Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  constrcbvlem Structured version   Visualization version   GIF version

Theorem constrcbvlem 33735
Description: Technical lemma for eliminating the hypothesis of constr0 33717 and co. (Contributed by Thierry Arnoux, 2-Nov-2025.)
Assertion
Ref Expression
constrcbvlem rec((𝑧 ∈ V ↦ {𝑦 ∈ ℂ ∣ (∃𝑖𝑧𝑗𝑧𝑘𝑧𝑙𝑧𝑜 ∈ ℝ ∃𝑝 ∈ ℝ (𝑦 = (𝑖 + (𝑜 · (𝑗𝑖))) ∧ 𝑦 = (𝑘 + (𝑝 · (𝑙𝑘))) ∧ (ℑ‘((∗‘(𝑗𝑖)) · (𝑙𝑘))) ≠ 0) ∨ ∃𝑖𝑧𝑗𝑧𝑘𝑧𝑚𝑧𝑞𝑧𝑜 ∈ ℝ (𝑦 = (𝑖 + (𝑜 · (𝑗𝑖))) ∧ (abs‘(𝑦𝑘)) = (abs‘(𝑚𝑞))) ∨ ∃𝑖𝑧𝑗𝑧𝑘𝑧𝑙𝑧𝑚𝑧𝑞𝑧 (𝑖𝑙 ∧ (abs‘(𝑦𝑖)) = (abs‘(𝑗𝑘)) ∧ (abs‘(𝑦𝑙)) = (abs‘(𝑚𝑞))))}), {0, 1}) = rec((𝑠 ∈ V ↦ {𝑥 ∈ ℂ ∣ (∃𝑎𝑠𝑏𝑠𝑐𝑠𝑑𝑠𝑡 ∈ ℝ ∃𝑟 ∈ ℝ (𝑥 = (𝑎 + (𝑡 · (𝑏𝑎))) ∧ 𝑥 = (𝑐 + (𝑟 · (𝑑𝑐))) ∧ (ℑ‘((∗‘(𝑏𝑎)) · (𝑑𝑐))) ≠ 0) ∨ ∃𝑎𝑠𝑏𝑠𝑐𝑠𝑒𝑠𝑓𝑠𝑡 ∈ ℝ (𝑥 = (𝑎 + (𝑡 · (𝑏𝑎))) ∧ (abs‘(𝑥𝑐)) = (abs‘(𝑒𝑓))) ∨ ∃𝑎𝑠𝑏𝑠𝑐𝑠𝑑𝑠𝑒𝑠𝑓𝑠 (𝑎𝑑 ∧ (abs‘(𝑥𝑎)) = (abs‘(𝑏𝑐)) ∧ (abs‘(𝑥𝑑)) = (abs‘(𝑒𝑓))))}), {0, 1})
Distinct variable groups:   𝑎,𝑏,𝑐,𝑑,𝑟,𝑠,𝑡,𝑥,𝑧   𝑦,𝑎,𝑏,𝑐,𝑑,𝑟,𝑡,𝑥,𝑧   𝑒,𝑎,𝑓,𝑐,𝑑,𝑠,𝑡,𝑥,𝑧   𝑖,𝑎,𝑗,𝑐,𝑑,𝑟,𝑡,𝑧   𝑒,𝑏,𝑓,𝑗   𝑘,𝑐,𝑙,𝑟,𝑡,𝑧   𝑚,𝑐,𝑡,𝑧   𝑑,𝑙   𝑒,𝑖,𝑘,𝑙,𝑚,𝑞,𝑦,𝑓,𝑗   𝑓,𝑜,𝑘,𝑙,𝑚,𝑞,𝑖   𝑖,𝑝   𝑗,𝑜,𝑝,𝑘,𝑙,𝑡,𝑦   𝑟,𝑝   𝑧,𝑞

Proof of Theorem constrcbvlem
StepHypRef Expression
1 oveq1 7420 . . . . . . . . . . . . . . 15 (𝑜 = 𝑡 → (𝑜 · (𝑗𝑖)) = (𝑡 · (𝑗𝑖)))
21oveq2d 7429 . . . . . . . . . . . . . 14 (𝑜 = 𝑡 → (𝑖 + (𝑜 · (𝑗𝑖))) = (𝑖 + (𝑡 · (𝑗𝑖))))
32eqeq2d 2745 . . . . . . . . . . . . 13 (𝑜 = 𝑡 → (𝑦 = (𝑖 + (𝑜 · (𝑗𝑖))) ↔ 𝑦 = (𝑖 + (𝑡 · (𝑗𝑖)))))
433anbi1d 1441 . . . . . . . . . . . 12 (𝑜 = 𝑡 → ((𝑦 = (𝑖 + (𝑜 · (𝑗𝑖))) ∧ 𝑦 = (𝑘 + (𝑝 · (𝑙𝑘))) ∧ (ℑ‘((∗‘(𝑗𝑖)) · (𝑙𝑘))) ≠ 0) ↔ (𝑦 = (𝑖 + (𝑡 · (𝑗𝑖))) ∧ 𝑦 = (𝑘 + (𝑝 · (𝑙𝑘))) ∧ (ℑ‘((∗‘(𝑗𝑖)) · (𝑙𝑘))) ≠ 0)))
5 oveq1 7420 . . . . . . . . . . . . . . 15 (𝑝 = 𝑟 → (𝑝 · (𝑙𝑘)) = (𝑟 · (𝑙𝑘)))
65oveq2d 7429 . . . . . . . . . . . . . 14 (𝑝 = 𝑟 → (𝑘 + (𝑝 · (𝑙𝑘))) = (𝑘 + (𝑟 · (𝑙𝑘))))
76eqeq2d 2745 . . . . . . . . . . . . 13 (𝑝 = 𝑟 → (𝑦 = (𝑘 + (𝑝 · (𝑙𝑘))) ↔ 𝑦 = (𝑘 + (𝑟 · (𝑙𝑘)))))
873anbi2d 1442 . . . . . . . . . . . 12 (𝑝 = 𝑟 → ((𝑦 = (𝑖 + (𝑡 · (𝑗𝑖))) ∧ 𝑦 = (𝑘 + (𝑝 · (𝑙𝑘))) ∧ (ℑ‘((∗‘(𝑗𝑖)) · (𝑙𝑘))) ≠ 0) ↔ (𝑦 = (𝑖 + (𝑡 · (𝑗𝑖))) ∧ 𝑦 = (𝑘 + (𝑟 · (𝑙𝑘))) ∧ (ℑ‘((∗‘(𝑗𝑖)) · (𝑙𝑘))) ≠ 0)))
94, 8cbvrex2vw 3228 . . . . . . . . . . 11 (∃𝑜 ∈ ℝ ∃𝑝 ∈ ℝ (𝑦 = (𝑖 + (𝑜 · (𝑗𝑖))) ∧ 𝑦 = (𝑘 + (𝑝 · (𝑙𝑘))) ∧ (ℑ‘((∗‘(𝑗𝑖)) · (𝑙𝑘))) ≠ 0) ↔ ∃𝑡 ∈ ℝ ∃𝑟 ∈ ℝ (𝑦 = (𝑖 + (𝑡 · (𝑗𝑖))) ∧ 𝑦 = (𝑘 + (𝑟 · (𝑙𝑘))) ∧ (ℑ‘((∗‘(𝑗𝑖)) · (𝑙𝑘))) ≠ 0))
1092rexbii 3116 . . . . . . . . . 10 (∃𝑘𝑧𝑙𝑧𝑜 ∈ ℝ ∃𝑝 ∈ ℝ (𝑦 = (𝑖 + (𝑜 · (𝑗𝑖))) ∧ 𝑦 = (𝑘 + (𝑝 · (𝑙𝑘))) ∧ (ℑ‘((∗‘(𝑗𝑖)) · (𝑙𝑘))) ≠ 0) ↔ ∃𝑘𝑧𝑙𝑧𝑡 ∈ ℝ ∃𝑟 ∈ ℝ (𝑦 = (𝑖 + (𝑡 · (𝑗𝑖))) ∧ 𝑦 = (𝑘 + (𝑟 · (𝑙𝑘))) ∧ (ℑ‘((∗‘(𝑗𝑖)) · (𝑙𝑘))) ≠ 0))
11 id 22 . . . . . . . . . . . . . . 15 (𝑘 = 𝑐𝑘 = 𝑐)
12 oveq2 7421 . . . . . . . . . . . . . . . 16 (𝑘 = 𝑐 → (𝑙𝑘) = (𝑙𝑐))
1312oveq2d 7429 . . . . . . . . . . . . . . 15 (𝑘 = 𝑐 → (𝑟 · (𝑙𝑘)) = (𝑟 · (𝑙𝑐)))
1411, 13oveq12d 7431 . . . . . . . . . . . . . 14 (𝑘 = 𝑐 → (𝑘 + (𝑟 · (𝑙𝑘))) = (𝑐 + (𝑟 · (𝑙𝑐))))
1514eqeq2d 2745 . . . . . . . . . . . . 13 (𝑘 = 𝑐 → (𝑦 = (𝑘 + (𝑟 · (𝑙𝑘))) ↔ 𝑦 = (𝑐 + (𝑟 · (𝑙𝑐)))))
1612oveq2d 7429 . . . . . . . . . . . . . . 15 (𝑘 = 𝑐 → ((∗‘(𝑗𝑖)) · (𝑙𝑘)) = ((∗‘(𝑗𝑖)) · (𝑙𝑐)))
1716fveq2d 6890 . . . . . . . . . . . . . 14 (𝑘 = 𝑐 → (ℑ‘((∗‘(𝑗𝑖)) · (𝑙𝑘))) = (ℑ‘((∗‘(𝑗𝑖)) · (𝑙𝑐))))
1817neeq1d 2990 . . . . . . . . . . . . 13 (𝑘 = 𝑐 → ((ℑ‘((∗‘(𝑗𝑖)) · (𝑙𝑘))) ≠ 0 ↔ (ℑ‘((∗‘(𝑗𝑖)) · (𝑙𝑐))) ≠ 0))
1915, 183anbi23d 1440 . . . . . . . . . . . 12 (𝑘 = 𝑐 → ((𝑦 = (𝑖 + (𝑡 · (𝑗𝑖))) ∧ 𝑦 = (𝑘 + (𝑟 · (𝑙𝑘))) ∧ (ℑ‘((∗‘(𝑗𝑖)) · (𝑙𝑘))) ≠ 0) ↔ (𝑦 = (𝑖 + (𝑡 · (𝑗𝑖))) ∧ 𝑦 = (𝑐 + (𝑟 · (𝑙𝑐))) ∧ (ℑ‘((∗‘(𝑗𝑖)) · (𝑙𝑐))) ≠ 0)))
20192rexbidv 3209 . . . . . . . . . . 11 (𝑘 = 𝑐 → (∃𝑡 ∈ ℝ ∃𝑟 ∈ ℝ (𝑦 = (𝑖 + (𝑡 · (𝑗𝑖))) ∧ 𝑦 = (𝑘 + (𝑟 · (𝑙𝑘))) ∧ (ℑ‘((∗‘(𝑗𝑖)) · (𝑙𝑘))) ≠ 0) ↔ ∃𝑡 ∈ ℝ ∃𝑟 ∈ ℝ (𝑦 = (𝑖 + (𝑡 · (𝑗𝑖))) ∧ 𝑦 = (𝑐 + (𝑟 · (𝑙𝑐))) ∧ (ℑ‘((∗‘(𝑗𝑖)) · (𝑙𝑐))) ≠ 0)))
21 oveq1 7420 . . . . . . . . . . . . . . . 16 (𝑙 = 𝑑 → (𝑙𝑐) = (𝑑𝑐))
2221oveq2d 7429 . . . . . . . . . . . . . . 15 (𝑙 = 𝑑 → (𝑟 · (𝑙𝑐)) = (𝑟 · (𝑑𝑐)))
2322oveq2d 7429 . . . . . . . . . . . . . 14 (𝑙 = 𝑑 → (𝑐 + (𝑟 · (𝑙𝑐))) = (𝑐 + (𝑟 · (𝑑𝑐))))
2423eqeq2d 2745 . . . . . . . . . . . . 13 (𝑙 = 𝑑 → (𝑦 = (𝑐 + (𝑟 · (𝑙𝑐))) ↔ 𝑦 = (𝑐 + (𝑟 · (𝑑𝑐)))))
2521oveq2d 7429 . . . . . . . . . . . . . . 15 (𝑙 = 𝑑 → ((∗‘(𝑗𝑖)) · (𝑙𝑐)) = ((∗‘(𝑗𝑖)) · (𝑑𝑐)))
2625fveq2d 6890 . . . . . . . . . . . . . 14 (𝑙 = 𝑑 → (ℑ‘((∗‘(𝑗𝑖)) · (𝑙𝑐))) = (ℑ‘((∗‘(𝑗𝑖)) · (𝑑𝑐))))
2726neeq1d 2990 . . . . . . . . . . . . 13 (𝑙 = 𝑑 → ((ℑ‘((∗‘(𝑗𝑖)) · (𝑙𝑐))) ≠ 0 ↔ (ℑ‘((∗‘(𝑗𝑖)) · (𝑑𝑐))) ≠ 0))
2824, 273anbi23d 1440 . . . . . . . . . . . 12 (𝑙 = 𝑑 → ((𝑦 = (𝑖 + (𝑡 · (𝑗𝑖))) ∧ 𝑦 = (𝑐 + (𝑟 · (𝑙𝑐))) ∧ (ℑ‘((∗‘(𝑗𝑖)) · (𝑙𝑐))) ≠ 0) ↔ (𝑦 = (𝑖 + (𝑡 · (𝑗𝑖))) ∧ 𝑦 = (𝑐 + (𝑟 · (𝑑𝑐))) ∧ (ℑ‘((∗‘(𝑗𝑖)) · (𝑑𝑐))) ≠ 0)))
