Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  constrext2chn Structured version   Visualization version   GIF version

Theorem constrext2chn 33728
Description: If a constructible number generates some subfield 𝐿 of , then the degree of the extension of 𝐿 over is a power of two. (Contributed by Thierry Arnoux, 26-Oct-2025.)
Hypotheses
Ref Expression
constrext2chn.q 𝑄 = (ℂflds ℚ)
constrext2chn.l 𝐿 = (ℂflds 𝑆)
constrext2chn.s 𝑆 = (ℂfld fldGen (ℚ ∪ {𝐴}))
constrext2chn.a (𝜑𝐴 ∈ Constr)
Assertion
Ref Expression
constrext2chn (𝜑 → ∃𝑛 ∈ ℕ0 (𝐿[:]𝑄) = (2↑𝑛))
Distinct variable groups:   𝐴,𝑛   𝑛,𝐿   𝑄,𝑛   𝑆,𝑛   𝜑,𝑛

Proof of Theorem constrext2chn
Dummy variables 𝑎 𝑏 𝑐 𝑑 𝑒 𝑓 𝑔 𝑖 𝑗 𝑘 𝑙 𝑚 𝑜 𝑝 𝑞 𝑟 𝑠 𝑡 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 constrcbvlem 33724 . 2 rec((𝑧 ∈ V ↦ {𝑦 ∈ ℂ ∣ (∃𝑖𝑧𝑗𝑧𝑘𝑧𝑙𝑧𝑜 ∈ ℝ ∃𝑝 ∈ ℝ (𝑦 = (𝑖 + (𝑜 · (𝑗𝑖))) ∧ 𝑦 = (𝑘 + (𝑝 · (𝑙𝑘))) ∧ (ℑ‘((∗‘(𝑗𝑖)) · (𝑙𝑘))) ≠ 0) ∨ ∃𝑖𝑧𝑗𝑧𝑘𝑧𝑚𝑧𝑞𝑧𝑜 ∈ ℝ (𝑦 = (𝑖 + (𝑜 · (𝑗𝑖))) ∧ (abs‘(𝑦𝑘)) = (abs‘(𝑚𝑞))) ∨ ∃𝑖𝑧𝑗𝑧𝑘𝑧𝑙𝑧𝑚𝑧𝑞𝑧 (𝑖𝑙 ∧ (abs‘(𝑦𝑖)) = (abs‘(𝑗𝑘)) ∧ (abs‘(𝑦𝑙)) = (abs‘(𝑚𝑞))))}), {0, 1}) = rec((𝑠 ∈ V ↦ {𝑥 ∈ ℂ ∣ (∃𝑎𝑠𝑏𝑠𝑐𝑠𝑑𝑠𝑡 ∈ ℝ ∃𝑟 ∈ ℝ (𝑥 = (𝑎 + (𝑡 · (𝑏𝑎))) ∧ 𝑥 = (𝑐 + (𝑟 · (𝑑𝑐))) ∧ (ℑ‘((∗‘(𝑏𝑎)) · (𝑑𝑐))) ≠ 0) ∨ ∃𝑎𝑠𝑏𝑠𝑐𝑠𝑒𝑠𝑓𝑠𝑡 ∈ ℝ (𝑥 = (𝑎 + (𝑡 · (𝑏𝑎))) ∧ (abs‘(𝑥𝑐)) = (abs‘(𝑒𝑓))) ∨ ∃𝑎𝑠𝑏𝑠𝑐𝑠𝑑𝑠𝑒𝑠𝑓𝑠 (𝑎𝑑 ∧ (abs‘(𝑥𝑎)) = (abs‘(𝑏𝑐)) ∧ (abs‘(𝑥𝑑)) = (abs‘(𝑒𝑓))))}), {0, 1})
2 eqid 2734 . 2 (ℂflds 𝑒) = (ℂflds 𝑒)
3 eqid 2734 . 2 (ℂflds 𝑓) = (ℂflds 𝑓)
4 oveq2 7408 . . . . . 6 ( = 𝑒 → (ℂflds ) = (ℂflds 𝑒))
54adantl 481 . . . . 5 ((𝑔 = 𝑓 = 𝑒) → (ℂflds ) = (ℂflds 𝑒))
6 oveq2 7408 . . . . . 6 (𝑔 = 𝑓 → (ℂflds 𝑔) = (ℂflds 𝑓))
76adantr 480 . . . . 5 ((𝑔 = 𝑓 = 𝑒) → (ℂflds 𝑔) = (ℂflds 𝑓))
85, 7breq12d 5130 . . . 4 ((𝑔 = 𝑓 = 𝑒) → ((ℂflds )/FldExt(ℂflds 𝑔) ↔ (ℂflds 𝑒)/FldExt(ℂflds 𝑓)))
95, 7oveq12d 7418 . . . . 5 ((𝑔 = 𝑓 = 𝑒) → ((ℂflds )[:](ℂflds 𝑔)) = ((ℂflds 𝑒)[:](ℂflds 𝑓)))
109eqeq1d 2736 . . . 4 ((𝑔 = 𝑓 = 𝑒) → (((ℂflds )[:](ℂflds 𝑔)) = 2 ↔ ((ℂflds 𝑒)[:](ℂflds 𝑓)) = 2))
118, 10anbi12d 632 . . 3 ((𝑔 = 𝑓 = 𝑒) → (((ℂflds )/FldExt(ℂflds 𝑔) ∧ ((ℂflds )[:](ℂflds 𝑔)) = 2) ↔ ((ℂflds 𝑒)/FldExt(ℂflds 𝑓) ∧ ((ℂflds 𝑒)[:](ℂflds 𝑓)) = 2)))
