Step | Hyp | Ref
| Expression |
1 | | dprdcntz2.1 |
. . . 4
⊢ (𝜑 → 𝐺dom DProd 𝑆) |
2 | | dprdcntz2.2 |
. . . 4
⊢ (𝜑 → dom 𝑆 = 𝐼) |
3 | | dprdcntz2.c |
. . . 4
⊢ (𝜑 → 𝐶 ⊆ 𝐼) |
4 | 1, 2, 3 | dprdres 19631 |
. . 3
⊢ (𝜑 → (𝐺dom DProd (𝑆 ↾ 𝐶) ∧ (𝐺 DProd (𝑆 ↾ 𝐶)) ⊆ (𝐺 DProd 𝑆))) |
5 | 4 | simpld 495 |
. 2
⊢ (𝜑 → 𝐺dom DProd (𝑆 ↾ 𝐶)) |
6 | | dmres 5913 |
. . 3
⊢ dom
(𝑆 ↾ 𝐶) = (𝐶 ∩ dom 𝑆) |
7 | 3, 2 | sseqtrrd 3962 |
. . . 4
⊢ (𝜑 → 𝐶 ⊆ dom 𝑆) |
8 | | df-ss 3904 |
. . . 4
⊢ (𝐶 ⊆ dom 𝑆 ↔ (𝐶 ∩ dom 𝑆) = 𝐶) |
9 | 7, 8 | sylib 217 |
. . 3
⊢ (𝜑 → (𝐶 ∩ dom 𝑆) = 𝐶) |
10 | 6, 9 | eqtrid 2790 |
. 2
⊢ (𝜑 → dom (𝑆 ↾ 𝐶) = 𝐶) |
11 | | dprdgrp 19608 |
. . . 4
⊢ (𝐺dom DProd 𝑆 → 𝐺 ∈ Grp) |
12 | 1, 11 | syl 17 |
. . 3
⊢ (𝜑 → 𝐺 ∈ Grp) |
13 | | eqid 2738 |
. . . 4
⊢
(Base‘𝐺) =
(Base‘𝐺) |
14 | 13 | dprdssv 19619 |
. . 3
⊢ (𝐺 DProd (𝑆 ↾ 𝐷)) ⊆ (Base‘𝐺) |
15 | | dprdcntz2.z |
. . . 4
⊢ 𝑍 = (Cntz‘𝐺) |
16 | 13, 15 | cntzsubg 18943 |
. . 3
⊢ ((𝐺 ∈ Grp ∧ (𝐺 DProd (𝑆 ↾ 𝐷)) ⊆ (Base‘𝐺)) → (𝑍‘(𝐺 DProd (𝑆 ↾ 𝐷))) ∈ (SubGrp‘𝐺)) |
17 | 12, 14, 16 | sylancl 586 |
. 2
⊢ (𝜑 → (𝑍‘(𝐺 DProd (𝑆 ↾ 𝐷))) ∈ (SubGrp‘𝐺)) |
18 | | fvres 6793 |
. . . 4
⊢ (𝑥 ∈ 𝐶 → ((𝑆 ↾ 𝐶)‘𝑥) = (𝑆‘𝑥)) |
19 | 18 | adantl 482 |
. . 3
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐶) → ((𝑆 ↾ 𝐶)‘𝑥) = (𝑆‘𝑥)) |
20 | | dprdcntz2.d |
. . . . . . . 8
⊢ (𝜑 → 𝐷 ⊆ 𝐼) |
21 | 1, 2, 20 | dprdres 19631 |
. . . . . . 7
⊢ (𝜑 → (𝐺dom DProd (𝑆 ↾ 𝐷) ∧ (𝐺 DProd (𝑆 ↾ 𝐷)) ⊆ (𝐺 DProd 𝑆))) |
22 | 21 | simpld 495 |
. . . . . 6
⊢ (𝜑 → 𝐺dom DProd (𝑆 ↾ 𝐷)) |
23 | 22 | adantr 481 |
. . . . 5
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐶) → 𝐺dom DProd (𝑆 ↾ 𝐷)) |
24 | | dprdsubg 19627 |
. . . . 5
⊢ (𝐺dom DProd (𝑆 ↾ 𝐷) → (𝐺 DProd (𝑆 ↾ 𝐷)) ∈ (SubGrp‘𝐺)) |
25 | 23, 24 | syl 17 |
. . . 4
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐶) → (𝐺 DProd (𝑆 ↾ 𝐷)) ∈ (SubGrp‘𝐺)) |
26 | 3 | sselda 3921 |
. . . . 5
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐶) → 𝑥 ∈ 𝐼) |