29282rexbidv 3209 . . . . . . . . . . 11 (𝑙 = 𝑑 → (∃𝑡 ∈ ℝ ∃𝑟 ∈ ℝ (𝑦 = (𝑖 + (𝑡 · (𝑗𝑖))) ∧ 𝑦 = (𝑐 + (𝑟 · (𝑙𝑐))) ∧ (ℑ‘((∗‘(𝑗𝑖)) · (𝑙𝑐))) ≠ 0) ↔ ∃𝑡 ∈ ℝ ∃𝑟 ∈ ℝ (𝑦 = (𝑖 + (𝑡 · (𝑗𝑖))) ∧ 𝑦 = (𝑐 + (𝑟 · (𝑑𝑐))) ∧ (ℑ‘((∗‘(𝑗𝑖)) · (𝑑𝑐))) ≠ 0)))
3020, 29cbvrex2vw 3228 . . . . . . . . . 10 (∃𝑘𝑧𝑙𝑧𝑡 ∈ ℝ ∃𝑟 ∈ ℝ (𝑦 = (𝑖 + (𝑡 · (𝑗𝑖))) ∧ 𝑦 = (𝑘 + (𝑟 · (𝑙𝑘))) ∧ (ℑ‘((∗‘(𝑗𝑖)) · (𝑙𝑘))) ≠ 0) ↔ ∃𝑐𝑧𝑑𝑧𝑡 ∈ ℝ ∃𝑟 ∈ ℝ (𝑦 = (𝑖 + (𝑡 · (𝑗𝑖))) ∧ 𝑦 = (𝑐 + (𝑟 · (𝑑𝑐))) ∧ (ℑ‘((∗‘(𝑗𝑖)) · (𝑑𝑐))) ≠ 0))
3110, 30bitri 275 . . . . . . . . 9 (∃𝑘𝑧𝑙𝑧𝑜 ∈ ℝ ∃𝑝 ∈ ℝ (𝑦 = (𝑖 + (𝑜 · (𝑗𝑖))) ∧ 𝑦 = (𝑘 + (𝑝 · (𝑙𝑘))) ∧ (ℑ‘((∗‘(𝑗𝑖)) · (𝑙𝑘))) ≠ 0) ↔ ∃𝑐𝑧𝑑𝑧𝑡 ∈ ℝ ∃𝑟 ∈ ℝ (𝑦 = (𝑖 + (𝑡 · (𝑗𝑖))) ∧ 𝑦 = (𝑐 + (𝑟 · (𝑑𝑐))) ∧ (ℑ‘((∗‘(𝑗𝑖)) · (𝑑𝑐))) ≠ 0))
32312rexbii 3116 . . . . . . . 8 (∃𝑖𝑧𝑗𝑧𝑘𝑧𝑙𝑧𝑜 ∈ ℝ ∃𝑝 ∈ ℝ (𝑦 = (𝑖 + (𝑜 · (𝑗𝑖))) ∧ 𝑦 = (𝑘 + (𝑝 · (𝑙𝑘))) ∧ (ℑ‘((∗‘(𝑗𝑖)) · (𝑙𝑘))) ≠ 0) ↔ ∃𝑖𝑧𝑗𝑧𝑐𝑧𝑑𝑧𝑡 ∈ ℝ ∃𝑟 ∈ ℝ (𝑦 = (𝑖 + (𝑡 · (𝑗𝑖))) ∧ 𝑦 = (𝑐 + (𝑟 · (𝑑𝑐))) ∧ (ℑ‘((∗‘(𝑗𝑖)) · (𝑑𝑐))) ≠ 0))
33 oveq2 7421 . . . . . . . . . . . . . . 15 (𝑞 = 𝑓 → (𝑚𝑞) = (𝑚𝑓))
3433fveq2d 6890 . . . . . . . . . . . . . 14 (𝑞 = 𝑓 → (abs‘(𝑚𝑞)) = (abs‘(𝑚𝑓)))
3534eqeq2d 2745 . . . . . . . . . . . . 13 (𝑞 = 𝑓 → ((abs‘(𝑦𝑘)) = (abs‘(𝑚𝑞)) ↔ (abs‘(𝑦𝑘)) = (abs‘(𝑚𝑓))))
3635anbi2d 630 . . . . . . . . . . . 12 (𝑞 = 𝑓 → ((𝑦 = (𝑖 + (𝑜 · (𝑗𝑖))) ∧ (abs‘(𝑦𝑘)) = (abs‘(𝑚𝑞))) ↔ (𝑦 = (𝑖 + (𝑜 · (𝑗𝑖))) ∧ (abs‘(𝑦𝑘)) = (abs‘(𝑚𝑓)))))
373anbi1d 631 . . . . . . . . . . . 12 (𝑜 = 𝑡 → ((𝑦 = (𝑖 + (𝑜 · (𝑗𝑖))) ∧ (abs‘(𝑦𝑘)) = (abs‘(𝑚𝑓))) ↔ (𝑦 = (𝑖 + (𝑡 · (𝑗𝑖))) ∧ (abs‘(𝑦𝑘)) = (abs‘(𝑚𝑓)))))
3836, 37cbvrex2vw 3228 . . . . . . . . . . 11 (∃𝑞𝑧𝑜 ∈ ℝ (𝑦 = (𝑖 + (𝑜 · (𝑗𝑖))) ∧ (abs‘(𝑦𝑘)) = (abs‘(𝑚𝑞))) ↔ ∃𝑓𝑧𝑡 ∈ ℝ (𝑦 = (𝑖 + (𝑡 · (𝑗𝑖))) ∧ (abs‘(𝑦𝑘)) = (abs‘(𝑚𝑓))))
39382rexbii 3116 . . . . . . . . . 10 (∃𝑘𝑧𝑚𝑧𝑞𝑧𝑜 ∈ ℝ (𝑦 = (𝑖 + (𝑜 · (𝑗𝑖))) ∧ (abs‘(𝑦𝑘)) = (abs‘(𝑚𝑞))) ↔ ∃𝑘𝑧𝑚𝑧𝑓𝑧𝑡 ∈ ℝ (𝑦 = (𝑖 + (𝑡 · (𝑗𝑖))) ∧ (abs‘(𝑦𝑘)) = (abs‘(𝑚𝑓))))
40 oveq2 7421 . . . . . . . . . . . . . . 15 (𝑘 = 𝑐 → (𝑦𝑘) = (𝑦𝑐))
4140fveq2d 6890 . . . . . . . . . . . . . 14 (𝑘 = 𝑐 → (abs‘(𝑦𝑘)) = (abs‘(𝑦𝑐)))
4241eqeq1d 2736 . . . . . . . . . . . . 13 (𝑘 = 𝑐 → ((abs‘(𝑦𝑘)) = (abs‘(𝑚𝑓)) ↔ (abs‘(𝑦𝑐)) = (abs‘(𝑚𝑓))))
4342anbi2d 630 . . . . . . . . . . . 12 (𝑘 = 𝑐 → ((𝑦 = (𝑖 + (𝑡 · (𝑗𝑖))) ∧ (abs‘(𝑦𝑘)) = (abs‘(𝑚𝑓))) ↔ (𝑦 = (𝑖 + (𝑡 · (𝑗𝑖))) ∧ (abs‘(𝑦𝑐)) = (abs‘(𝑚𝑓)))))
44432rexbidv 3209 . . . . . . . . . . 11 (𝑘 = 𝑐 → (∃𝑓𝑧𝑡 ∈ ℝ (𝑦 = (𝑖 + (𝑡 · (𝑗𝑖))) ∧ (abs‘(𝑦𝑘)) = (abs‘(𝑚𝑓))) ↔ ∃𝑓𝑧𝑡 ∈ ℝ (𝑦 = (𝑖 + (𝑡 · (𝑗𝑖))) ∧ (abs‘(𝑦𝑐)) = (abs‘(𝑚𝑓)))))
45 oveq1 7420 . . . . . . . . . . . . . . 15 (𝑚 = 𝑒 → (𝑚𝑓) = (𝑒𝑓))
4645fveq2d 6890 . . . . . . . . . . . . . 14 (𝑚 = 𝑒 → (abs‘(𝑚𝑓)) = (abs‘(𝑒𝑓)))
4746eqeq2d 2745 . . . . . . . . . . . . 13 (𝑚 = 𝑒 → ((abs‘(𝑦𝑐)) = (abs‘(𝑚𝑓)) ↔ (abs‘(𝑦𝑐)) = (abs‘(𝑒𝑓))))
4847anbi2d 630 . . . . . . . . . . . 12 (𝑚 = 𝑒 → ((𝑦 = (𝑖 + (𝑡 · (𝑗𝑖))) ∧ (abs‘(𝑦𝑐)) = (abs‘(𝑚𝑓))) ↔ (𝑦 = (𝑖 + (𝑡 · (𝑗𝑖))) ∧ (abs‘(𝑦𝑐)) = (abs‘(𝑒𝑓)))))
49482rexbidv 3209 . . . . . . . . . . 11 (𝑚 = 𝑒 → (∃𝑓𝑧𝑡 ∈ ℝ (𝑦 = (𝑖 + (𝑡 · (𝑗𝑖))) ∧ (abs‘(𝑦𝑐)) = (abs‘(𝑚𝑓))) ↔ ∃𝑓𝑧𝑡 ∈ ℝ (𝑦 = (𝑖 + (𝑡 · (𝑗𝑖))) ∧ (abs‘(𝑦𝑐)) = (abs‘(𝑒𝑓)))))
5044, 49cbvrex2vw 3228 . . . . . . . . . 10 (∃𝑘𝑧𝑚𝑧𝑓𝑧𝑡 ∈ ℝ (𝑦 = (𝑖 + (𝑡 · (𝑗𝑖))) ∧ (abs‘(𝑦𝑘)) = (abs‘(𝑚𝑓))) ↔ ∃𝑐𝑧𝑒𝑧𝑓𝑧𝑡 ∈ ℝ (𝑦 = (𝑖 + (𝑡 · (𝑗𝑖))) ∧ (abs‘(𝑦𝑐)) = (abs‘(𝑒𝑓))))
5139, 50bitri 275 . . . . . . . . 9 (∃𝑘𝑧𝑚𝑧𝑞𝑧𝑜 ∈ ℝ (𝑦 = (𝑖 + (𝑜 · (𝑗𝑖))) ∧ (abs‘(𝑦𝑘)) = (abs‘(𝑚𝑞))) ↔ ∃𝑐𝑧𝑒𝑧𝑓𝑧𝑡 ∈ ℝ (𝑦 = (𝑖 + (𝑡 · (𝑗𝑖))) ∧ (abs‘(𝑦𝑐)) = (abs‘(𝑒𝑓))))
52512rexbii 3116 . . . . . . . 8 (∃𝑖𝑧𝑗𝑧𝑘𝑧𝑚𝑧𝑞𝑧𝑜 ∈ ℝ (𝑦 = (𝑖 + (𝑜 · (𝑗𝑖))) ∧ (abs‘(𝑦𝑘)) = (abs‘(𝑚𝑞))) ↔ ∃𝑖𝑧𝑗𝑧𝑐𝑧𝑒𝑧𝑓𝑧𝑡 ∈ ℝ (𝑦 = (𝑖 + (𝑡 · (𝑗𝑖))) ∧ (abs‘(𝑦𝑐)) = (abs‘(𝑒𝑓))))
53 oveq1 7420 . . . . . . . . . . . . . . 15 (𝑚 = 𝑒 → (𝑚𝑞) = (𝑒𝑞))
5453fveq2d 6890 . . . . . . . . . . . . . 14 (𝑚 = 𝑒 → (abs‘(𝑚𝑞)) = (abs‘(𝑒𝑞)))
5554eqeq2d 2745 . . . . . . . . . . . . 13 (𝑚 = 𝑒 → ((abs‘(𝑦𝑙)) = (abs‘(𝑚𝑞)) ↔ (abs‘(𝑦𝑙)) = (abs‘(𝑒𝑞))))
56553anbi3d 1443 . . . . . . . . . . . 12 (𝑚 = 𝑒 → ((𝑖𝑙 ∧ (abs‘(𝑦𝑖)) = (abs‘(𝑗𝑘)) ∧ (abs‘(𝑦𝑙)) = (abs‘(𝑚𝑞))) ↔ (𝑖𝑙 ∧ (abs‘(𝑦𝑖)) = (abs‘(𝑗𝑘)) ∧ (abs‘(𝑦𝑙)) = (abs‘(𝑒𝑞)))))
57 oveq2 7421 . . . . . . . . . . . . . . 15 (𝑞 = 𝑓 → (𝑒𝑞) = (𝑒𝑓))
5857fveq2d 6890 . . . . . . . . . . . . . 14 (𝑞 = 𝑓 → (abs‘(𝑒𝑞)) = (abs‘(𝑒𝑓)))
5958eqeq2d 2745 . . . . . . . . . . . . 13 (𝑞 = 𝑓 → ((abs‘(𝑦𝑙)) = (abs‘(𝑒𝑞)) ↔ (abs‘(𝑦𝑙)) = (abs‘(𝑒𝑓))))
60593anbi3d 1443 . . . . . . . . . . . 12 (𝑞 = 𝑓 → ((𝑖𝑙 ∧ (abs‘(𝑦𝑖)) = (abs‘(𝑗𝑘)) ∧ (abs‘(𝑦𝑙)) = (abs‘(𝑒𝑞))) ↔ (𝑖𝑙 ∧ (abs‘(𝑦𝑖)) = (abs‘(𝑗𝑘)) ∧ (abs‘(𝑦𝑙)) = (abs‘(𝑒𝑓)))))
