| Mathbox for Zhi Wang |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > cofidfth | Structured version Visualization version GIF version | ||
| Description: If "𝐹 is a section of 𝐺 " in a category of small categories (in a universe), then 𝐹 is faithful. Combined with cofidf1 49110, this theorem proves that 𝐹 is an embedding (a faithful functor injective on objects, remark 3.28(1) of [Adamek] p. 34). (Contributed by Zhi Wang, 15-Nov-2025.) |
| Ref | Expression |
|---|---|
| cofidfth.i | ⊢ 𝐼 = (idfunc‘𝐷) |
| cofidfth.f | ⊢ (𝜑 → 𝐹(𝐷 Func 𝐸)𝐺) |
| cofidfth.k | ⊢ (𝜑 → 𝐾(𝐸 Func 𝐷)𝐿) |
| cofidfth.o | ⊢ (𝜑 → (〈𝐾, 𝐿〉 ∘func 〈𝐹, 𝐺〉) = 𝐼) |
| Ref | Expression |
|---|---|
| cofidfth | ⊢ (𝜑 → 𝐹(𝐷 Faith 𝐸)𝐺) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cofidfth.f | . 2 ⊢ (𝜑 → 𝐹(𝐷 Func 𝐸)𝐺) | |
| 2 | cofidfth.i | . . . . 5 ⊢ 𝐼 = (idfunc‘𝐷) | |
| 3 | eqid 2729 | . . . . 5 ⊢ (Base‘𝐷) = (Base‘𝐷) | |
| 4 | 1 | adantr 480 | . . . . 5 ⊢ ((𝜑 ∧ (𝑥 ∈ (Base‘𝐷) ∧ 𝑦 ∈ (Base‘𝐷))) → 𝐹(𝐷 Func 𝐸)𝐺) |
| 5 | cofidfth.k | . . . . . 6 ⊢ (𝜑 → 𝐾(𝐸 Func 𝐷)𝐿) | |
| 6 | 5 | adantr 480 | . . . . 5 ⊢ ((𝜑 ∧ (𝑥 ∈ (Base‘𝐷) ∧ 𝑦 ∈ (Base‘𝐷))) → 𝐾(𝐸 Func 𝐷)𝐿) |
| 7 | cofidfth.o | . . . . . 6 ⊢ (𝜑 → (〈𝐾, 𝐿〉 ∘func 〈𝐹, 𝐺〉) = 𝐼) | |
| 8 | 7 | adantr 480 | . . . . 5 ⊢ ((𝜑 ∧ (𝑥 ∈ (Base‘𝐷) ∧ 𝑦 ∈ (Base‘𝐷))) → (〈𝐾, 𝐿〉 ∘func 〈𝐹, 𝐺〉) = 𝐼) |
| 9 | eqid 2729 | . . . . 5 ⊢ (Hom ‘𝐷) = (Hom ‘𝐷) | |
| 10 | eqid 2729 | . . . . 5 ⊢ (Hom ‘𝐸) = (Hom ‘𝐸) | |
| 11 | simprl 770 | . . . . 5 ⊢ ((𝜑 ∧ (𝑥 ∈ (Base‘𝐷) ∧ 𝑦 ∈ (Base‘𝐷))) → 𝑥 ∈ (Base‘𝐷)) | |
| 12 | simprr 772 | . . . . 5 ⊢ ((𝜑 ∧ (𝑥 ∈ (Base‘𝐷) ∧ 𝑦 ∈ (Base‘𝐷))) → 𝑦 ∈ (Base‘𝐷)) | |
| 13 | 2, 3, 4, 6, 8, 9, 10, 11, 12 | cofidf2 49109 | . . . 4 ⊢ ((𝜑 ∧ (𝑥 ∈ (Base‘𝐷) ∧ 𝑦 ∈ (Base‘𝐷))) → ((𝑥𝐺𝑦):(𝑥(Hom ‘𝐷)𝑦)–1-1→((𝐹‘𝑥)(Hom ‘𝐸)(𝐹‘𝑦)) ∧ ((𝐹‘𝑥)𝐿(𝐹‘𝑦)):((𝐹‘𝑥)(Hom ‘𝐸)(𝐹‘𝑦))–onto→(𝑥(Hom ‘𝐷)𝑦))) |
| 14 | 13 | simpld 494 | . . 3 ⊢ ((𝜑 ∧ (𝑥 ∈ (Base‘𝐷) ∧ 𝑦 ∈ (Base‘𝐷))) → (𝑥𝐺𝑦):(𝑥(Hom ‘𝐷)𝑦)–1-1→((𝐹‘𝑥)(Hom ‘𝐸)(𝐹‘𝑦))) |
| 15 | 14 | ralrimivva 3180 | . 2 ⊢ (𝜑 → ∀𝑥 ∈ (Base‘𝐷)∀𝑦 ∈ (Base‘𝐷)(𝑥𝐺𝑦):(𝑥(Hom ‘𝐷)𝑦)–1-1→((𝐹‘𝑥)(Hom ‘𝐸)(𝐹‘𝑦))) |
| 16 | 3, 9, 10 | isfth2 17879 | . 2 ⊢ (𝐹(𝐷 Faith 𝐸)𝐺 ↔ (𝐹(𝐷 Func 𝐸)𝐺 ∧ ∀𝑥 ∈ (Base‘𝐷)∀𝑦 ∈ (Base‘𝐷)(𝑥𝐺𝑦):(𝑥(Hom ‘𝐷)𝑦)–1-1→((𝐹‘𝑥)(Hom ‘𝐸)(𝐹‘𝑦)))) |
| 17 | 1, 15, 16 | sylanbrc 583 | 1 ⊢ (𝜑 → 𝐹(𝐷 Faith 𝐸)𝐺) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ∀wral 3044 〈cop 4595 class class class wbr 5107 –1-1→wf1 6508 –onto→wfo 6509 ‘cfv 6511 (class class class)co 7387 Basecbs 17179 Hom chom 17231 Func cfunc 17816 idfunccidfu 17817 ∘func ccofu 17818 Faith cfth 17867 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5234 ax-sep 5251 ax-nul 5261 ax-pow 5320 ax-pr 5387 ax-un 7711 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-reu 3355 df-rab 3406 df-v 3449 df-sbc 3754 df-csb 3863 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-nul 4297 df-if 4489 df-pw 4565 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-iun 4957 df-br 5108 df-opab 5170 df-mpt 5189 df-id 5533 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-res 5650 df-ima 5651 df-iota 6464 df-fun 6513 df-fn 6514 df-f 6515 df-f1 6516 df-fo 6517 df-f1o 6518 df-fv 6519 df-ov 7390 df-oprab 7391 df-mpo 7392 df-1st 7968 df-2nd 7969 df-map 8801 df-ixp 8871 df-func 17820 df-idfu 17821 df-cofu 17822 df-fth 17869 |
| This theorem is referenced by: uobeqw 49208 uobeq 49209 |
| Copyright terms: Public domain | W3C validator |