27 | 1, 2 | dprdf2 19610 |
. . . . . 6
⊢ (𝜑 → 𝑆:𝐼⟶(SubGrp‘𝐺)) |
28 | 27 | ffvelrnda 6961 |
. . . . 5
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐼) → (𝑆‘𝑥) ∈ (SubGrp‘𝐺)) |
29 | 26, 28 | syldan 591 |
. . . 4
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐶) → (𝑆‘𝑥) ∈ (SubGrp‘𝐺)) |
30 | | dmres 5913 |
. . . . . . 7
⊢ dom
(𝑆 ↾ 𝐷) = (𝐷 ∩ dom 𝑆) |
31 | 20, 2 | sseqtrrd 3962 |
. . . . . . . 8
⊢ (𝜑 → 𝐷 ⊆ dom 𝑆) |
32 | | df-ss 3904 |
. . . . . . . 8
⊢ (𝐷 ⊆ dom 𝑆 ↔ (𝐷 ∩ dom 𝑆) = 𝐷) |
33 | 31, 32 | sylib 217 |
. . . . . . 7
⊢ (𝜑 → (𝐷 ∩ dom 𝑆) = 𝐷) |
34 | 30, 33 | eqtrid 2790 |
. . . . . 6
⊢ (𝜑 → dom (𝑆 ↾ 𝐷) = 𝐷) |
35 | 34 | adantr 481 |
. . . . 5
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐶) → dom (𝑆 ↾ 𝐷) = 𝐷) |
36 | 12 | adantr 481 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐶) → 𝐺 ∈ Grp) |
37 | 13 | subgss 18756 |
. . . . . . 7
⊢ ((𝑆‘𝑥) ∈ (SubGrp‘𝐺) → (𝑆‘𝑥) ⊆ (Base‘𝐺)) |
38 | 29, 37 | syl 17 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐶) → (𝑆‘𝑥) ⊆ (Base‘𝐺)) |
39 | 13, 15 | cntzsubg 18943 |
. . . . . 6
⊢ ((𝐺 ∈ Grp ∧ (𝑆‘𝑥) ⊆ (Base‘𝐺)) → (𝑍‘(𝑆‘𝑥)) ∈ (SubGrp‘𝐺)) |
40 | 36, 38, 39 | syl2anc 584 |
. . . . 5
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐶) → (𝑍‘(𝑆‘𝑥)) ∈ (SubGrp‘𝐺)) |
41 | | fvres 6793 |
. . . . . . 7
⊢ (𝑦 ∈ 𝐷 → ((𝑆 ↾ 𝐷)‘𝑦) = (𝑆‘𝑦)) |
42 | 41 | adantl 482 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑥 ∈ 𝐶) ∧ 𝑦 ∈ 𝐷) → ((𝑆 ↾ 𝐷)‘𝑦) = (𝑆‘𝑦)) |
43 | 1 | ad2antrr 723 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑥 ∈ 𝐶) ∧ 𝑦 ∈ 𝐷) → 𝐺dom DProd 𝑆) |
44 | 2 | ad2antrr 723 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑥 ∈ 𝐶) ∧ 𝑦 ∈ 𝐷) → dom 𝑆 = 𝐼) |
45 | 20 | adantr 481 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐶) → 𝐷 ⊆ 𝐼) |
46 | 45 | sselda 3921 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑥 ∈ 𝐶) ∧ 𝑦 ∈ 𝐷) → 𝑦 ∈ 𝐼) |