6156, 60cbvrex2vw 3228 . . . . . . . . . . 11 (∃𝑚𝑧𝑞𝑧 (𝑖𝑙 ∧ (abs‘(𝑦𝑖)) = (abs‘(𝑗𝑘)) ∧ (abs‘(𝑦𝑙)) = (abs‘(𝑚𝑞))) ↔ ∃𝑒𝑧𝑓𝑧 (𝑖𝑙 ∧ (abs‘(𝑦𝑖)) = (abs‘(𝑗𝑘)) ∧ (abs‘(𝑦𝑙)) = (abs‘(𝑒𝑓))))
62612rexbii 3116 . . . . . . . . . 10 (∃𝑘𝑧𝑙𝑧𝑚𝑧𝑞𝑧 (𝑖𝑙 ∧ (abs‘(𝑦𝑖)) = (abs‘(𝑗𝑘)) ∧ (abs‘(𝑦𝑙)) = (abs‘(𝑚𝑞))) ↔ ∃𝑘𝑧𝑙𝑧𝑒𝑧𝑓𝑧 (𝑖𝑙 ∧ (abs‘(𝑦𝑖)) = (abs‘(𝑗𝑘)) ∧ (abs‘(𝑦𝑙)) = (abs‘(𝑒𝑓))))
63 oveq2 7421 . . . . . . . . . . . . . . 15 (𝑘 = 𝑐 → (𝑗𝑘) = (𝑗𝑐))
6463fveq2d 6890 . . . . . . . . . . . . . 14 (𝑘 = 𝑐 → (abs‘(𝑗𝑘)) = (abs‘(𝑗𝑐)))
6564eqeq2d 2745 . . . . . . . . . . . . 13 (𝑘 = 𝑐 → ((abs‘(𝑦𝑖)) = (abs‘(𝑗𝑘)) ↔ (abs‘(𝑦𝑖)) = (abs‘(𝑗𝑐))))
66653anbi2d 1442 . . . . . . . . . . . 12 (𝑘 = 𝑐 → ((𝑖𝑙 ∧ (abs‘(𝑦𝑖)) = (abs‘(𝑗𝑘)) ∧ (abs‘(𝑦𝑙)) = (abs‘(𝑒𝑓))) ↔ (𝑖𝑙 ∧ (abs‘(𝑦𝑖)) = (abs‘(𝑗𝑐)) ∧ (abs‘(𝑦𝑙)) = (abs‘(𝑒𝑓)))))
67662rexbidv 3209 . . . . . . . . . . 11 (𝑘 = 𝑐 → (∃𝑒𝑧𝑓𝑧 (𝑖𝑙 ∧ (abs‘(𝑦𝑖)) = (abs‘(𝑗𝑘)) ∧ (abs‘(𝑦𝑙)) = (abs‘(𝑒𝑓))) ↔ ∃𝑒𝑧𝑓𝑧 (𝑖𝑙 ∧ (abs‘(𝑦𝑖)) = (abs‘(𝑗𝑐)) ∧ (abs‘(𝑦𝑙)) = (abs‘(𝑒𝑓)))))
68 neeq2 2994 . . . . . . . . . . . . 13 (𝑙 = 𝑑 → (𝑖𝑙𝑖𝑑))
69 oveq2 7421 . . . . . . . . . . . . . . 15 (𝑙 = 𝑑 → (𝑦𝑙) = (𝑦𝑑))
7069fveq2d 6890 . . . . . . . . . . . . . 14 (𝑙 = 𝑑 → (abs‘(𝑦𝑙)) = (abs‘(𝑦𝑑)))
7170eqeq1d 2736 . . . . . . . . . . . . 13 (𝑙 = 𝑑 → ((abs‘(𝑦𝑙)) = (abs‘(𝑒𝑓)) ↔ (abs‘(𝑦𝑑)) = (abs‘(𝑒𝑓))))
7268, 713anbi13d 1439 . . . . . . . . . . . 12 (𝑙 = 𝑑 → ((𝑖𝑙 ∧ (abs‘(𝑦𝑖)) = (abs‘(𝑗𝑐)) ∧ (abs‘(𝑦𝑙)) = (abs‘(𝑒𝑓))) ↔ (𝑖𝑑 ∧ (abs‘(𝑦𝑖)) = (abs‘(𝑗𝑐)) ∧ (abs‘(𝑦𝑑)) = (abs‘(𝑒𝑓)))))
73722rexbidv 3209 . . . . . . . . . . 11 (𝑙 = 𝑑 → (∃𝑒𝑧𝑓𝑧 (𝑖𝑙 ∧ (abs‘(𝑦𝑖)) = (abs‘(𝑗𝑐)) ∧ (abs‘(𝑦𝑙)) = (abs‘(𝑒𝑓))) ↔ ∃𝑒𝑧𝑓𝑧 (𝑖𝑑 ∧ (abs‘(𝑦𝑖)) = (abs‘(𝑗𝑐)) ∧ (abs‘(𝑦𝑑)) = (abs‘(𝑒𝑓)))))
7467, 73cbvrex2vw 3228 . . . . . . . . . 10 (∃𝑘𝑧𝑙𝑧𝑒𝑧𝑓𝑧 (𝑖𝑙 ∧ (abs‘(𝑦𝑖)) = (abs‘(𝑗𝑘)) ∧ (abs‘(𝑦𝑙)) = (abs‘(𝑒𝑓))) ↔ ∃𝑐𝑧𝑑𝑧𝑒𝑧𝑓𝑧 (𝑖𝑑 ∧ (abs‘(𝑦𝑖)) = (abs‘(𝑗𝑐)) ∧ (abs‘(𝑦𝑑)) = (abs‘(𝑒𝑓))))
7562, 74bitri 275 . . . . . . . . 9 (∃𝑘𝑧𝑙𝑧𝑚𝑧𝑞𝑧 (𝑖𝑙 ∧ (abs‘(𝑦𝑖)) = (abs‘(𝑗𝑘)) ∧ (abs‘(𝑦𝑙)) = (abs‘(𝑚𝑞))) ↔ ∃𝑐𝑧𝑑𝑧𝑒𝑧𝑓𝑧 (𝑖𝑑 ∧ (abs‘(𝑦𝑖)) = (abs‘(𝑗𝑐)) ∧ (abs‘(𝑦𝑑)) = (abs‘(𝑒𝑓))))
76752rexbii 3116 . . . . . . . 8 (∃𝑖𝑧𝑗𝑧𝑘𝑧𝑙𝑧𝑚𝑧𝑞𝑧 (𝑖𝑙 ∧ (abs‘(𝑦𝑖)) = (abs‘(𝑗𝑘)) ∧ (abs‘(𝑦𝑙)) = (abs‘(𝑚𝑞))) ↔ ∃𝑖𝑧𝑗𝑧𝑐𝑧𝑑𝑧𝑒𝑧𝑓𝑧 (𝑖𝑑 ∧ (abs‘(𝑦𝑖)) = (abs‘(𝑗𝑐)) ∧ (abs‘(𝑦𝑑)) = (abs‘(𝑒𝑓))))
7732, 52, 763orbi123i 1156 . . . . . . 7 ((∃𝑖𝑧𝑗𝑧𝑘𝑧𝑙𝑧𝑜 ∈ ℝ ∃𝑝 ∈ ℝ (𝑦 = (𝑖 + (𝑜 · (𝑗𝑖))) ∧ 𝑦 = (𝑘 + (𝑝 · (𝑙𝑘))) ∧ (ℑ‘((∗‘(𝑗𝑖)) · (𝑙𝑘))) ≠ 0) ∨ ∃𝑖𝑧𝑗𝑧𝑘𝑧𝑚𝑧𝑞𝑧𝑜 ∈ ℝ (𝑦 = (𝑖 + (𝑜 · (𝑗𝑖))) ∧ (abs‘(𝑦𝑘)) = (abs‘(𝑚𝑞))) ∨ ∃𝑖𝑧𝑗𝑧𝑘𝑧𝑙𝑧𝑚𝑧𝑞𝑧 (𝑖𝑙 ∧ (abs‘(𝑦𝑖)) = (abs‘(𝑗𝑘)) ∧ (abs‘(𝑦𝑙)) = (abs‘(𝑚𝑞)))) ↔ (∃𝑖𝑧𝑗𝑧𝑐𝑧𝑑𝑧𝑡 ∈ ℝ ∃𝑟 ∈ ℝ (𝑦 = (𝑖 + (𝑡 · (𝑗𝑖))) ∧ 𝑦 = (𝑐 + (𝑟 · (𝑑𝑐))) ∧ (ℑ‘((∗‘(𝑗𝑖)) · (𝑑𝑐))) ≠ 0) ∨ ∃𝑖𝑧𝑗𝑧𝑐𝑧𝑒𝑧𝑓𝑧𝑡 ∈ ℝ (𝑦 = (𝑖 + (𝑡 · (𝑗𝑖))) ∧ (abs‘(𝑦𝑐)) = (abs‘(𝑒𝑓))) ∨ ∃𝑖𝑧𝑗𝑧𝑐𝑧𝑑𝑧𝑒𝑧𝑓𝑧 (𝑖𝑑 ∧ (abs‘(𝑦𝑖)) = (abs‘(𝑗𝑐)) ∧ (abs‘(𝑦𝑑)) = (abs‘(𝑒𝑓)))))
78 id 22 . . . . . . . . . . . . . 14 (𝑖 = 𝑎𝑖 = 𝑎)
79 oveq2 7421 . . . . . . . . . . . . . . 15 (𝑖 = 𝑎 → (𝑗𝑖) = (𝑗𝑎))
8079oveq2d 7429 . . . . . . . . . . . . . 14 (𝑖 = 𝑎 → (𝑡 · (𝑗𝑖)) = (𝑡 · (𝑗𝑎)))
8178, 80oveq12d 7431 . . . . . . . . . . . . 13 (𝑖 = 𝑎 → (𝑖 + (𝑡 · (𝑗𝑖))) = (𝑎 + (𝑡 · (𝑗𝑎))))
8281eqeq2d 2745 . . . . . . . . . . . 12 (𝑖 = 𝑎 → (𝑦 = (𝑖 + (𝑡 · (𝑗𝑖))) ↔ 𝑦 = (𝑎 + (𝑡 · (𝑗𝑎)))))
8379fveq2d 6890 . . . . . . . . . . . . . . 15 (𝑖 = 𝑎 → (∗‘(𝑗𝑖)) = (∗‘(𝑗𝑎)))
8483oveq1d 7428 . . . . . . . . . . . . . 14 (𝑖 = 𝑎 → ((∗‘(𝑗𝑖)) · (𝑑𝑐)) = ((∗‘(𝑗𝑎)) · (𝑑𝑐)))
8584fveq2d 6890 . . . . . . . . . . . . 13 (𝑖 = 𝑎 → (ℑ‘((∗‘(𝑗𝑖)) · (𝑑𝑐))) = (ℑ‘((∗‘(𝑗𝑎)) · (𝑑𝑐))))
8685neeq1d 2990 . . . . . . . . . . . 12 (𝑖 = 𝑎 → ((ℑ‘((∗‘(𝑗𝑖)) · (𝑑𝑐))) ≠ 0 ↔ (ℑ‘((∗‘(𝑗𝑎)) · (𝑑𝑐))) ≠ 0))
8782, 863anbi13d 1439 . . . . . . . . . . 11 (𝑖 = 𝑎 → ((𝑦 = (𝑖 + (𝑡 · (𝑗𝑖))) ∧ 𝑦 = (𝑐 + (𝑟 · (𝑑𝑐))) ∧ (ℑ‘((∗‘(𝑗𝑖)) · (𝑑𝑐))) ≠ 0) ↔ (𝑦 = (𝑎 + (𝑡 · (𝑗𝑎))) ∧ 𝑦 = (𝑐 + (𝑟 · (𝑑𝑐))) ∧ (ℑ‘((∗‘(𝑗𝑎)) · (𝑑𝑐))) ≠ 0)))
88872rexbidv 3209 . . . . . . . . . 10 (𝑖 = 𝑎 → (∃𝑡 ∈ ℝ ∃𝑟 ∈ ℝ (𝑦 = (𝑖 + (𝑡 · (𝑗𝑖))) ∧ 𝑦 = (𝑐 + (𝑟 · (𝑑𝑐))) ∧ (ℑ‘((∗‘(𝑗𝑖)) · (𝑑𝑐))) ≠ 0) ↔ ∃𝑡 ∈ ℝ ∃𝑟 ∈ ℝ (𝑦 = (𝑎 + (𝑡 · (𝑗𝑎))) ∧ 𝑦 = (𝑐 + (𝑟 · (𝑑𝑐))) ∧ (ℑ‘((∗‘(𝑗𝑎)) · (𝑑𝑐))) ≠ 0)))
89882rexbidv 3209 . . . . . . . . 9 (𝑖 = 𝑎 → (∃𝑐𝑧𝑑𝑧𝑡 ∈ ℝ ∃𝑟 ∈ ℝ (𝑦 = (𝑖 + (𝑡 · (𝑗𝑖))) ∧ 𝑦 = (𝑐 + (𝑟 · (𝑑𝑐))) ∧ (ℑ‘((∗‘(𝑗𝑖)) · (𝑑𝑐))) ≠ 0) ↔ ∃𝑐𝑧𝑑𝑧𝑡 ∈ ℝ ∃𝑟 ∈ ℝ (𝑦 = (𝑎 + (𝑡 · (𝑗𝑎))) ∧ 𝑦 = (𝑐 + (𝑟 · (𝑑𝑐))) ∧ (ℑ‘((∗‘(𝑗𝑎)) · (𝑑𝑐))) ≠ 0)))
90 oveq1 7420 . . . . . . . . . . . . . . 15 (𝑗 = 𝑏 → (𝑗𝑎) = (𝑏𝑎))
9190oveq2d 7429 . . . . . . . . . . . . . 14 (𝑗 = 𝑏 → (𝑡 · (𝑗𝑎)) = (𝑡 · (𝑏𝑎)))
9291oveq2d 7429 . . . . . . . . . . . . 13 (𝑗 = 𝑏 → (𝑎 + (𝑡 · (𝑗𝑎))) = (𝑎 + (𝑡 · (𝑏𝑎))))
9392eqeq2d 2745 . . . . . . . . . . . 12 (𝑗 = 𝑏 → (𝑦 = (𝑎 + (𝑡 · (𝑗𝑎))) ↔ 𝑦 = (𝑎 + (𝑡 · (𝑏𝑎)))))
