ((𝑆𝐶)‘𝑥) = (𝑆𝑥))
1918adantl 481 . . 3 ((𝜑𝑥𝐶) → ((𝑆𝐶)‘𝑥) = (𝑆𝑥))
20 dprdcntz2.d . . . . . . . 8 (𝜑𝐷𝐼)
211, 2, 20dprdres 19946 . . . . . . 7 (𝜑 → (𝐺dom DProd (𝑆𝐷) ∧ (𝐺 DProd (𝑆𝐷)) ⊆ (𝐺 DProd 𝑆)))
2221simpld 494 . . . . . 6 (𝜑𝐺dom DProd (𝑆𝐷))
2322adantr 480 . . . . 5 ((𝜑𝑥𝐶) → 𝐺dom DProd (𝑆𝐷))
24 dprdsubg 19942 . . . . 5 (𝐺dom DProd (𝑆𝐷) → (𝐺 DProd (𝑆𝐷)) ∈ (SubGrp‘𝐺))
2523, 24syl 17 . . . 4 ((𝜑𝑥𝐶) → (𝐺 DProd (𝑆𝐷)) ∈ (SubGrp‘𝐺))
263sselda 3930 . . . . 5 ((𝜑𝑥𝐶) → 𝑥𝐼)
271, 2dprdf2 19925 . . . . . 6 (𝜑𝑆:𝐼⟶(SubGrp‘𝐺))
2827ffvelcdmda 7025 . . . . 5 ((𝜑𝑥𝐼) → (𝑆𝑥) ∈ (SubGrp‘𝐺))
2926, 28syldan 591 . . . 4 ((𝜑𝑥𝐶) → (𝑆𝑥) ∈ (SubGrp‘𝐺))
30 dmres 5967 . . . . . . 7 dom (𝑆𝐷) = (𝐷 ∩ dom 𝑆)
3120, 2sseqtrrd 3968 . . . . . . . 8 (𝜑𝐷 ⊆ dom 𝑆)
32 dfss2 3916 . . . . . . . 8 (𝐷 ⊆ dom 𝑆 ↔ (𝐷 ∩ dom 𝑆) = 𝐷)
3331, 32sylib 218 . . . . . . 7 (𝜑 → (𝐷 ∩ dom 𝑆) = 𝐷)
3430, 33eqtrid 2780 . . . . . 6 (𝜑 → dom (𝑆𝐷) = 𝐷)
3534adantr 480 . . . . 5 ((𝜑𝑥𝐶) → dom (𝑆𝐷) = 𝐷)
3612adantr 480 . . . . . 6 ((𝜑𝑥𝐶) → 𝐺 ∈ Grp)
3713subgss 19044 . . . . . . 7 ((𝑆𝑥) ∈ (SubGrp‘𝐺) → (𝑆𝑥) ⊆ (Base‘𝐺))
3829, 37syl 17 . . . . . 6 ((𝜑𝑥𝐶) → (𝑆𝑥) ⊆ (Base‘𝐺))
3913, 15cntzsubg 19255 . . . . . 6 ((𝐺 ∈ Grp ∧ (𝑆𝑥) ⊆ (Base‘𝐺)) → (𝑍‘(𝑆𝑥)) ∈ (SubGrp‘𝐺))
4036, 38, 39syl2anc 584 . . . . 5 ((𝜑𝑥𝐶) → (𝑍‘(𝑆𝑥)) ∈ (SubGrp‘𝐺))
41 fvres 6849 . . . . . . 7 (𝑦𝐷 → ((𝑆𝐷)‘𝑦) = (𝑆𝑦))
4241adantl 481 . . . . . 6 (((𝜑𝑥𝐶) ∧ 𝑦𝐷) → ((𝑆𝐷)‘𝑦) = (𝑆𝑦))
431ad2antrr 726 . . . . . . 7 (((𝜑𝑥𝐶) ∧ 𝑦𝐷) → 𝐺dom DProd 𝑆)
442ad2antrr 726 . . . . . . 7 (((𝜑𝑥𝐶) ∧ 𝑦𝐷) → dom 𝑆 = 𝐼)
4520adantr 480 . . . . . . . 8 ((𝜑𝑥𝐶) → 𝐷𝐼)
4645sselda 3930 . . . . . . 7 (((𝜑𝑥𝐶) ∧ 𝑦𝐷) → 𝑦𝐼)
4726adantr 480 . . . . . . 7 (((𝜑𝑥𝐶) ∧ 𝑦𝐷) → 𝑥𝐼)
48 simpr 484 . . . . . . . 8 (((𝜑𝑥𝐶) ∧ 𝑦𝐷) → 𝑦𝐷)
49 noel 4287 . . . . . . . . . . . 12 ¬ 𝑥 ∈ ∅
50 elin 3914 . . . . . . . . . . . . 13 (𝑥 ∈ (𝐶𝐷) ↔ (𝑥𝐶𝑥𝐷))
51 dprdcntz2.i . . . . . . . . . . . . . 14 (𝜑 → (𝐶𝐷) = ∅)
5251eleq2d 2819 . . . . . . . . . . . . 13 (𝜑 → (𝑥 ∈ (𝐶𝐷) ↔ 𝑥 ∈ ∅))
5350, 52bitr3id 285 . . . . . . . . . . . 12 (𝜑 → ((𝑥𝐶𝑥𝐷) ↔ 𝑥 ∈ ∅))
5449, 53mtbiri 327 . . . . . . . . . . 11 (𝜑 → ¬ (𝑥𝐶𝑥𝐷))
55 imnan 399 . . . . . . . . . . 11 ((𝑥𝐶 → ¬ 𝑥𝐷) ↔ ¬ (𝑥𝐶𝑥𝐷))
5654, 55sylibr 234 . . . . . . . . . 10 (𝜑 → (𝑥𝐶 → ¬ 𝑥𝐷))
5756imp 406 . . . . . . . . 9 ((𝜑𝑥𝐶) → ¬ 𝑥𝐷)
5857adantr 480 . . . . . . . 8 (((𝜑𝑥𝐶) ∧ 𝑦𝐷) → ¬ 𝑥𝐷)
59 nelne2 3027 . . . . . . . 8 ((𝑦𝐷 ∧ ¬ 𝑥𝐷) → 𝑦𝑥)
6048, 58, 59syl2anc 584 . . . . . . 7 (((𝜑𝑥𝐶) ∧ 𝑦𝐷) → 𝑦𝑥)
6143, 44, 46, 47, 60, 15dprdcntz 19926 . . . . . 6 (((𝜑𝑥𝐶) ∧ 𝑦𝐷) → (𝑆𝑦) ⊆ (𝑍‘(𝑆𝑥)))
6242, 61eqsstrd 3965 . . . . 5 (((𝜑𝑥𝐶) ∧ 𝑦𝐷) → ((𝑆𝐷)‘𝑦) ⊆ (𝑍‘(𝑆𝑥)))
6323, 35, 40, 62dprdlub 19944 . . . 4 ((𝜑𝑥𝐶) → (𝐺 DProd (𝑆𝐷)) ⊆ (𝑍‘(𝑆𝑥)))
6415, 25, 29, 63cntzrecd 19594 . . 3 ((𝜑𝑥𝐶) → (𝑆𝑥) ⊆ (𝑍‘(𝐺 DProd (𝑆𝐷))))
6519, 64eqsstrd 3965 . 2 ((𝜑𝑥𝐶) → ((𝑆𝐶)‘𝑥) ⊆ (𝑍‘(𝐺 DProd (𝑆𝐷))))