47 | 26 | adantr 481 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑥 ∈ 𝐶) ∧ 𝑦 ∈ 𝐷) → 𝑥 ∈ 𝐼) |
48 | | simpr 485 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑥 ∈ 𝐶) ∧ 𝑦 ∈ 𝐷) → 𝑦 ∈ 𝐷) |
49 | | noel 4264 |
. . . . . . . . . . . 12
⊢ ¬
𝑥 ∈
∅ |
50 | | elin 3903 |
. . . . . . . . . . . . 13
⊢ (𝑥 ∈ (𝐶 ∩ 𝐷) ↔ (𝑥 ∈ 𝐶 ∧ 𝑥 ∈ 𝐷)) |
51 | | dprdcntz2.i |
. . . . . . . . . . . . . 14
⊢ (𝜑 → (𝐶 ∩ 𝐷) = ∅) |
52 | 51 | eleq2d 2824 |
. . . . . . . . . . . . 13
⊢ (𝜑 → (𝑥 ∈ (𝐶 ∩ 𝐷) ↔ 𝑥 ∈ ∅)) |
53 | 50, 52 | bitr3id 285 |
. . . . . . . . . . . 12
⊢ (𝜑 → ((𝑥 ∈ 𝐶 ∧ 𝑥 ∈ 𝐷) ↔ 𝑥 ∈ ∅)) |
54 | 49, 53 | mtbiri 327 |
. . . . . . . . . . 11
⊢ (𝜑 → ¬ (𝑥 ∈ 𝐶 ∧ 𝑥 ∈ 𝐷)) |
55 | | imnan 400 |
. . . . . . . . . . 11
⊢ ((𝑥 ∈ 𝐶 → ¬ 𝑥 ∈ 𝐷) ↔ ¬ (𝑥 ∈ 𝐶 ∧ 𝑥 ∈ 𝐷)) |
56 | 54, 55 | sylibr 233 |
. . . . . . . . . 10
⊢ (𝜑 → (𝑥 ∈ 𝐶 → ¬ 𝑥 ∈ 𝐷)) |
57 | 56 | imp 407 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐶) → ¬ 𝑥 ∈ 𝐷) |
58 | 57 | adantr 481 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑥 ∈ 𝐶) ∧ 𝑦 ∈ 𝐷) → ¬ 𝑥 ∈ 𝐷) |
59 | | nelne2 3042 |
. . . . . . . 8
⊢ ((𝑦 ∈ 𝐷 ∧ ¬ 𝑥 ∈ 𝐷) → 𝑦 ≠ 𝑥) |
60 | 48, 58, 59 | syl2anc 584 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑥 ∈ 𝐶) ∧ 𝑦 ∈ 𝐷) → 𝑦 ≠ 𝑥) |
61 | 43, 44, 46, 47, 60, 15 | dprdcntz 19611 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑥 ∈ 𝐶) ∧ 𝑦 ∈ 𝐷) → (𝑆‘𝑦) ⊆ (𝑍‘(𝑆‘𝑥))) |
62 | 42, 61 | eqsstrd 3959 |
. . . . 5
⊢ (((𝜑 ∧ 𝑥 ∈ 𝐶) ∧ 𝑦 ∈ 𝐷) → ((𝑆 ↾ 𝐷)‘𝑦) ⊆ (𝑍‘(𝑆‘𝑥))) |
63 | 23, 35, 40, 62 | dprdlub 19629 |
. . . 4
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐶) → (𝐺 DProd (𝑆 ↾ 𝐷)) ⊆ (𝑍‘(𝑆‘𝑥))) |
64 | 15, 25, 29, 63 | cntzrecd 19284 |
. . 3
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐶) → (𝑆‘𝑥) ⊆ (𝑍‘(𝐺 DProd (𝑆 ↾ 𝐷)))) |
65 | 19, 64 | eqsstrd 3959 |
. 2
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐶) → ((𝑆 ↾ 𝐶)‘𝑥) ⊆ (𝑍‘(𝐺 DProd (𝑆 ↾ 𝐷)))) |
66 | 5, 10, 17, 65 | dprdlub 19629 |
1
⊢ (𝜑 → (𝐺 DProd (𝑆 ↾ 𝐶)) ⊆ (𝑍‘(𝐺 DProd (𝑆 ↾ 𝐷)))) |