9490fveq2d 6890 . . . . . . . . . . . . . . 15 (𝑗 = 𝑏 → (∗‘(𝑗𝑎)) = (∗‘(𝑏𝑎)))
9594oveq1d 7428 . . . . . . . . . . . . . 14 (𝑗 = 𝑏 → ((∗‘(𝑗𝑎)) · (𝑑𝑐)) = ((∗‘(𝑏𝑎)) · (𝑑𝑐)))
9695fveq2d 6890 . . . . . . . . . . . . 13 (𝑗 = 𝑏 → (ℑ‘((∗‘(𝑗𝑎)) · (𝑑𝑐))) = (ℑ‘((∗‘(𝑏𝑎)) · (𝑑𝑐))))
9796neeq1d 2990 . . . . . . . . . . . 12 (𝑗 = 𝑏 → ((ℑ‘((∗‘(𝑗𝑎)) · (𝑑𝑐))) ≠ 0 ↔ (ℑ‘((∗‘(𝑏𝑎)) · (𝑑𝑐))) ≠ 0))
9893, 973anbi13d 1439 . . . . . . . . . . 11 (𝑗 = 𝑏 → ((𝑦 = (𝑎 + (𝑡 · (𝑗𝑎))) ∧ 𝑦 = (𝑐 + (𝑟 · (𝑑𝑐))) ∧ (ℑ‘((∗‘(𝑗𝑎)) · (𝑑𝑐))) ≠ 0) ↔ (𝑦 = (𝑎 + (𝑡 · (𝑏𝑎))) ∧ 𝑦 = (𝑐 + (𝑟 · (𝑑𝑐))) ∧ (ℑ‘((∗‘(𝑏𝑎)) · (𝑑𝑐))) ≠ 0)))
99982rexbidv 3209 . . . . . . . . . 10 (𝑗 = 𝑏 → (∃𝑡 ∈ ℝ ∃𝑟 ∈ ℝ (𝑦 = (𝑎 + (𝑡 · (𝑗𝑎))) ∧ 𝑦 = (𝑐 + (𝑟 · (𝑑𝑐))) ∧ (ℑ‘((∗‘(𝑗𝑎)) · (𝑑𝑐))) ≠ 0) ↔ ∃𝑡 ∈ ℝ ∃𝑟 ∈ ℝ (𝑦 = (𝑎 + (𝑡 · (𝑏𝑎))) ∧ 𝑦 = (𝑐 + (𝑟 · (𝑑𝑐))) ∧ (ℑ‘((∗‘(𝑏𝑎)) · (𝑑𝑐))) ≠ 0)))
100992rexbidv 3209 . . . . . . . . 9 (𝑗 = 𝑏 → (∃𝑐𝑧𝑑𝑧𝑡 ∈ ℝ ∃𝑟 ∈ ℝ (𝑦 = (𝑎 + (𝑡 · (𝑗𝑎))) ∧ 𝑦 = (𝑐 + (𝑟 · (𝑑𝑐))) ∧ (ℑ‘((∗‘(𝑗𝑎)) · (𝑑𝑐))) ≠ 0) ↔ ∃𝑐𝑧𝑑𝑧𝑡 ∈ ℝ ∃𝑟 ∈ ℝ (𝑦 = (𝑎 + (𝑡 · (𝑏𝑎))) ∧ 𝑦 = (𝑐 + (𝑟 · (𝑑𝑐))) ∧ (ℑ‘((∗‘(𝑏𝑎)) · (𝑑𝑐))) ≠ 0)))
10189, 100cbvrex2vw 3228 . . . . . . . 8 (∃𝑖𝑧𝑗𝑧𝑐𝑧𝑑𝑧𝑡 ∈ ℝ ∃𝑟 ∈ ℝ (𝑦 = (𝑖 + (𝑡 · (𝑗𝑖))) ∧ 𝑦 = (𝑐 + (𝑟 · (𝑑𝑐))) ∧ (ℑ‘((∗‘(𝑗𝑖)) · (𝑑𝑐))) ≠ 0) ↔ ∃𝑎𝑧𝑏𝑧𝑐𝑧𝑑𝑧𝑡 ∈ ℝ ∃𝑟 ∈ ℝ (𝑦 = (𝑎 + (𝑡 · (𝑏𝑎))) ∧ 𝑦 = (𝑐 + (𝑟 · (𝑑𝑐))) ∧ (ℑ‘((∗‘(𝑏𝑎)) · (𝑑𝑐))) ≠ 0))
10282anbi1d 631 . . . . . . . . . . 11 (𝑖 = 𝑎 → ((𝑦 = (𝑖 + (𝑡 · (𝑗𝑖))) ∧ (abs‘(𝑦𝑐)) = (abs‘(𝑒𝑓))) ↔ (𝑦 = (𝑎 + (𝑡 · (𝑗𝑎))) ∧ (abs‘(𝑦𝑐)) = (abs‘(𝑒𝑓)))))
1031022rexbidv 3209 . . . . . . . . . 10 (𝑖 = 𝑎 → (∃𝑓𝑧𝑡 ∈ ℝ (𝑦 = (𝑖 + (𝑡 · (𝑗𝑖))) ∧ (abs‘(𝑦𝑐)) = (abs‘(𝑒𝑓))) ↔ ∃𝑓𝑧𝑡 ∈ ℝ (𝑦 = (𝑎 + (𝑡 · (𝑗𝑎))) ∧ (abs‘(𝑦𝑐)) = (abs‘(𝑒𝑓)))))
1041032rexbidv 3209 . . . . . . . . 9 (𝑖 = 𝑎 → (∃𝑐𝑧𝑒𝑧𝑓𝑧𝑡 ∈ ℝ (𝑦 = (𝑖 + (𝑡 · (𝑗𝑖))) ∧ (abs‘(𝑦𝑐)) = (abs‘(𝑒𝑓))) ↔ ∃𝑐𝑧𝑒𝑧𝑓𝑧𝑡 ∈ ℝ (𝑦 = (𝑎 + (𝑡 · (𝑗𝑎))) ∧ (abs‘(𝑦𝑐)) = (abs‘(𝑒𝑓)))))
10593anbi1d 631 . . . . . . . . . . 11 (𝑗 = 𝑏 → ((𝑦 = (𝑎 + (𝑡 · (𝑗𝑎))) ∧ (abs‘(𝑦𝑐)) = (abs‘(𝑒𝑓))) ↔ (𝑦 = (𝑎 + (𝑡 · (𝑏𝑎))) ∧ (abs‘(𝑦𝑐)) = (abs‘(𝑒𝑓)))))
1061052rexbidv 3209 . . . . . . . . . 10 (𝑗 = 𝑏 → (∃𝑓𝑧𝑡 ∈ ℝ (𝑦 = (𝑎 + (𝑡 · (𝑗𝑎))) ∧ (abs‘(𝑦𝑐)) = (abs‘(𝑒𝑓))) ↔ ∃𝑓𝑧𝑡 ∈ ℝ (𝑦 = (𝑎 + (𝑡 · (𝑏𝑎))) ∧ (abs‘(𝑦𝑐)) = (abs‘(𝑒𝑓)))))
1071062rexbidv 3209 . . . . . . . . 9 (𝑗 = 𝑏 → (∃𝑐𝑧𝑒𝑧𝑓𝑧𝑡 ∈ ℝ (𝑦 = (𝑎 + (𝑡 · (𝑗𝑎))) ∧ (abs‘(𝑦𝑐)) = (abs‘(𝑒𝑓))) ↔ ∃𝑐𝑧𝑒𝑧𝑓𝑧𝑡 ∈ ℝ (𝑦 = (𝑎 + (𝑡 · (𝑏𝑎))) ∧ (abs‘(𝑦𝑐)) = (abs‘(𝑒𝑓)))))
108104, 107cbvrex2vw 3228 . . . . . . . 8 (∃𝑖𝑧𝑗𝑧𝑐𝑧𝑒𝑧𝑓𝑧𝑡 ∈ ℝ (𝑦 = (𝑖 + (𝑡 · (𝑗𝑖))) ∧ (abs‘(𝑦𝑐)) = (abs‘(𝑒𝑓))) ↔ ∃𝑎𝑧𝑏𝑧𝑐𝑧𝑒𝑧𝑓𝑧𝑡 ∈ ℝ (𝑦 = (𝑎 + (𝑡 · (𝑏𝑎))) ∧ (abs‘(𝑦𝑐)) = (abs‘(𝑒𝑓))))
109 neeq1 2993 . . . . . . . . . . . 12 (𝑖 = 𝑎 → (𝑖𝑑𝑎𝑑))
110 oveq2 7421 . . . . . . . . . . . . . 14 (𝑖 = 𝑎 → (𝑦𝑖) = (𝑦𝑎))
111110fveq2d 6890 . . . . . . . . . . . . 13 (𝑖 = 𝑎 → (abs‘(𝑦𝑖)) = (abs‘(𝑦𝑎)))
112111eqeq1d 2736 . . . . . . . . . . . 12 (𝑖 = 𝑎 → ((abs‘(𝑦𝑖)) = (abs‘(𝑗𝑐)) ↔ (abs‘(𝑦𝑎)) = (abs‘(𝑗𝑐))))
113109, 1123anbi12d 1438 . . . . . . . . . . 11 (𝑖 = 𝑎 → ((𝑖𝑑 ∧ (abs‘(𝑦𝑖)) = (abs‘(𝑗𝑐)) ∧ (abs‘(𝑦𝑑)) = (abs‘(𝑒𝑓))) ↔ (𝑎𝑑 ∧ (abs‘(𝑦𝑎)) = (abs‘(𝑗𝑐)) ∧ (abs‘(𝑦𝑑)) = (abs‘(𝑒𝑓)))))
1141132rexbidv 3209 . . . . . . . . . 10 (𝑖 = 𝑎 → (∃𝑒𝑧𝑓𝑧 (𝑖𝑑 ∧ (abs‘(𝑦𝑖)) = (abs‘(𝑗𝑐)) ∧ (abs‘(𝑦𝑑)) = (abs‘(𝑒𝑓))) ↔ ∃𝑒𝑧𝑓𝑧 (𝑎𝑑 ∧ (abs‘(𝑦𝑎)) = (abs‘(𝑗𝑐)) ∧ (abs‘(𝑦𝑑)) = (abs‘(𝑒𝑓)))))
1151142rexbidv 3209 . . . . . . . . 9 (𝑖 = 𝑎 → (∃𝑐𝑧𝑑𝑧𝑒𝑧𝑓𝑧 (𝑖𝑑 ∧ (abs‘(𝑦𝑖)) = (abs‘(𝑗𝑐)) ∧ (abs‘(𝑦𝑑)) = (abs‘(𝑒𝑓))) ↔ ∃𝑐𝑧𝑑𝑧𝑒𝑧𝑓𝑧 (𝑎𝑑 ∧ (abs‘(𝑦𝑎)) = (abs‘(𝑗𝑐)) ∧ (abs‘(𝑦𝑑)) = (abs‘(𝑒𝑓)))))
116 oveq1 7420 . . . . . . . . . . . . . 14 (𝑗 = 𝑏 → (𝑗𝑐) = (𝑏𝑐))
117116fveq2d 6890 . . . . . . . . . . . . 13 (𝑗 = 𝑏 → (abs‘(𝑗𝑐)) = (abs‘(𝑏𝑐)))
118117eqeq2d 2745 . . . . . . . . . . . 12 (𝑗 = 𝑏 → ((abs‘(𝑦𝑎)) = (abs‘(𝑗𝑐)) ↔ (abs‘(𝑦𝑎)) = (abs‘(𝑏𝑐))))
1191183anbi2d 1442 . . . . . . . . . . 11 (𝑗 = 𝑏 → ((𝑎𝑑 ∧ (abs‘(𝑦𝑎)) = (abs‘(𝑗𝑐)) ∧ (abs‘(𝑦𝑑)) = (abs‘(𝑒𝑓))) ↔ (𝑎𝑑 ∧ (abs‘(𝑦𝑎)) = (abs‘(𝑏𝑐)) ∧ (abs‘(𝑦𝑑)) = (abs‘(𝑒𝑓)))))
1201192rexbidv 3209 . . . . . . . . . 10 (𝑗 = 𝑏 → (∃𝑒𝑧𝑓𝑧 (𝑎𝑑 ∧ (abs‘(𝑦𝑎)) = (abs‘(𝑗𝑐)) ∧ (abs‘(𝑦𝑑)) = (abs‘(𝑒𝑓))) ↔ ∃𝑒𝑧𝑓𝑧 (𝑎𝑑 ∧ (abs‘(𝑦𝑎)) = (abs‘(𝑏𝑐)) ∧ (abs‘(𝑦𝑑)) = (abs‘(𝑒𝑓)))))
1211202rexbidv 3209 . . . . . . . . 9 (𝑗 = 𝑏 → (∃𝑐𝑧𝑑𝑧𝑒𝑧𝑓𝑧 (𝑎𝑑 ∧ (abs‘(𝑦𝑎)) = (abs‘(𝑗𝑐)) ∧ (abs‘(𝑦𝑑)) = (abs‘(𝑒𝑓))) ↔ ∃𝑐𝑧𝑑𝑧𝑒𝑧𝑓𝑧 (𝑎𝑑 ∧ (abs‘(𝑦𝑎)) = (abs‘(𝑏𝑐)) ∧ (abs‘(𝑦𝑑)) = (abs‘(𝑒𝑓)))))
122115, 121cbvrex2vw 3228 . . . . . . . 8 (∃𝑖𝑧𝑗𝑧𝑐𝑧𝑑𝑧𝑒𝑧𝑓𝑧 (𝑖𝑑 ∧ (abs‘(𝑦𝑖)) = (abs‘(𝑗𝑐)) ∧ (abs‘(𝑦𝑑)) = (abs‘(𝑒𝑓))) ↔ ∃𝑎𝑧𝑏𝑧𝑐𝑧𝑑𝑧𝑒𝑧𝑓𝑧 (𝑎𝑑 ∧ (abs‘(𝑦𝑎)) = (abs‘(𝑏𝑐)) ∧ (abs‘(𝑦𝑑)) = (abs‘(𝑒𝑓))))
