| Mathbox for Zhi Wang |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > cofidfth | Structured version Visualization version GIF version | ||
| Description: If "𝐹 is a section of 𝐺 " in a category of small categories (in a universe), then 𝐹 is faithful. Combined with cofidf1 49246, this theorem proves that 𝐹 is an embedding (a faithful functor injective on objects, remark 3.28(1) of [Adamek] p. 34). (Contributed by Zhi Wang, 15-Nov-2025.) |
| Ref | Expression |
|---|---|
| cofidfth.i | ⊢ 𝐼 = (idfunc‘𝐷) |
| cofidfth.f | ⊢ (𝜑 → 𝐹(𝐷 Func 𝐸)𝐺) |
| cofidfth.k | ⊢ (𝜑 → 𝐾(𝐸 Func 𝐷)𝐿) |
| cofidfth.o | ⊢ (𝜑 → (〈𝐾, 𝐿〉 ∘func 〈𝐹, 𝐺〉) = 𝐼) |
| Ref | Expression |
|---|---|
| cofidfth | ⊢ (𝜑 → 𝐹(𝐷 Faith 𝐸)𝐺) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cofidfth.f | . 2 ⊢ (𝜑 → 𝐹(𝐷 Func 𝐸)𝐺) | |
| 2 | cofidfth.i | . . . . 5 ⊢ 𝐼 = (idfunc‘𝐷) | |
| 3 | eqid 2733 | . . . . 5 ⊢ (Base‘𝐷) = (Base‘𝐷) | |
| 4 | 1 | adantr 480 | . . . . 5 ⊢ ((𝜑 ∧ (𝑥 ∈ (Base‘𝐷) ∧ 𝑦 ∈ (Base‘𝐷))) → 𝐹(𝐷 Func 𝐸)𝐺) |
| 5 | cofidfth.k | . . . . . 6 ⊢ (𝜑 → 𝐾(𝐸 Func 𝐷)𝐿) | |
| 6 | 5 | adantr 480 | . . . . 5 ⊢ ((𝜑 ∧ (𝑥 ∈ (Base‘𝐷) ∧ 𝑦 ∈ (Base‘𝐷))) → 𝐾(𝐸 Func 𝐷)𝐿) |
| 7 | cofidfth.o | . . . . . 6 ⊢ (𝜑 → (〈𝐾, 𝐿〉 ∘func 〈𝐹, 𝐺〉) = 𝐼) | |
| 8 | 7 | adantr 480 | . . . . 5 ⊢ ((𝜑 ∧ (𝑥 ∈ (Base‘𝐷) ∧ 𝑦 ∈ (Base‘𝐷))) → (〈𝐾, 𝐿〉 ∘func 〈𝐹, 𝐺〉) = 𝐼) |
| 9 | eqid 2733 | . . . . 5 ⊢ (Hom ‘𝐷) = (Hom ‘𝐷) | |
| 10 | eqid 2733 | . . . . 5 ⊢ (Hom ‘𝐸) = (Hom ‘𝐸) | |
| 11 | simprl 770 | . . . . 5 ⊢ ((𝜑 ∧ (𝑥 ∈ (Base‘𝐷) ∧ 𝑦 ∈ (Base‘𝐷))) → 𝑥 ∈ (Base‘𝐷)) | |
| 12 | simprr 772 | . . . . 5 ⊢ ((𝜑 ∧ (𝑥 ∈ (Base‘𝐷) ∧ 𝑦 ∈ (Base‘𝐷))) → 𝑦 ∈ (Base‘𝐷)) | |
| 13 | 2, 3, 4, 6, 8, 9, 10, 11, 12 | cofidf2 49245 | . . . 4 ⊢ ((𝜑 ∧ (𝑥 ∈ (Base‘𝐷) ∧ 𝑦 ∈ (Base‘𝐷))) → ((𝑥𝐺𝑦):(𝑥(Hom ‘𝐷)𝑦)–1-1→((𝐹‘𝑥)(Hom ‘𝐸)(𝐹‘𝑦)) ∧ ((𝐹‘𝑥)𝐿(𝐹‘𝑦)):((𝐹‘𝑥)(Hom ‘𝐸)(𝐹‘𝑦))–onto→(𝑥(Hom ‘𝐷)𝑦))) |
| 14 | 13 | simpld 494 | . . 3 ⊢ ((𝜑 ∧ (𝑥 ∈ (Base‘𝐷) ∧ 𝑦 ∈ (Base‘𝐷))) → (𝑥𝐺𝑦):(𝑥(Hom ‘𝐷)𝑦)–1-1→((𝐹‘𝑥)(Hom ‘𝐸)(𝐹‘𝑦))) |
| 15 | 14 | ralrimivva 3176 | . 2 ⊢ (𝜑 → ∀𝑥 ∈ (Base‘𝐷)∀𝑦 ∈ (Base‘𝐷)(𝑥𝐺𝑦):(𝑥(Hom ‘𝐷)𝑦)–1-1→((𝐹‘𝑥)(Hom ‘𝐸)(𝐹‘𝑦))) |
| 16 | 3, 9, 10 | isfth2 17826 | . 2 ⊢ (𝐹(𝐷 Faith 𝐸)𝐺 ↔ (𝐹(𝐷 Func 𝐸)𝐺 ∧ ∀𝑥 ∈ (Base‘𝐷)∀𝑦 ∈ (Base‘𝐷)(𝑥𝐺𝑦):(𝑥(Hom ‘𝐷)𝑦)–1-1→((𝐹‘𝑥)(Hom ‘𝐸)(𝐹‘𝑦)))) |
| 17 | 1, 15, 16 | sylanbrc 583 | 1 ⊢ (𝜑 → 𝐹(𝐷 Faith 𝐸)𝐺) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1541 ∈ wcel 2113 ∀wral 3048 〈cop 4581 class class class wbr 5093 –1-1→wf1 6483 –onto→wfo 6484 ‘cfv 6486 (class class class)co 7352 Basecbs 17122 Hom chom 17174 Func cfunc 17763 idfunccidfu 17764 ∘func ccofu 17765 Faith cfth 17814 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-10 2146 ax-11 2162 ax-12 2182 ax-ext 2705 ax-rep 5219 ax-sep 5236 ax-nul 5246 ax-pow 5305 ax-pr 5372 ax-un 7674 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2725 df-clel 2808 df-nfc 2882 df-ne 2930 df-ral 3049 df-rex 3058 df-reu 3348 df-rab 3397 df-v 3439 df-sbc 3738 df-csb 3847 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-nul 4283 df-if 4475 df-pw 4551 df-sn 4576 df-pr 4578 df-op 4582 df-uni 4859 df-iun 4943 df-br 5094 df-opab 5156 df-mpt 5175 df-id 5514 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-rn 5630 df-res 5631 df-ima 5632 df-iota 6442 df-fun 6488 df-fn 6489 df-f 6490 df-f1 6491 df-fo 6492 df-f1o 6493 df-fv 6494 df-ov 7355 df-oprab 7356 df-mpo 7357 df-1st 7927 df-2nd 7928 df-map 8758 df-ixp 8828 df-func 17767 df-idfu 17768 df-cofu 17769 df-fth 17816 |
| This theorem is referenced by: uobeqw 49344 uobeq 49345 |
| Copyright terms: Public domain | W3C validator |