665, 10, 17, 65dprdlub 19944 1 (𝜑 → (𝐺 DProd (𝑆𝐶)) ⊆ (𝑍‘(𝐺 DProd (𝑆𝐷))))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395   = wceq 1541  wcel 2113  wne 2929  cin 3897  wss 3898  c0 4282   class class class wbr 5095  dom cdm 5621  cres 5623  cfv 6488  (class class class)co 7354  Basecbs 17124  Grpcgrp 18850  SubGrpcsubg 19037  Cntzccntz 19231   DProd cdprd 19911
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-11 2162  ax-12 2182  ax-ext 2705  ax-rep 5221  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374  ax-un 7676  ax-cnex 11071  ax-resscn 11072  ax-1cn 11073  ax-icn 11074  ax-addcl 11075  ax-addrcl 11076  ax-mulcl 11077  ax-mulrcl 11078  ax-mulcom 11079  ax-addass 11080  ax-mulass 11081  ax-distr 11082  ax-i2m1 11083  ax-1ne0 11084  ax-1rid 11085  ax-rnegex 11086  ax-rrecex 11087  ax-cnre 11088  ax-pre-lttri 11089  ax-pre-lttrn 11090  ax-pre-ltadd 11091  ax-pre-mulgt0 11092
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2725  df-clel 2808  df-nfc 2882  df-ne 2930  df-nel 3034  df-ral 3049  df-rex 3058  df-rmo 3347  df-reu 3348  df-rab 3397  df-v 3439  df-sbc 3738  df-csb 3847  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-pss 3918  df-nul 4283  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4861  df-int 4900  df-iun 4945  df-iin 4946  df-br 5096  df-opab 5158  df-mpt 5177  df-tr 5203  df-id 5516  df-eprel 5521  df-po 5529  df-so 5530  df-fr 5574  df-se 5575  df-we 5576  df-xp 5627  df-rel 5628  df-cnv 5629  df-co 5630  df-dm 5631  df-rn 5632  df-res 5633  df-ima 5634  df-pred 6255  df-ord 6316  df-on 6317  df-lim 6318  df-suc 6319  df-iota 6444  df-fun 6490  df-fn 6491  df-f 6492  df-f1 6493  df-fo 6494  df-f1o 6495  df-fv 6496  df-isom 6497  df-riota 7311  df-ov 7357  df-oprab 7358  df-mpo 7359  df-of 7618  df-om 7805  df-1st 7929  df-2nd 7930  df-supp 8099  df-tpos 8164  df-frecs 8219  df-wrecs 8250  df-recs 8299  df-rdg 8337  df-1o 8393  df-2o 8394  df-er 8630  df-map 8760  df-ixp 8830  df-en 8878  df-dom 8879  df-sdom 8880  df-fin 8881  df-fsupp 9255  df-oi 9405  df-card 9841  df-pnf 11157  df-mnf 11158  df-xr 11159  df-ltxr 11160  df-le 11161  df-sub 11355  df-neg 11356  df-nn 12135  df-2 12197  df-n0 12391  df-z 12478  df-uz 12741  df-fz 13412  df-fzo 13559  df-seq 13913  df-hash 14242  df-sets 17079  df-slot 17097  df-ndx 17109  df-base 17125  df-ress 17146  df-plusg 17178  df-0g 17349  df-gsum 17350  df-mre 17492  df-mrc 17493  df-acs 17495  df-mgm 18552  df-sgrp 18631  df-mnd 18647  df-mhm 18695  df-submnd 18696  df-grp 18853  df-minusg 18854  df-sbg 18855  df-mulg 18985  df-subg 19040  df-ghm 19129  df-gim 19175  df-cntz 19233  df-oppg 19262  df-cmn 19698  df-dprd 19913
This theorem is referenced by:  dprd2da  19960  dmdprdsplit  19965  ablfac1eulem  19990  ablfac1eu  19991
  Copyright terms: Public domain W3C validator