123101, 108, 1223orbi123i 1156 . . . . . . 7 ((∃𝑖𝑧𝑗𝑧𝑐𝑧𝑑𝑧𝑡 ∈ ℝ ∃𝑟 ∈ ℝ (𝑦 = (𝑖 + (𝑡 · (𝑗𝑖))) ∧ 𝑦 = (𝑐 + (𝑟 · (𝑑𝑐))) ∧ (ℑ‘((∗‘(𝑗𝑖)) · (𝑑𝑐))) ≠ 0) ∨ ∃𝑖𝑧𝑗𝑧𝑐𝑧𝑒𝑧𝑓𝑧𝑡 ∈ ℝ (𝑦 = (𝑖 + (𝑡 · (𝑗𝑖))) ∧ (abs‘(𝑦𝑐)) = (abs‘(𝑒𝑓))) ∨ ∃𝑖𝑧𝑗𝑧𝑐𝑧𝑑𝑧𝑒𝑧𝑓𝑧 (𝑖𝑑 ∧ (abs‘(𝑦𝑖)) = (abs‘(𝑗𝑐)) ∧ (abs‘(𝑦𝑑)) = (abs‘(𝑒𝑓)))) ↔ (∃𝑎𝑧𝑏𝑧𝑐𝑧𝑑𝑧𝑡 ∈ ℝ ∃𝑟 ∈ ℝ (𝑦 = (𝑎 + (𝑡 · (𝑏𝑎))) ∧ 𝑦 = (𝑐 + (𝑟 · (𝑑𝑐))) ∧ (ℑ‘((∗‘(𝑏𝑎)) · (𝑑𝑐))) ≠ 0) ∨ ∃𝑎𝑧𝑏𝑧𝑐𝑧𝑒𝑧𝑓𝑧𝑡 ∈ ℝ (𝑦 = (𝑎 + (𝑡 · (𝑏𝑎))) ∧ (abs‘(𝑦𝑐)) = (abs‘(𝑒𝑓))) ∨ ∃𝑎𝑧𝑏𝑧𝑐𝑧𝑑𝑧𝑒𝑧𝑓𝑧 (𝑎𝑑 ∧ (abs‘(𝑦𝑎)) = (abs‘(𝑏𝑐)) ∧ (abs‘(𝑦𝑑)) = (abs‘(𝑒𝑓)))))
12477, 123bitri 275 . . . . . 6 ((∃𝑖𝑧𝑗𝑧𝑘𝑧𝑙𝑧𝑜 ∈ ℝ ∃𝑝 ∈ ℝ (𝑦 = (𝑖 + (𝑜 · (𝑗𝑖))) ∧ 𝑦 = (𝑘 + (𝑝 · (𝑙𝑘))) ∧ (ℑ‘((∗‘(𝑗𝑖)) · (𝑙𝑘))) ≠ 0) ∨ ∃𝑖𝑧𝑗𝑧𝑘𝑧𝑚𝑧𝑞𝑧𝑜 ∈ ℝ (𝑦 = (𝑖 + (𝑜 · (𝑗𝑖))) ∧ (abs‘(𝑦𝑘)) = (abs‘(𝑚𝑞))) ∨ ∃𝑖𝑧𝑗𝑧𝑘𝑧𝑙𝑧𝑚𝑧𝑞𝑧 (𝑖𝑙 ∧ (abs‘(𝑦𝑖)) = (abs‘(𝑗𝑘)) ∧ (abs‘(𝑦𝑙)) = (abs‘(𝑚𝑞)))) ↔ (∃𝑎𝑧𝑏𝑧𝑐𝑧𝑑𝑧𝑡 ∈ ℝ ∃𝑟 ∈ ℝ (𝑦 = (𝑎 + (𝑡 · (𝑏𝑎))) ∧ 𝑦 = (𝑐 + (𝑟 · (𝑑𝑐))) ∧ (ℑ‘((∗‘(𝑏𝑎)) · (𝑑𝑐))) ≠ 0) ∨ ∃𝑎𝑧𝑏𝑧𝑐𝑧𝑒𝑧𝑓𝑧𝑡 ∈ ℝ (𝑦 = (𝑎 + (𝑡 · (𝑏𝑎))) ∧ (abs‘(𝑦𝑐)) = (abs‘(𝑒𝑓))) ∨ ∃𝑎𝑧𝑏𝑧𝑐𝑧𝑑𝑧𝑒𝑧𝑓𝑧 (𝑎𝑑 ∧ (abs‘(𝑦𝑎)) = (abs‘(𝑏𝑐)) ∧ (abs‘(𝑦𝑑)) = (abs‘(𝑒𝑓)))))
125124rabbii 3425 . . . . 5 {𝑦 ∈ ℂ ∣ (∃𝑖𝑧𝑗𝑧𝑘𝑧𝑙𝑧𝑜 ∈ ℝ ∃𝑝 ∈ ℝ (𝑦 = (𝑖 + (𝑜 · (𝑗𝑖))) ∧ 𝑦 = (𝑘 + (𝑝 · (𝑙𝑘))) ∧ (ℑ‘((∗‘(𝑗𝑖)) · (𝑙𝑘))) ≠ 0) ∨ ∃𝑖𝑧𝑗𝑧𝑘𝑧𝑚𝑧𝑞𝑧𝑜 ∈ ℝ (𝑦 = (𝑖 + (𝑜 · (𝑗𝑖))) ∧ (abs‘(𝑦𝑘)) = (abs‘(𝑚𝑞))) ∨ ∃𝑖𝑧𝑗𝑧𝑘𝑧𝑙𝑧𝑚𝑧𝑞𝑧 (𝑖𝑙 ∧ (abs‘(𝑦𝑖)) = (abs‘(𝑗𝑘)) ∧ (abs‘(𝑦𝑙)) = (abs‘(𝑚𝑞))))} = {𝑦 ∈ ℂ ∣ (∃𝑎𝑧𝑏𝑧𝑐𝑧𝑑𝑧𝑡 ∈ ℝ ∃𝑟 ∈ ℝ (𝑦 = (𝑎 + (𝑡 · (𝑏𝑎))) ∧ 𝑦 = (𝑐 + (𝑟 · (𝑑𝑐))) ∧ (ℑ‘((∗‘(𝑏𝑎)) · (𝑑𝑐))) ≠ 0) ∨ ∃𝑎𝑧𝑏𝑧𝑐𝑧𝑒𝑧𝑓𝑧𝑡 ∈ ℝ (𝑦 = (𝑎 + (𝑡 · (𝑏𝑎))) ∧ (abs‘(𝑦𝑐)) = (abs‘(𝑒𝑓))) ∨ ∃𝑎𝑧𝑏𝑧𝑐𝑧𝑑𝑧𝑒𝑧𝑓𝑧 (𝑎𝑑 ∧ (abs‘(𝑦𝑎)) = (abs‘(𝑏𝑐)) ∧ (abs‘(𝑦𝑑)) = (abs‘(𝑒𝑓))))}
126 eqeq1 2738 . . . . . . . . . . 11 (𝑦 = 𝑥 → (𝑦 = (𝑎 + (𝑡 · (𝑏𝑎))) ↔ 𝑥 = (𝑎 + (𝑡 · (𝑏𝑎)))))
127 eqeq1 2738 . . . . . . . . . . 11 (𝑦 = 𝑥 → (𝑦 = (𝑐 + (𝑟 · (𝑑𝑐))) ↔ 𝑥 = (𝑐 + (𝑟 · (𝑑𝑐)))))
128 biidd 262 . . . . . . . . . . 11 (𝑦 = 𝑥 → ((ℑ‘((∗‘(𝑏𝑎)) · (𝑑𝑐))) ≠ 0 ↔ (ℑ‘((∗‘(𝑏𝑎)) · (𝑑𝑐))) ≠ 0))
129126, 127, 1283anbi123d 1437 . . . . . . . . . 10 (𝑦 = 𝑥 → ((𝑦 = (𝑎 + (𝑡 · (𝑏𝑎))) ∧ 𝑦 = (𝑐 + (𝑟 · (𝑑𝑐))) ∧ (ℑ‘((∗‘(𝑏𝑎)) · (𝑑𝑐))) ≠ 0) ↔ (𝑥 = (𝑎 + (𝑡 · (𝑏𝑎))) ∧ 𝑥 = (𝑐 + (𝑟 · (𝑑𝑐))) ∧ (ℑ‘((∗‘(𝑏𝑎)) · (𝑑𝑐))) ≠ 0)))
1301292rexbidv 3209 . . . . . . . . 9 (𝑦 = 𝑥 → (∃𝑡 ∈ ℝ ∃𝑟 ∈ ℝ (𝑦 = (𝑎 + (𝑡 · (𝑏𝑎))) ∧ 𝑦 = (𝑐 + (𝑟 · (𝑑𝑐))) ∧ (ℑ‘((∗‘(𝑏𝑎)) · (𝑑𝑐))) ≠ 0) ↔ ∃𝑡 ∈ ℝ ∃𝑟 ∈ ℝ (𝑥 = (𝑎 + (𝑡 · (𝑏𝑎))) ∧ 𝑥 = (𝑐 + (𝑟 · (𝑑𝑐))) ∧ (ℑ‘((∗‘(𝑏𝑎)) · (𝑑𝑐))) ≠ 0)))
1311302rexbidv 3209 . . . . . . . 8 (𝑦 = 𝑥 → (∃𝑐𝑧𝑑𝑧𝑡 ∈ ℝ ∃𝑟 ∈ ℝ (𝑦 = (𝑎 + (𝑡 · (𝑏𝑎))) ∧ 𝑦 = (𝑐 + (𝑟 · (𝑑𝑐))) ∧ (ℑ‘((∗‘(𝑏𝑎)) · (𝑑𝑐))) ≠ 0) ↔ ∃𝑐𝑧𝑑𝑧𝑡 ∈ ℝ ∃𝑟 ∈ ℝ (𝑥 = (𝑎 + (𝑡 · (𝑏𝑎))) ∧ 𝑥 = (𝑐 + (𝑟 · (𝑑𝑐))) ∧ (ℑ‘((∗‘(𝑏𝑎)) · (𝑑𝑐))) ≠ 0)))
1321312rexbidv 3209 . . . . . . 7 (𝑦 = 𝑥 → (∃𝑎𝑧𝑏𝑧𝑐𝑧𝑑𝑧𝑡 ∈ ℝ ∃𝑟 ∈ ℝ (𝑦 = (𝑎 + (𝑡 · (𝑏𝑎))) ∧ 𝑦 = (𝑐 + (𝑟 · (𝑑𝑐))) ∧ (ℑ‘((∗‘(𝑏𝑎)) · (𝑑𝑐))) ≠ 0) ↔ ∃𝑎𝑧𝑏𝑧𝑐𝑧𝑑𝑧𝑡 ∈ ℝ ∃𝑟 ∈ ℝ (𝑥 = (𝑎 + (𝑡 · (𝑏𝑎))) ∧ 𝑥 = (𝑐 + (𝑟 · (𝑑𝑐))) ∧ (ℑ‘((∗‘(𝑏𝑎)) · (𝑑𝑐))) ≠ 0)))
133 oveq1 7420 . . . . . . . . . . . . 13 (𝑦 = 𝑥 → (𝑦𝑐) = (𝑥𝑐))
134133fveq2d 6890 . . . . . . . . . . . 12 (𝑦 = 𝑥 → (abs‘(𝑦𝑐)) = (abs‘(𝑥𝑐)))
135134eqeq1d 2736 . . . . . . . . . . 11 (𝑦 = 𝑥 → ((abs‘(𝑦𝑐)) = (abs‘(𝑒𝑓)) ↔ (abs‘(𝑥𝑐)) = (abs‘(𝑒𝑓))))
136126, 135anbi12d 632 . . . . . . . . . 10 (𝑦 = 𝑥 → ((𝑦 = (𝑎 + (𝑡 · (𝑏𝑎))) ∧ (abs‘(𝑦𝑐)) = (abs‘(𝑒𝑓))) ↔ (𝑥 = (𝑎 + (𝑡 · (𝑏𝑎))) ∧ (abs‘(𝑥𝑐)) = (abs‘(𝑒𝑓)))))
1371362rexbidv 3209 . . . . . . . . 9 (𝑦 = 𝑥 → (∃𝑓𝑧𝑡 ∈ ℝ (𝑦 = (𝑎 + (𝑡 · (𝑏𝑎))) ∧ (abs‘(𝑦𝑐)) = (abs‘(𝑒𝑓))) ↔ ∃𝑓𝑧𝑡 ∈ ℝ (𝑥 = (𝑎 + (𝑡 · (𝑏𝑎))) ∧ (abs‘(𝑥𝑐)) = (abs‘(𝑒𝑓)))))
1381372rexbidv 3209 . . . . . . . 8 (𝑦 = 𝑥 → (∃𝑐𝑧𝑒𝑧𝑓𝑧𝑡 ∈ ℝ (𝑦 = (𝑎 + (𝑡 · (𝑏𝑎))) ∧ (abs‘(𝑦𝑐)) = (abs‘(𝑒𝑓))) ↔ ∃𝑐𝑧𝑒𝑧𝑓𝑧𝑡 ∈ ℝ (𝑥 = (𝑎 + (𝑡 · (𝑏𝑎))) ∧ (abs‘(𝑥𝑐)) = (abs‘(𝑒𝑓)))))
1391382rexbidv 3209 . . . . . . 7 (𝑦 = 𝑥 → (∃𝑎𝑧𝑏𝑧𝑐𝑧𝑒𝑧𝑓𝑧𝑡 ∈ ℝ (𝑦 = (𝑎 + (𝑡 · (𝑏𝑎))) ∧ (abs‘(𝑦𝑐)) = (abs‘(𝑒𝑓))) ↔ ∃𝑎𝑧𝑏𝑧𝑐𝑧𝑒𝑧𝑓𝑧𝑡 ∈ ℝ (𝑥 = (𝑎 + (𝑡 · (𝑏𝑎))) ∧ (abs‘(𝑥𝑐)) = (abs‘(𝑒𝑓)))))
140 biidd 262 . . . . . . . . . . 11 (𝑦 = 𝑥 → (𝑎𝑑𝑎𝑑))
141 oveq1 7420 . . . . . . . . . . . . 13 (𝑦 = 𝑥 → (𝑦𝑎) = (𝑥𝑎))
142141fveq2d 6890 . . . . . . . . . . . 12 (𝑦 = 𝑥 → (abs‘(𝑦𝑎)) = (abs‘(𝑥𝑎)))
143142eqeq1d 2736 . . . . . . . . . . 11 (𝑦 = 𝑥 → ((abs‘(𝑦𝑎)) = (abs‘(𝑏𝑐)) ↔ (abs‘(𝑥𝑎)) = (abs‘(𝑏𝑐))))
144 oveq1 7420 . . . . . . . . . . . . 13 (𝑦 = 𝑥 → (𝑦𝑑) = (𝑥𝑑))
145144fveq2d 6890 . . . . . . . . . . . 12 (𝑦 = 𝑥 → (abs‘(𝑦𝑑)) = (abs‘(𝑥𝑑)))
146145eqeq1d 2736 . . . . . . . . . . 11 (𝑦 = 𝑥 → ((abs‘(𝑦𝑑)) = (abs‘(𝑒𝑓)) ↔ (abs‘(𝑥𝑑)) = (abs‘(𝑒𝑓))))
147140, 143, 1463anbi123d 1437 . . . . . . . . . 10 (𝑦 = 𝑥 → ((𝑎𝑑 ∧ (abs‘(𝑦𝑎)) = (abs‘(𝑏𝑐)) ∧ (abs‘(𝑦𝑑)) = (abs‘(𝑒𝑓))) ↔ (𝑎𝑑 ∧ (abs‘(𝑥𝑎)) = (abs‘(𝑏𝑐)) ∧ (abs‘(𝑥𝑑)) = (abs‘(𝑒𝑓)))))
1481472rexbidv 3209 . . . . . . . . 9 (𝑦 = 𝑥 → (∃𝑒𝑧𝑓𝑧 (𝑎𝑑 ∧ (abs‘(𝑦𝑎)) = (abs‘(𝑏𝑐)) ∧ (abs‘(𝑦𝑑)) = (abs‘(𝑒𝑓))) ↔ ∃𝑒𝑧𝑓𝑧 (𝑎𝑑 ∧ (abs‘(𝑥𝑎)) = (abs‘(𝑏𝑐)) ∧ (abs‘(𝑥𝑑)) = (abs‘(𝑒𝑓)))))
