| Mathbox for Zhi Wang |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > cofidfth | Structured version Visualization version GIF version | ||
| Description: If "𝐹 is a section of 𝐺 " in a category of small categories (in a universe), then 𝐹 is faithful. Combined with cofidf1 49152, this theorem proves that 𝐹 is an embedding (a faithful functor injective on objects, remark 3.28(1) of [Adamek] p. 34). (Contributed by Zhi Wang, 15-Nov-2025.) |
| Ref | Expression |
|---|---|
| cofidfth.i | ⊢ 𝐼 = (idfunc‘𝐷) |
| cofidfth.f | ⊢ (𝜑 → 𝐹(𝐷 Func 𝐸)𝐺) |
| cofidfth.k | ⊢ (𝜑 → 𝐾(𝐸 Func 𝐷)𝐿) |
| cofidfth.o | ⊢ (𝜑 → (〈𝐾, 𝐿〉 ∘func 〈𝐹, 𝐺〉) = 𝐼) |
| Ref | Expression |
|---|---|
| cofidfth | ⊢ (𝜑 → 𝐹(𝐷 Faith 𝐸)𝐺) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cofidfth.f | . 2 ⊢ (𝜑 → 𝐹(𝐷 Func 𝐸)𝐺) | |
| 2 | cofidfth.i | . . . . 5 ⊢ 𝐼 = (idfunc‘𝐷) | |
| 3 | eqid 2731 | . . . . 5 ⊢ (Base‘𝐷) = (Base‘𝐷) | |
| 4 | 1 | adantr 480 | . . . . 5 ⊢ ((𝜑 ∧ (𝑥 ∈ (Base‘𝐷) ∧ 𝑦 ∈ (Base‘𝐷))) → 𝐹(𝐷 Func 𝐸)𝐺) |
| 5 | cofidfth.k | . . . . . 6 ⊢ (𝜑 → 𝐾(𝐸 Func 𝐷)𝐿) | |
| 6 | 5 | adantr 480 | . . . . 5 ⊢ ((𝜑 ∧ (𝑥 ∈ (Base‘𝐷) ∧ 𝑦 ∈ (Base‘𝐷))) → 𝐾(𝐸 Func 𝐷)𝐿) |
| 7 | cofidfth.o | . . . . . 6 ⊢ (𝜑 → (〈𝐾, 𝐿〉 ∘func 〈𝐹, 𝐺〉) = 𝐼) | |
| 8 | 7 | adantr 480 | . . . . 5 ⊢ ((𝜑 ∧ (𝑥 ∈ (Base‘𝐷) ∧ 𝑦 ∈ (Base‘𝐷))) → (〈𝐾, 𝐿〉 ∘func 〈𝐹, 𝐺〉) = 𝐼) |
| 9 | eqid 2731 | . . . . 5 ⊢ (Hom ‘𝐷) = (Hom ‘𝐷) | |
| 10 | eqid 2731 | . . . . 5 ⊢ (Hom ‘𝐸) = (Hom ‘𝐸) | |
| 11 | simprl 770 | . . . . 5 ⊢ ((𝜑 ∧ (𝑥 ∈ (Base‘𝐷) ∧ 𝑦 ∈ (Base‘𝐷))) → 𝑥 ∈ (Base‘𝐷)) | |
| 12 | simprr 772 | . . . . 5 ⊢ ((𝜑 ∧ (𝑥 ∈ (Base‘𝐷) ∧ 𝑦 ∈ (Base‘𝐷))) → 𝑦 ∈ (Base‘𝐷)) | |
| 13 | 2, 3, 4, 6, 8, 9, 10, 11, 12 | cofidf2 49151 | . . . 4 ⊢ ((𝜑 ∧ (𝑥 ∈ (Base‘𝐷) ∧ 𝑦 ∈ (Base‘𝐷))) → ((𝑥𝐺𝑦):(𝑥(Hom ‘𝐷)𝑦)–1-1→((𝐹‘𝑥)(Hom ‘𝐸)(𝐹‘𝑦)) ∧ ((𝐹‘𝑥)𝐿(𝐹‘𝑦)):((𝐹‘𝑥)(Hom ‘𝐸)(𝐹‘𝑦))–onto→(𝑥(Hom ‘𝐷)𝑦))) |
| 14 | 13 | simpld 494 | . . 3 ⊢ ((𝜑 ∧ (𝑥 ∈ (Base‘𝐷) ∧ 𝑦 ∈ (Base‘𝐷))) → (𝑥𝐺𝑦):(𝑥(Hom ‘𝐷)𝑦)–1-1→((𝐹‘𝑥)(Hom ‘𝐸)(𝐹‘𝑦))) |
| 15 | 14 | ralrimivva 3175 | . 2 ⊢ (𝜑 → ∀𝑥 ∈ (Base‘𝐷)∀𝑦 ∈ (Base‘𝐷)(𝑥𝐺𝑦):(𝑥(Hom ‘𝐷)𝑦)–1-1→((𝐹‘𝑥)(Hom ‘𝐸)(𝐹‘𝑦))) |
| 16 | 3, 9, 10 | isfth2 17821 | . 2 ⊢ (𝐹(𝐷 Faith 𝐸)𝐺 ↔ (𝐹(𝐷 Func 𝐸)𝐺 ∧ ∀𝑥 ∈ (Base‘𝐷)∀𝑦 ∈ (Base‘𝐷)(𝑥𝐺𝑦):(𝑥(Hom ‘𝐷)𝑦)–1-1→((𝐹‘𝑥)(Hom ‘𝐸)(𝐹‘𝑦)))) |
| 17 | 1, 15, 16 | sylanbrc 583 | 1 ⊢ (𝜑 → 𝐹(𝐷 Faith 𝐸)𝐺) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1541 ∈ wcel 2111 ∀wral 3047 〈cop 4582 class class class wbr 5091 –1-1→wf1 6478 –onto→wfo 6479 ‘cfv 6481 (class class class)co 7346 Basecbs 17117 Hom chom 17169 Func cfunc 17758 idfunccidfu 17759 ∘func ccofu 17760 Faith cfth 17809 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-rep 5217 ax-sep 5234 ax-nul 5244 ax-pow 5303 ax-pr 5370 ax-un 7668 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-ral 3048 df-rex 3057 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3742 df-csb 3851 df-dif 3905 df-un 3907 df-in 3909 df-ss 3919 df-nul 4284 df-if 4476 df-pw 4552 df-sn 4577 df-pr 4579 df-op 4583 df-uni 4860 df-iun 4943 df-br 5092 df-opab 5154 df-mpt 5173 df-id 5511 df-xp 5622 df-rel 5623 df-cnv 5624 df-co 5625 df-dm 5626 df-rn 5627 df-res 5628 df-ima 5629 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-f1 6486 df-fo 6487 df-f1o 6488 df-fv 6489 df-ov 7349 df-oprab 7350 df-mpo 7351 df-1st 7921 df-2nd 7922 df-map 8752 df-ixp 8822 df-func 17762 df-idfu 17763 df-cofu 17764 df-fth 17811 |
| This theorem is referenced by: uobeqw 49250 uobeq 49251 |
| Copyright terms: Public domain | W3C validator |