1491482rexbidv 3209 . . . . . . . 8 (𝑦 = 𝑥 → (∃𝑐𝑧𝑑𝑧𝑒𝑧𝑓𝑧 (𝑎𝑑 ∧ (abs‘(𝑦𝑎)) = (abs‘(𝑏𝑐)) ∧ (abs‘(𝑦𝑑)) = (abs‘(𝑒𝑓))) ↔ ∃𝑐𝑧𝑑𝑧𝑒𝑧𝑓𝑧 (𝑎𝑑 ∧ (abs‘(𝑥𝑎)) = (abs‘(𝑏𝑐)) ∧ (abs‘(𝑥𝑑)) = (abs‘(𝑒𝑓)))))
1501492rexbidv 3209 . . . . . . 7 (𝑦 = 𝑥 → (∃𝑎𝑧𝑏𝑧𝑐𝑧𝑑𝑧𝑒𝑧𝑓𝑧 (𝑎𝑑 ∧ (abs‘(𝑦𝑎)) = (abs‘(𝑏𝑐)) ∧ (abs‘(𝑦𝑑)) = (abs‘(𝑒𝑓))) ↔ ∃𝑎𝑧𝑏𝑧𝑐𝑧𝑑𝑧𝑒𝑧𝑓𝑧 (𝑎𝑑 ∧ (abs‘(𝑥𝑎)) = (abs‘(𝑏𝑐)) ∧ (abs‘(𝑥𝑑)) = (abs‘(𝑒𝑓)))))
151132, 139, 1503orbi123d 1436 . . . . . 6 (𝑦 = 𝑥 → ((∃𝑎𝑧𝑏𝑧𝑐𝑧𝑑𝑧𝑡 ∈ ℝ ∃𝑟 ∈ ℝ (𝑦 = (𝑎 + (𝑡 · (𝑏𝑎))) ∧ 𝑦 = (𝑐 + (𝑟 · (𝑑𝑐))) ∧ (ℑ‘((∗‘(𝑏𝑎)) · (𝑑𝑐))) ≠ 0) ∨ ∃𝑎𝑧𝑏𝑧𝑐𝑧𝑒𝑧𝑓𝑧𝑡 ∈ ℝ (𝑦 = (𝑎 + (𝑡 · (𝑏𝑎))) ∧ (abs‘(𝑦𝑐)) = (abs‘(𝑒𝑓))) ∨ ∃𝑎𝑧𝑏𝑧𝑐𝑧𝑑𝑧𝑒𝑧𝑓𝑧 (𝑎𝑑 ∧ (abs‘(𝑦𝑎)) = (abs‘(𝑏𝑐)) ∧ (abs‘(𝑦𝑑)) = (abs‘(𝑒𝑓)))) ↔ (∃𝑎𝑧𝑏𝑧𝑐𝑧𝑑𝑧𝑡 ∈ ℝ ∃𝑟 ∈ ℝ (𝑥 = (𝑎 + (𝑡 · (𝑏𝑎))) ∧ 𝑥 = (𝑐 + (𝑟 · (𝑑𝑐))) ∧ (ℑ‘((∗‘(𝑏𝑎)) · (𝑑𝑐))) ≠ 0) ∨ ∃𝑎𝑧𝑏𝑧𝑐𝑧𝑒𝑧𝑓𝑧𝑡 ∈ ℝ (𝑥 = (𝑎 + (𝑡 · (𝑏𝑎))) ∧ (abs‘(𝑥𝑐)) = (abs‘(𝑒𝑓))) ∨ ∃𝑎𝑧𝑏𝑧𝑐𝑧𝑑𝑧𝑒𝑧𝑓𝑧 (𝑎𝑑 ∧ (abs‘(𝑥𝑎)) = (abs‘(𝑏𝑐)) ∧ (abs‘(𝑥𝑑)) = (abs‘(𝑒𝑓))))))
152151cbvrabv 3430 . . . . 5 {𝑦 ∈ ℂ ∣ (∃𝑎𝑧𝑏𝑧𝑐𝑧𝑑𝑧𝑡 ∈ ℝ ∃𝑟 ∈ ℝ (𝑦 = (𝑎 + (𝑡 · (𝑏𝑎))) ∧ 𝑦 = (𝑐 + (𝑟 · (𝑑𝑐))) ∧ (ℑ‘((∗‘(𝑏𝑎)) · (𝑑𝑐))) ≠ 0) ∨ ∃𝑎𝑧𝑏𝑧𝑐𝑧𝑒𝑧𝑓𝑧𝑡 ∈ ℝ (𝑦 = (𝑎 + (𝑡 · (𝑏𝑎))) ∧ (abs‘(𝑦𝑐)) = (abs‘(𝑒𝑓))) ∨ ∃𝑎𝑧𝑏𝑧𝑐𝑧𝑑𝑧𝑒𝑧𝑓𝑧 (𝑎𝑑 ∧ (abs‘(𝑦𝑎)) = (abs‘(𝑏𝑐)) ∧ (abs‘(𝑦𝑑)) = (abs‘(𝑒𝑓))))} = {𝑥 ∈ ℂ ∣ (∃𝑎𝑧𝑏𝑧𝑐𝑧𝑑𝑧𝑡 ∈ ℝ ∃𝑟 ∈ ℝ (𝑥 = (𝑎 + (𝑡 · (𝑏𝑎))) ∧ 𝑥 = (𝑐 + (𝑟 · (𝑑𝑐))) ∧ (ℑ‘((∗‘(𝑏𝑎)) · (𝑑𝑐))) ≠ 0) ∨ ∃𝑎𝑧𝑏𝑧𝑐𝑧𝑒𝑧𝑓𝑧𝑡 ∈ ℝ (𝑥 = (𝑎 + (𝑡 · (𝑏𝑎))) ∧ (abs‘(𝑥𝑐)) = (abs‘(𝑒𝑓))) ∨ ∃𝑎𝑧𝑏𝑧𝑐𝑧𝑑𝑧𝑒𝑧𝑓𝑧 (𝑎𝑑 ∧ (abs‘(𝑥𝑎)) = (abs‘(𝑏𝑐)) ∧ (abs‘(𝑥𝑑)) = (abs‘(𝑒𝑓))))}
153125, 152eqtri 2757 . . . 4 {𝑦 ∈ ℂ ∣ (∃𝑖𝑧𝑗𝑧𝑘𝑧𝑙𝑧𝑜 ∈ ℝ ∃𝑝 ∈ ℝ (𝑦 = (𝑖 + (𝑜 · (𝑗𝑖))) ∧ 𝑦 = (𝑘 + (𝑝 · (𝑙𝑘))) ∧ (ℑ‘((∗‘(𝑗𝑖)) · (𝑙𝑘))) ≠ 0) ∨ ∃𝑖𝑧𝑗𝑧𝑘𝑧𝑚𝑧𝑞𝑧𝑜 ∈ ℝ (𝑦 = (𝑖 + (𝑜 · (𝑗𝑖))) ∧ (abs‘(𝑦𝑘)) = (abs‘(𝑚𝑞))) ∨ ∃𝑖𝑧𝑗𝑧𝑘𝑧𝑙𝑧𝑚𝑧𝑞𝑧 (𝑖𝑙 ∧ (abs‘(𝑦𝑖)) = (abs‘(𝑗𝑘)) ∧ (abs‘(𝑦𝑙)) = (abs‘(𝑚𝑞))))} = {𝑥 ∈ ℂ ∣ (∃𝑎𝑧𝑏𝑧𝑐𝑧𝑑𝑧𝑡 ∈ ℝ ∃𝑟 ∈ ℝ (𝑥 = (𝑎 + (𝑡 · (𝑏𝑎))) ∧ 𝑥 = (𝑐 + (𝑟 · (𝑑𝑐))) ∧ (ℑ‘((∗‘(𝑏𝑎)) · (𝑑𝑐))) ≠ 0) ∨ ∃𝑎𝑧𝑏𝑧𝑐𝑧𝑒𝑧𝑓𝑧𝑡 ∈ ℝ (𝑥 = (𝑎 + (𝑡 · (𝑏𝑎))) ∧ (abs‘(𝑥𝑐)) = (abs‘(𝑒𝑓))) ∨ ∃𝑎𝑧𝑏𝑧𝑐𝑧𝑑𝑧𝑒𝑧𝑓𝑧 (𝑎𝑑 ∧ (abs‘(𝑥𝑎)) = (abs‘(𝑏𝑐)) ∧ (abs‘(𝑥𝑑)) = (abs‘(𝑒𝑓))))}
154153mpteq2i 5227 . . 3 (𝑧 ∈ V ↦ {𝑦 ∈ ℂ ∣ (∃𝑖𝑧𝑗𝑧𝑘𝑧𝑙𝑧𝑜 ∈ ℝ ∃𝑝 ∈ ℝ (𝑦 = (𝑖 + (𝑜 · (𝑗𝑖))) ∧ 𝑦 = (𝑘 + (𝑝 · (𝑙𝑘))) ∧ (ℑ‘((∗‘(𝑗𝑖)) · (𝑙𝑘))) ≠ 0) ∨ ∃𝑖𝑧𝑗𝑧𝑘𝑧𝑚𝑧𝑞𝑧𝑜 ∈ ℝ (𝑦 = (𝑖 + (𝑜 · (𝑗𝑖))) ∧ (abs‘(𝑦𝑘)) = (abs‘(𝑚𝑞))) ∨ ∃𝑖𝑧𝑗𝑧𝑘𝑧𝑙𝑧𝑚𝑧𝑞𝑧 (𝑖𝑙 ∧ (abs‘(𝑦𝑖)) = (abs‘(𝑗𝑘)) ∧ (abs‘(𝑦𝑙)) = (abs‘(𝑚𝑞))))}) = (𝑧 ∈ V ↦ {𝑥 ∈ ℂ ∣ (∃𝑎𝑧𝑏𝑧𝑐𝑧𝑑𝑧𝑡 ∈ ℝ ∃𝑟 ∈ ℝ (𝑥 = (𝑎 + (𝑡 · (𝑏𝑎))) ∧ 𝑥 = (𝑐 + (𝑟 · (𝑑𝑐))) ∧ (ℑ‘((∗‘(𝑏𝑎)) · (𝑑𝑐))) ≠ 0) ∨ ∃𝑎𝑧𝑏𝑧𝑐𝑧𝑒𝑧𝑓𝑧𝑡 ∈ ℝ (𝑥 = (𝑎 + (𝑡 · (𝑏𝑎))) ∧ (abs‘(𝑥𝑐)) = (abs‘(𝑒𝑓))) ∨ ∃𝑎𝑧𝑏𝑧𝑐𝑧𝑑𝑧𝑒𝑧𝑓𝑧 (𝑎𝑑 ∧ (abs‘(𝑥𝑎)) = (abs‘(𝑏𝑐)) ∧ (abs‘(𝑥𝑑)) = (abs‘(𝑒𝑓))))})
155 elequ2 2122 . . . . . . . 8 (𝑧 = 𝑠 → (𝑎𝑧𝑎𝑠))
156 elequ2 2122 . . . . . . . . . 10 (𝑧 = 𝑠 → (𝑏𝑧𝑏𝑠))
157 elequ2 2122 . . . . . . . . . . . 12 (𝑧 = 𝑠 → (𝑐𝑧𝑐𝑠))
158 rexeq 3305 . . . . . . . . . . . 12 (𝑧 = 𝑠 → (∃𝑑𝑧𝑡 ∈ ℝ ∃𝑟 ∈ ℝ (𝑥 = (𝑎 + (𝑡 · (𝑏𝑎))) ∧ 𝑥 = (𝑐 + (𝑟 · (𝑑𝑐))) ∧ (ℑ‘((∗‘(𝑏𝑎)) · (𝑑𝑐))) ≠ 0) ↔ ∃𝑑𝑠𝑡 ∈ ℝ ∃𝑟 ∈ ℝ (𝑥 = (𝑎 + (𝑡 · (𝑏𝑎))) ∧ 𝑥 = (𝑐 + (𝑟 · (𝑑𝑐))) ∧ (ℑ‘((∗‘(𝑏𝑎)) · (𝑑𝑐))) ≠ 0)))
159157, 158anbi12d 632 . . . . . . . . . . 11 (𝑧 = 𝑠 → ((𝑐𝑧 ∧ ∃𝑑𝑧𝑡 ∈ ℝ ∃𝑟 ∈ ℝ (𝑥 = (𝑎 + (𝑡 · (𝑏𝑎))) ∧ 𝑥 = (𝑐 + (𝑟 · (𝑑𝑐))) ∧ (ℑ‘((∗‘(𝑏𝑎)) · (𝑑𝑐))) ≠ 0)) ↔ (𝑐𝑠 ∧ ∃𝑑𝑠𝑡 ∈ ℝ ∃𝑟 ∈ ℝ (𝑥 = (𝑎 + (𝑡 · (𝑏𝑎))) ∧ 𝑥 = (𝑐 + (𝑟 · (𝑑𝑐))) ∧ (ℑ‘((∗‘(𝑏𝑎)) · (𝑑𝑐))) ≠ 0))))
160159rexbidv2 3162 . . . . . . . . . 10 (𝑧 = 𝑠 → (∃𝑐𝑧𝑑𝑧𝑡 ∈ ℝ ∃𝑟 ∈ ℝ (𝑥 = (𝑎 + (𝑡 · (𝑏𝑎))) ∧ 𝑥 = (𝑐 + (𝑟 · (𝑑𝑐))) ∧ (ℑ‘((∗‘(𝑏𝑎)) · (𝑑𝑐))) ≠ 0) ↔ ∃𝑐𝑠𝑑𝑠𝑡 ∈ ℝ ∃𝑟 ∈ ℝ (𝑥 = (𝑎 + (𝑡 · (𝑏𝑎))) ∧ 𝑥 = (𝑐 + (𝑟 · (𝑑𝑐))) ∧ (ℑ‘((∗‘(𝑏𝑎)) · (𝑑𝑐))) ≠ 0)))
161156, 160anbi12d 632 . . . . . . . . 9 (𝑧 = 𝑠 → ((𝑏𝑧 ∧ ∃𝑐𝑧𝑑𝑧𝑡 ∈ ℝ ∃𝑟 ∈ ℝ (𝑥 = (𝑎 + (𝑡 · (𝑏𝑎))) ∧ 𝑥 = (𝑐 + (𝑟 · (𝑑𝑐))) ∧ (ℑ‘((∗‘(𝑏𝑎)) · (𝑑𝑐))) ≠ 0)) ↔ (𝑏𝑠 ∧ ∃𝑐𝑠𝑑𝑠𝑡 ∈ ℝ ∃𝑟 ∈ ℝ (𝑥 = (𝑎 + (𝑡 · (𝑏𝑎))) ∧ 𝑥 = (𝑐 + (𝑟 · (𝑑𝑐))) ∧ (ℑ‘((∗‘(𝑏𝑎)) · (𝑑𝑐))) ≠ 0))))
162161rexbidv2 3162 . . . . . . . 8 (𝑧 = 𝑠 → (∃𝑏𝑧𝑐𝑧𝑑𝑧𝑡 ∈ ℝ ∃𝑟 ∈ ℝ (𝑥 = (𝑎 + (𝑡 · (𝑏𝑎))) ∧ 𝑥 = (𝑐 + (𝑟 · (𝑑𝑐))) ∧ (ℑ‘((∗‘(𝑏𝑎)) · (𝑑𝑐))) ≠ 0) ↔ ∃𝑏𝑠𝑐𝑠𝑑𝑠𝑡 ∈ ℝ ∃𝑟 ∈ ℝ (𝑥 = (𝑎 + (𝑡 · (𝑏𝑎))) ∧ 𝑥 = (𝑐 + (𝑟 · (𝑑𝑐))) ∧ (ℑ‘((∗‘(𝑏𝑎)) · (𝑑𝑐))) ≠ 0)))
163155, 162anbi12d 632 . . . . . . 7 (𝑧 = 𝑠 → ((𝑎𝑧 ∧ ∃𝑏𝑧𝑐𝑧𝑑𝑧𝑡 ∈ ℝ ∃𝑟 ∈ ℝ (𝑥 = (𝑎 + (𝑡 · (𝑏𝑎))) ∧ 𝑥 = (𝑐 + (𝑟 · (𝑑𝑐))) ∧ (ℑ‘((∗‘(𝑏𝑎)) · (𝑑𝑐))) ≠ 0)) ↔ (𝑎𝑠 ∧ ∃𝑏𝑠𝑐𝑠𝑑𝑠𝑡 ∈ ℝ ∃𝑟 ∈ ℝ (𝑥 = (𝑎 + (𝑡 · (𝑏𝑎))) ∧ 𝑥 = (𝑐 + (𝑟 · (𝑑𝑐))) ∧ (ℑ‘((∗‘(𝑏𝑎)) · (𝑑𝑐))) ≠ 0))))
164163rexbidv2 3162 . . . . . 6 (𝑧 = 𝑠 → (∃𝑎𝑧𝑏𝑧𝑐𝑧𝑑𝑧𝑡 ∈ ℝ ∃𝑟 ∈ ℝ (𝑥 = (𝑎 + (𝑡 · (𝑏𝑎))) ∧ 𝑥 = (𝑐 + (𝑟 · (𝑑𝑐))) ∧ (ℑ‘((∗‘(𝑏𝑎)) · (𝑑𝑐))) ≠ 0) ↔ ∃𝑎𝑠𝑏𝑠𝑐𝑠𝑑𝑠𝑡 ∈ ℝ ∃𝑟 ∈ ℝ (𝑥 = (𝑎 + (𝑡 · (𝑏𝑎))) ∧ 𝑥 = (𝑐 + (𝑟 · (𝑑𝑐))) ∧ (ℑ‘((∗‘(𝑏𝑎)) · (𝑑𝑐))) ≠ 0)))
165 elequ2 2122 . . . . . . . . . . . . . 14 (𝑧 = 𝑠 → (𝑒𝑧𝑒𝑠))
166 rexeq 3305 . . . . . . . . . . . . . 14 (𝑧 = 𝑠 → (∃𝑓𝑧𝑡 ∈ ℝ (𝑥 = (𝑎 + (𝑡 · (𝑏𝑎))) ∧ (abs‘(𝑥𝑐)) = (abs‘(𝑒𝑓))) ↔ ∃𝑓𝑠𝑡 ∈ ℝ (𝑥 = (𝑎 + (𝑡 · (𝑏𝑎))) ∧ (abs‘(𝑥𝑐)) = (abs‘(𝑒𝑓)))))
167165, 166anbi12d 632 . . . . . . . . . . . . 13 (𝑧 = 𝑠 → ((𝑒𝑧 ∧ ∃𝑓𝑧𝑡 ∈ ℝ (𝑥 = (𝑎 + (𝑡 · (𝑏𝑎))) ∧ (abs‘(𝑥𝑐)) = (abs‘(𝑒𝑓)))) ↔ (𝑒𝑠 ∧ ∃𝑓𝑠𝑡 ∈ ℝ (𝑥 = (𝑎 + (𝑡 · (𝑏𝑎))) ∧ (abs‘(𝑥𝑐)) = (abs‘(𝑒𝑓))))))
168167rexbidv2 3162 . . . . . . . . . . . 12 (𝑧 = 𝑠 → (∃𝑒𝑧𝑓𝑧𝑡 ∈ ℝ (𝑥 = (𝑎 + (𝑡 · (𝑏𝑎))) ∧ (abs‘(𝑥𝑐)) = (abs‘(𝑒𝑓))) ↔ ∃𝑒𝑠𝑓𝑠𝑡 ∈ ℝ (𝑥 = (𝑎 + (𝑡 · (𝑏𝑎))) ∧ (abs‘(𝑥𝑐)) = (abs‘(𝑒𝑓)))))
169157, 168anbi12d 632 . . . . . . . . . . 11 (𝑧 = 𝑠 → ((𝑐𝑧 ∧ ∃𝑒𝑧𝑓𝑧𝑡 ∈ ℝ (𝑥 = (𝑎 + (𝑡 · (𝑏𝑎))) ∧ (abs‘(𝑥𝑐)) = (abs‘(𝑒𝑓)))) ↔ (𝑐𝑠 ∧ ∃𝑒𝑠𝑓𝑠𝑡 ∈ ℝ (𝑥 = (𝑎 + (𝑡 · (𝑏𝑎))) ∧ (abs‘(𝑥𝑐)) = (abs‘(𝑒𝑓))))))
170169rexbidv2 3162 . . . . . . . . . 10 (𝑧 = 𝑠 → (∃𝑐𝑧𝑒𝑧𝑓𝑧𝑡 ∈ ℝ (𝑥 = (𝑎 + (𝑡 · (𝑏𝑎))) ∧ (abs‘(𝑥𝑐)) = (abs‘(𝑒𝑓))) ↔ ∃𝑐𝑠𝑒𝑠𝑓𝑠𝑡 ∈ ℝ (𝑥 = (𝑎 + (𝑡 · (𝑏𝑎))) ∧ (abs‘(𝑥𝑐)) = (abs‘(𝑒𝑓)))))
171156, 170anbi12d 632 . . . . . . . . 9 (𝑧 = 𝑠 → ((𝑏𝑧 ∧ ∃𝑐𝑧𝑒𝑧𝑓𝑧𝑡 ∈ ℝ (𝑥 = (𝑎 + (𝑡 · (𝑏𝑎))) ∧ (abs‘(𝑥𝑐)) = (abs‘(𝑒𝑓)))) ↔ (𝑏𝑠 ∧ ∃𝑐𝑠𝑒𝑠𝑓𝑠𝑡 ∈ ℝ (𝑥 = (𝑎 + (𝑡 · (𝑏𝑎))) ∧ (abs‘(𝑥𝑐)) = (abs‘(𝑒𝑓))))))
172171rexbidv2 3162 . . . . . . . 8 (𝑧 = 𝑠 → (∃𝑏𝑧𝑐𝑧𝑒𝑧𝑓𝑧𝑡 ∈ ℝ (𝑥 = (𝑎 + (𝑡 · (𝑏𝑎))) ∧ (abs‘(𝑥𝑐)) = (abs‘(𝑒𝑓))) ↔ ∃𝑏𝑠𝑐𝑠𝑒𝑠𝑓𝑠𝑡 ∈ ℝ (𝑥 = (𝑎 + (𝑡 · (𝑏𝑎))) ∧ (abs‘(𝑥𝑐)) = (abs‘(𝑒𝑓)))))
173155, 172anbi12d 632 . . . . . . 7 (𝑧 = 𝑠 → ((𝑎𝑧 ∧ ∃𝑏𝑧𝑐𝑧𝑒𝑧𝑓𝑧𝑡 ∈ ℝ (𝑥 = (𝑎 + (𝑡 · (𝑏𝑎))) ∧ (abs‘(𝑥𝑐)) = (abs‘(𝑒𝑓)))) ↔ (𝑎𝑠 ∧ ∃𝑏𝑠𝑐𝑠𝑒𝑠𝑓𝑠𝑡 ∈ ℝ (𝑥 = (𝑎 + (𝑡 · (𝑏𝑎))) ∧ (abs‘(𝑥𝑐)) = (abs‘(𝑒𝑓))))))
174173rexbidv2 3162 . . . . . 6 (𝑧 = 𝑠 → (∃𝑎𝑧𝑏𝑧𝑐𝑧𝑒𝑧𝑓𝑧𝑡 ∈ ℝ (𝑥 = (𝑎 + (𝑡 · (𝑏𝑎))) ∧ (abs‘(𝑥𝑐)) = (abs‘(𝑒𝑓))) ↔ ∃𝑎𝑠𝑏𝑠𝑐𝑠𝑒𝑠𝑓𝑠𝑡 ∈ ℝ (𝑥 = (𝑎 + (𝑡 · (𝑏𝑎))) ∧ (abs‘(𝑥𝑐)) = (abs‘(𝑒𝑓)))))
175 elequ2 2122 . . . . . . . . . . . . . 14 (𝑧 = 𝑠 → (𝑑𝑧𝑑𝑠))
176 rexeq 3305 . . . . . . . . . . . . . . . 16 (𝑧 = 𝑠 → (∃𝑓𝑧 (𝑎𝑑 ∧ (abs‘(𝑥𝑎)) = (abs‘(𝑏𝑐)) ∧ (abs‘(𝑥𝑑)) = (abs‘(𝑒𝑓))) ↔ ∃𝑓𝑠 (𝑎𝑑 ∧ (abs‘(𝑥𝑎)) = (abs‘(𝑏𝑐)) ∧ (abs‘(𝑥𝑑)) = (abs‘(𝑒𝑓)))))
177165, 176anbi12d 632 . . . . . . . . . . . . . . 15 (𝑧 = 𝑠 → ((𝑒𝑧 ∧ ∃𝑓𝑧 (𝑎𝑑 ∧ (abs‘(𝑥𝑎)) = (abs‘(𝑏𝑐)) ∧ (abs‘(𝑥𝑑)) = (abs‘(𝑒𝑓)))) ↔ (𝑒𝑠 ∧ ∃𝑓𝑠 (𝑎𝑑 ∧ (abs‘(𝑥𝑎)) = (abs‘(𝑏𝑐)) ∧ (abs‘(𝑥𝑑)) = (abs‘(𝑒𝑓))))))
178177rexbidv2 3162 . . . . . . . . . . . . . 14 (𝑧 = 𝑠 → (∃𝑒𝑧𝑓𝑧 (𝑎𝑑 ∧ (abs‘(𝑥𝑎)) = (abs‘(𝑏𝑐)) ∧ (abs‘(𝑥𝑑)) = (abs‘(𝑒𝑓))) ↔ ∃𝑒𝑠𝑓𝑠 (𝑎𝑑 ∧ (abs‘(𝑥𝑎)) = (abs‘(𝑏𝑐)) ∧ (abs‘(𝑥𝑑)) = (abs‘(𝑒𝑓)))))
179175, 178anbi12d 632 . . . . . . . . . . . . 13 (𝑧 = 𝑠 → ((𝑑𝑧 ∧ ∃𝑒𝑧𝑓𝑧 (𝑎𝑑 ∧ (abs‘(𝑥𝑎)) = (abs‘(𝑏𝑐)) ∧ (abs‘(𝑥𝑑)) = (abs‘(𝑒𝑓)))) ↔ (𝑑𝑠 ∧ ∃𝑒𝑠𝑓𝑠 (𝑎𝑑 ∧ (abs‘(𝑥𝑎)) = (abs‘(𝑏𝑐)) ∧ (abs‘(𝑥𝑑)) = (abs‘(𝑒𝑓))))))
180179rexbidv2 3162 . . . . . . . . . . . 12 (𝑧 = 𝑠 → (∃𝑑𝑧𝑒𝑧𝑓𝑧 (𝑎𝑑 ∧ (abs‘(𝑥𝑎)) = (abs‘(𝑏𝑐)) ∧ (abs‘(𝑥𝑑)) = (abs‘(𝑒𝑓))) ↔ ∃𝑑𝑠𝑒𝑠𝑓𝑠 (𝑎𝑑 ∧ (abs‘(𝑥𝑎)) = (abs‘(𝑏𝑐)) ∧ (abs‘(𝑥𝑑)) = (abs‘(𝑒𝑓)))))
181157, 180anbi12d 632 . . . . . . . . . . 11 (𝑧 = 𝑠 → ((𝑐𝑧 ∧ ∃𝑑𝑧𝑒𝑧𝑓𝑧 (𝑎𝑑 ∧ (abs‘(𝑥𝑎)) = (abs‘(𝑏𝑐)) ∧ (abs‘(𝑥𝑑)) = (abs‘(𝑒𝑓)))) ↔ (𝑐𝑠 ∧ ∃𝑑𝑠𝑒𝑠𝑓𝑠 (𝑎𝑑 ∧ (abs‘(𝑥𝑎)) = (abs‘(𝑏𝑐)) ∧ (abs‘(𝑥𝑑)) = (abs‘(𝑒𝑓))))))
182181rexbidv2 3162 . . . . . . . . . 10 (𝑧 = 𝑠 → (∃𝑐𝑧𝑑𝑧𝑒𝑧𝑓𝑧 (𝑎𝑑 ∧ (abs‘(𝑥𝑎)) = (abs‘(𝑏𝑐)) ∧ (abs‘(𝑥𝑑)) = (abs‘(𝑒𝑓))) ↔ ∃𝑐𝑠𝑑𝑠𝑒𝑠𝑓𝑠 (𝑎𝑑 ∧ (abs‘(𝑥𝑎)) = (abs‘(𝑏𝑐)) ∧ (abs‘(𝑥𝑑)) = (abs‘(𝑒𝑓)))))
183156, 182anbi12d 632 . . . . . . . . 9 (𝑧 = 𝑠 → ((𝑏𝑧 ∧ ∃𝑐𝑧𝑑𝑧𝑒𝑧𝑓𝑧 (𝑎𝑑 ∧ (abs‘(𝑥𝑎)) = (abs‘(𝑏𝑐)) ∧ (abs‘(𝑥𝑑)) = (abs‘(𝑒𝑓)))) ↔ (𝑏𝑠 ∧ ∃𝑐𝑠𝑑𝑠𝑒𝑠𝑓𝑠 (𝑎𝑑 ∧ (abs‘(𝑥𝑎)) = (abs‘(𝑏𝑐)) ∧ (abs‘(𝑥𝑑)) = (abs‘(𝑒𝑓))))))
184183rexbidv2 3162 . . . . . . . 8 (𝑧 = 𝑠 → (∃𝑏𝑧𝑐𝑧𝑑𝑧𝑒𝑧𝑓𝑧 (𝑎𝑑 ∧ (abs‘(𝑥𝑎)) = (abs‘(𝑏𝑐)) ∧ (abs‘(𝑥𝑑)) = (abs‘(𝑒𝑓))) ↔ ∃𝑏𝑠𝑐𝑠𝑑𝑠𝑒𝑠𝑓𝑠 (𝑎𝑑 ∧ (abs‘(𝑥𝑎)) = (abs‘(𝑏𝑐)) ∧ (abs‘(𝑥𝑑)) = (abs‘(𝑒𝑓)))))
185155, 184anbi12d 632 . . . . . . 7 (𝑧 = 𝑠 → ((𝑎𝑧 ∧ ∃𝑏𝑧𝑐𝑧𝑑𝑧𝑒𝑧𝑓𝑧 (𝑎𝑑 ∧ (abs‘(𝑥𝑎)) = (abs‘(𝑏𝑐)) ∧ (abs‘(𝑥𝑑)) = (abs‘(𝑒𝑓)))) ↔ (𝑎𝑠 ∧ ∃𝑏𝑠𝑐𝑠𝑑𝑠𝑒𝑠𝑓𝑠 (𝑎𝑑 ∧ (abs‘(𝑥𝑎)) = (abs‘(𝑏𝑐)) ∧ (abs‘(𝑥𝑑)) = (abs‘(𝑒𝑓))))))
186185rexbidv2 3162 . . . . . 6 (𝑧 = 𝑠 → (∃𝑎𝑧𝑏𝑧𝑐𝑧𝑑𝑧𝑒𝑧𝑓𝑧 (𝑎𝑑 ∧ (abs‘(𝑥𝑎)) = (abs‘(𝑏𝑐)) ∧ (abs‘(𝑥𝑑)) = (abs‘(𝑒𝑓))) ↔ ∃𝑎𝑠𝑏𝑠𝑐𝑠𝑑𝑠𝑒𝑠𝑓𝑠 (𝑎𝑑 ∧ (abs‘(𝑥𝑎)) = (abs‘(𝑏𝑐)) ∧ (abs‘(𝑥𝑑)) = (abs‘(𝑒𝑓)))))
187164, 174, 1863orbi123d 1436 . . . . 5 (𝑧 = 𝑠 → ((∃𝑎𝑧𝑏𝑧𝑐𝑧𝑑𝑧𝑡 ∈ ℝ ∃𝑟 ∈ ℝ (𝑥 = (𝑎 + (𝑡 · (𝑏𝑎))) ∧ 𝑥 = (𝑐 + (𝑟 · (𝑑𝑐))) ∧ (ℑ‘((∗‘(𝑏𝑎)) · (𝑑𝑐))) ≠ 0) ∨ ∃𝑎𝑧𝑏𝑧𝑐𝑧𝑒𝑧𝑓𝑧𝑡 ∈ ℝ (𝑥 = (𝑎 + (𝑡 · (𝑏𝑎))) ∧ (abs‘(𝑥𝑐)) = (abs‘(𝑒𝑓))) ∨ ∃𝑎𝑧𝑏𝑧𝑐𝑧𝑑𝑧𝑒𝑧𝑓𝑧 (𝑎𝑑 ∧ (abs‘(𝑥𝑎)) = (abs‘(𝑏𝑐)) ∧ (abs‘(𝑥𝑑)) = (abs‘(𝑒𝑓)))) ↔ (∃𝑎𝑠𝑏𝑠𝑐𝑠𝑑𝑠𝑡 ∈ ℝ ∃𝑟 ∈ ℝ (𝑥 = (𝑎 + (𝑡 · (𝑏𝑎))) ∧ 𝑥 = (𝑐 + (𝑟 · (𝑑𝑐))) ∧ (ℑ‘((∗‘(𝑏𝑎)) · (𝑑𝑐))) ≠ 0) ∨ ∃𝑎𝑠𝑏𝑠𝑐𝑠𝑒𝑠𝑓𝑠𝑡 ∈ ℝ (𝑥 = (𝑎 + (𝑡 · (𝑏𝑎))) ∧ (abs‘(𝑥𝑐)) = (abs‘(𝑒𝑓))) ∨ ∃𝑎𝑠𝑏𝑠𝑐𝑠𝑑𝑠𝑒𝑠𝑓𝑠 (𝑎𝑑 ∧ (abs‘(𝑥𝑎)) = (abs‘(𝑏𝑐)) ∧ (abs‘(𝑥𝑑)) = (abs‘(𝑒𝑓))))))
188187rabbidv 3427 . . . 4 (𝑧 = 𝑠 → {𝑥 ∈ ℂ ∣ (∃𝑎𝑧𝑏𝑧𝑐𝑧𝑑𝑧𝑡 ∈ ℝ ∃𝑟 ∈ ℝ (𝑥 = (𝑎 + (𝑡 · (𝑏𝑎))) ∧ 𝑥 = (𝑐 + (𝑟 · (𝑑𝑐))) ∧ (ℑ‘((∗‘(𝑏𝑎)) · (𝑑𝑐))) ≠ 0) ∨ ∃𝑎𝑧𝑏𝑧𝑐𝑧𝑒𝑧𝑓𝑧𝑡 ∈ ℝ (𝑥 = (𝑎 + (𝑡 · (𝑏𝑎))) ∧ (abs‘(𝑥𝑐)) = (abs‘(𝑒𝑓))) ∨ ∃𝑎𝑧𝑏𝑧𝑐𝑧𝑑𝑧𝑒𝑧𝑓𝑧 (𝑎𝑑 ∧ (abs‘(𝑥𝑎)) = (abs‘(𝑏𝑐)) ∧ (abs‘(𝑥𝑑)) = (abs‘(𝑒𝑓))))} = {𝑥 ∈ ℂ ∣ (∃𝑎𝑠𝑏𝑠𝑐𝑠𝑑𝑠𝑡 ∈ ℝ ∃𝑟 ∈ ℝ (𝑥 = (𝑎 + (𝑡 · (𝑏𝑎))) ∧ 𝑥 = (𝑐 + (𝑟 · (𝑑𝑐))) ∧ (ℑ‘((∗‘(𝑏𝑎)) · (𝑑𝑐))) ≠ 0) ∨ ∃𝑎𝑠𝑏𝑠𝑐𝑠𝑒𝑠𝑓𝑠𝑡 ∈ ℝ (𝑥 = (𝑎 + (𝑡 · (𝑏𝑎))) ∧ (abs‘(𝑥𝑐)) = (abs‘(𝑒𝑓))) ∨ ∃𝑎𝑠𝑏𝑠𝑐𝑠𝑑𝑠𝑒𝑠𝑓𝑠 (𝑎𝑑 ∧ (abs‘(𝑥𝑎)) = (abs‘(𝑏𝑐)) ∧ (abs‘(𝑥𝑑)) = (abs‘(𝑒𝑓))))})
189188cbvmptv 5235 . . 3 (𝑧 ∈ V ↦ {𝑥 ∈ ℂ ∣ (∃𝑎𝑧𝑏𝑧𝑐𝑧𝑑𝑧𝑡 ∈ ℝ ∃𝑟 ∈ ℝ (𝑥 = (𝑎 + (𝑡 · (𝑏𝑎))) ∧ 𝑥 = (𝑐 + (𝑟 · (𝑑𝑐))) ∧ (ℑ‘((∗‘(𝑏𝑎)) · (𝑑𝑐))) ≠ 0) ∨ ∃𝑎𝑧𝑏𝑧𝑐𝑧𝑒𝑧𝑓𝑧𝑡 ∈ ℝ (𝑥 = (𝑎 + (𝑡 · (𝑏𝑎))) ∧ (abs‘(𝑥𝑐)) = (abs‘(𝑒𝑓))) ∨ ∃𝑎𝑧𝑏𝑧𝑐𝑧𝑑𝑧𝑒𝑧𝑓𝑧 (𝑎𝑑 ∧ (abs‘(𝑥𝑎)) = (abs‘(𝑏𝑐)) ∧ (abs‘(𝑥𝑑)) = (abs‘(𝑒𝑓))))}) = (𝑠 ∈ V ↦ {𝑥 ∈ ℂ ∣ (∃𝑎𝑠𝑏𝑠𝑐𝑠𝑑𝑠𝑡 ∈ ℝ ∃𝑟 ∈ ℝ (𝑥 = (𝑎 + (𝑡 · (𝑏𝑎))) ∧ 𝑥 = (𝑐 + (𝑟 · (𝑑𝑐))) ∧ (ℑ‘((∗‘(𝑏𝑎)) · (𝑑𝑐))) ≠ 0) ∨ ∃𝑎𝑠𝑏𝑠𝑐𝑠𝑒𝑠𝑓𝑠𝑡 ∈ ℝ (𝑥 = (𝑎 + (𝑡 · (𝑏𝑎))) ∧ (abs‘(𝑥𝑐)) = (abs‘(𝑒𝑓))) ∨ ∃𝑎𝑠𝑏𝑠𝑐𝑠𝑑𝑠𝑒𝑠𝑓𝑠 (𝑎𝑑 ∧ (abs‘(𝑥𝑎)) = (abs‘(𝑏𝑐)) ∧ (abs‘(𝑥𝑑)) = (abs‘(𝑒𝑓))))})
190154, 189eqtri 2757 . 2 (𝑧 ∈ V ↦ {𝑦 ∈ ℂ ∣ (∃𝑖𝑧𝑗𝑧𝑘𝑧𝑙𝑧𝑜 ∈ ℝ ∃𝑝 ∈ ℝ (𝑦 = (𝑖 + (𝑜 · (𝑗𝑖))) ∧ 𝑦 = (𝑘 + (𝑝 · (𝑙𝑘))) ∧ (ℑ‘((∗‘(𝑗𝑖)) · (𝑙𝑘))) ≠ 0) ∨ ∃𝑖𝑧𝑗𝑧𝑘𝑧𝑚𝑧𝑞𝑧𝑜 ∈ ℝ (𝑦 = (𝑖 + (𝑜 · (𝑗𝑖))) ∧ (abs‘(𝑦𝑘)) = (abs‘(𝑚𝑞))) ∨ ∃𝑖𝑧𝑗𝑧𝑘𝑧𝑙𝑧𝑚𝑧𝑞𝑧 (𝑖𝑙 ∧ (abs‘(𝑦𝑖)) = (abs‘(𝑗𝑘)) ∧ (abs‘(𝑦𝑙)) = (abs‘(𝑚𝑞))))}) = (𝑠 ∈ V ↦ {𝑥 ∈ ℂ ∣ (∃𝑎𝑠𝑏𝑠𝑐𝑠𝑑𝑠𝑡 ∈ ℝ ∃𝑟 ∈ ℝ (𝑥 = (𝑎 + (𝑡 · (𝑏𝑎))) ∧ 𝑥 = (𝑐 + (𝑟 · (𝑑𝑐))) ∧ (ℑ‘((∗‘(𝑏𝑎)) · (𝑑𝑐))) ≠ 0) ∨ ∃𝑎𝑠𝑏𝑠𝑐𝑠𝑒𝑠𝑓𝑠𝑡 ∈ ℝ (𝑥 = (𝑎 + (𝑡 · (𝑏𝑎))) ∧ (abs‘(𝑥𝑐)) = (abs‘(𝑒𝑓))) ∨ ∃𝑎𝑠𝑏𝑠𝑐𝑠𝑑𝑠𝑒𝑠𝑓𝑠 (𝑎𝑑 ∧ (abs‘(𝑥𝑎)) = (abs‘(𝑏𝑐)) ∧ (abs‘(𝑥𝑑)) = (abs‘(𝑒𝑓))))})
191 rdgeq1 8433 . 2 ((𝑧 ∈ V ↦ {𝑦 ∈ ℂ ∣ (∃𝑖𝑧𝑗𝑧𝑘𝑧𝑙𝑧𝑜 ∈ ℝ ∃𝑝 ∈ ℝ (𝑦 = (𝑖 + (𝑜 · (𝑗𝑖))) ∧ 𝑦 = (𝑘 + (𝑝 · (𝑙𝑘))) ∧ (ℑ‘((∗‘(𝑗𝑖)) · (𝑙𝑘))) ≠ 0) ∨ ∃𝑖𝑧𝑗𝑧𝑘𝑧𝑚𝑧𝑞𝑧𝑜 ∈ ℝ (𝑦 = (𝑖 + (𝑜 · (𝑗𝑖))) ∧ (abs‘(𝑦𝑘)) = (abs‘(𝑚𝑞))) ∨ ∃𝑖𝑧𝑗𝑧𝑘𝑧𝑙𝑧𝑚𝑧𝑞𝑧 (𝑖𝑙 ∧ (abs‘(𝑦𝑖)) = (abs‘(𝑗𝑘)) ∧ (abs‘(𝑦𝑙)) = (abs‘(𝑚𝑞))))}) = (𝑠 ∈ V ↦ {𝑥 ∈ ℂ ∣ (∃𝑎𝑠𝑏𝑠𝑐𝑠𝑑𝑠𝑡 ∈ ℝ ∃𝑟 ∈ ℝ (𝑥 = (𝑎 + (𝑡 · (𝑏𝑎))) ∧ 𝑥 = (𝑐 + (𝑟 · (𝑑𝑐))) ∧ (ℑ‘((∗‘(𝑏𝑎)) · (𝑑𝑐))) ≠ 0) ∨ ∃𝑎𝑠𝑏𝑠𝑐𝑠𝑒𝑠𝑓𝑠𝑡 ∈ ℝ (𝑥 = (𝑎 + (𝑡 · (𝑏𝑎))) ∧ (abs‘(𝑥𝑐)) = (abs‘(𝑒𝑓))) ∨ ∃𝑎𝑠𝑏𝑠𝑐𝑠𝑑𝑠𝑒𝑠𝑓𝑠 (𝑎𝑑 ∧ (abs‘(𝑥𝑎)) = (abs‘(𝑏𝑐)) ∧ (abs‘(𝑥𝑑)) = (abs‘(𝑒𝑓))))}) → rec((𝑧 ∈ V ↦ {𝑦 ∈ ℂ ∣ (∃𝑖𝑧𝑗𝑧𝑘𝑧𝑙𝑧𝑜 ∈ ℝ ∃𝑝 ∈ ℝ (𝑦 = (𝑖 + (𝑜 · (𝑗𝑖))) ∧ 𝑦 = (𝑘 + (𝑝 · (𝑙𝑘))) ∧ (ℑ‘((∗‘(𝑗𝑖)) · (𝑙𝑘))) ≠ 0) ∨ ∃𝑖𝑧𝑗𝑧𝑘𝑧𝑚𝑧𝑞𝑧𝑜 ∈ ℝ (𝑦 = (𝑖 + (𝑜 · (𝑗𝑖))) ∧ (abs‘(𝑦𝑘)) = (abs‘(𝑚𝑞))) ∨ ∃𝑖𝑧𝑗𝑧𝑘𝑧𝑙𝑧𝑚𝑧𝑞𝑧 (𝑖𝑙 ∧ (abs‘(𝑦𝑖)) = (abs‘(𝑗𝑘)) ∧ (abs‘(𝑦𝑙)) = (abs‘(𝑚𝑞))))}), {0, 1}) = rec((𝑠 ∈ V ↦ {𝑥 ∈ ℂ ∣ (∃𝑎𝑠𝑏𝑠𝑐𝑠𝑑𝑠𝑡 ∈ ℝ ∃𝑟 ∈ ℝ (𝑥 = (𝑎 + (𝑡 · (𝑏𝑎))) ∧ 𝑥 = (𝑐 + (𝑟 · (𝑑𝑐))) ∧ (ℑ‘((∗‘(𝑏𝑎)) · (𝑑𝑐))) ≠ 0) ∨ ∃𝑎𝑠𝑏𝑠𝑐𝑠𝑒𝑠𝑓𝑠𝑡 ∈ ℝ (𝑥 = (𝑎 + (𝑡 · (𝑏𝑎))) ∧ (abs‘(𝑥𝑐)) = (abs‘(𝑒𝑓))) ∨ ∃𝑎𝑠𝑏𝑠𝑐𝑠𝑑𝑠𝑒𝑠𝑓𝑠 (𝑎𝑑 ∧ (abs‘(𝑥𝑎)) = (abs‘(𝑏𝑐)) ∧ (abs‘(𝑥𝑑)) = (abs‘(𝑒𝑓))))}), {0, 1}))
192190, 191ax-mp 5 1 rec((𝑧 ∈ V ↦ {𝑦 ∈ ℂ ∣ (∃𝑖𝑧𝑗𝑧𝑘𝑧𝑙𝑧𝑜 ∈ ℝ ∃𝑝 ∈ ℝ (𝑦 = (𝑖 + (𝑜 · (𝑗𝑖))) ∧ 𝑦 = (𝑘 + (𝑝 · (𝑙𝑘))) ∧ (ℑ‘((∗‘(𝑗𝑖)) · (𝑙𝑘))) ≠ 0) ∨ ∃𝑖𝑧𝑗𝑧𝑘𝑧𝑚𝑧𝑞𝑧𝑜 ∈ ℝ (𝑦 = (𝑖 + (𝑜 · (𝑗𝑖))) ∧ (abs‘(𝑦𝑘)) = (abs‘(𝑚𝑞))) ∨ ∃𝑖𝑧𝑗𝑧𝑘𝑧𝑙𝑧𝑚𝑧𝑞𝑧 (𝑖𝑙 ∧ (abs‘(𝑦𝑖)) = (abs‘(𝑗𝑘)) ∧ (abs‘(𝑦𝑙)) = (abs‘(𝑚𝑞))))}), {0, 1}) = rec((𝑠 ∈ V ↦ {𝑥 ∈ ℂ ∣ (∃𝑎𝑠𝑏𝑠𝑐𝑠𝑑𝑠𝑡 ∈ ℝ ∃𝑟 ∈ ℝ (𝑥 = (𝑎 + (𝑡 · (𝑏𝑎))) ∧ 𝑥 = (𝑐 + (𝑟 · (𝑑𝑐))) ∧ (ℑ‘((∗‘(𝑏𝑎)) · (𝑑𝑐))) ≠ 0) ∨ ∃𝑎𝑠𝑏𝑠𝑐𝑠𝑒𝑠𝑓𝑠𝑡 ∈ ℝ (𝑥 = (𝑎 + (𝑡 · (𝑏𝑎))) ∧ (abs‘(𝑥𝑐)) = (abs‘(𝑒𝑓))) ∨ ∃𝑎𝑠𝑏𝑠𝑐𝑠𝑑𝑠𝑒𝑠𝑓𝑠 (𝑎𝑑 ∧ (abs‘(𝑥𝑎)) = (abs‘(𝑏𝑐)) ∧ (abs‘(𝑥𝑑)) = (abs‘(𝑒𝑓))))}), {0, 1})
Colors of variables: wff setvar class
Syntax hints:  wa 395  w3o 1085  w3a 1086   = wceq 1539  wcel 2107  wne 2931  wrex 3059  {crab 3419  Vcvv 3463  {cpr 4608  cmpt 5205  cfv 6541  (class class class)co 7413  reccrdg 8431  cc 11135  cr 11136  0cc0 11137  1c1 11138   + caddc 11140   · cmul 11142  cmin 11474  ccj 15117  cim 15119  abscabs 15255
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-ext 2706
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1779  df-sb 2064  df-clab 2713  df-cleq 2726  df-clel 2808  df-ne 2932  df-ral 3051  df-rex 3060  df-rab 3420  df-v 3465  df-dif 3934  df-un 3936  df-in 3938  df-ss 3948  df-nul 4314  df-if 4506  df-sn 4607  df-pr 4609  df-op 4613  df-uni 4888  df-br 5124  df-opab 5186  df-mpt 5206  df-xp 5671  df-cnv 5673  df-co 5674  df-dm 5675  df-rn 5676  df-res 5677  df-ima 5678  df-pred 6301  df-iota 6494  df-fv 6549  df-ov 7416  df-frecs 8288  df-wrecs 8319  df-recs 8393  df-rdg 8432
This theorem is referenced by:  constrllcl  33736  constrlccl  33737  constrcccl  33738  constrext2chn  33739  constrcn  33740  nn0constr  33741
  Copyright terms: Public domain W3C validator