1211cbvopabv 5190 . 2 {⟨𝑔, ⟩ ∣ ((ℂflds )/FldExt(ℂflds 𝑔) ∧ ((ℂflds )[:](ℂflds 𝑔)) = 2)} = {⟨𝑓, 𝑒⟩ ∣ ((ℂflds 𝑒)/FldExt(ℂflds 𝑓) ∧ ((ℂflds 𝑒)[:](ℂflds 𝑓)) = 2)}
13 peano1 7879 . . 3 ∅ ∈ ω
1413a1i 11 . 2 (𝜑 → ∅ ∈ ω)
15 constrext2chn.q . 2 𝑄 = (ℂflds ℚ)
16 constrext2chn.l . . 3 𝐿 = (ℂflds 𝑆)
17 constrext2chn.s . . . 4 𝑆 = (ℂfld fldGen (ℚ ∪ {𝐴}))
1817oveq2i 7411 . . 3 (ℂflds 𝑆) = (ℂflds (ℂfld fldGen (ℚ ∪ {𝐴})))
1916, 18eqtri 2757 . 2 𝐿 = (ℂflds (ℂfld fldGen (ℚ ∪ {𝐴})))
20 constrext2chn.a . 2 (𝜑𝐴 ∈ Constr)
211, 2, 3, 12, 14, 15, 19, 20constrext2chnlem 33719 1 (𝜑 → ∃𝑛 ∈ ℕ0 (𝐿[:]𝑄) = (2↑𝑛))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3o 1085  w3a 1086   = wceq 1539  wcel 2107  wne 2931  wrex 3059  {crab 3413  Vcvv 3457  cun 3922  c0 4306  {csn 4599  {cpr 4601   class class class wbr 5117  {copab 5179  cmpt 5199  cfv 6528  (class class class)co 7400  ωcom 7856  reccrdg 8418  cc 11120  cr 11121  0cc0 11122  1c1 11123   + caddc 11125   · cmul 11127  cmin 11459  2c2 12288  0cn0 12494  cq 12957  cexp 14069  ccj 15104  cim 15106  abscabs 15242  s cress 17238  fldccnfld 21302   fldGen cfldgen 33241  /FldExtcfldext 33613  [:]cextdg 33616  Constrcconstr 33698
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-10 2140  ax-11 2156  ax-12 2176  ax-ext 2706  ax-rep 5247  ax-sep 5264  ax-nul 5274  ax-pow 5333  ax-pr 5400  ax-un 7724  ax-reg 9599  ax-inf2 9648  ax-ac2 10470  ax-cnex 11178  ax-resscn 11179  ax-1cn 11180  ax-icn 11181  ax-addcl 11182  ax-addrcl 11183  ax-mulcl 11184  ax-mulrcl 11185  ax-mulcom 11186  ax-addass 11187  ax-mulass 11188  ax-distr 11189  ax-i2m1 11190  ax-1ne0 11191  ax-1rid 11192  ax-rnegex 11193  ax-rrecex 11194  ax-cnre 11195  ax-pre-lttri 11196  ax-pre-lttrn 11197  ax-pre-ltadd 11198  ax-pre-mulgt0 11199  ax-pre-sup 11200  ax-addf 11201  ax-mulf 11202
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1779  df-nf 1783  df-sb 2064  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2726  df-clel 2808  df-nfc 2884  df-ne 2932  df-nel 3036  df-ral 3051  df-rex 3060  df-rmo 3357  df-reu 3358  df-rab 3414  df-v 3459  df-sbc 3764  df-csb 3873  df-dif 3927  df-un 3929  df-in 3931  df-ss 3941  df-pss 3944  df-nul 4307  df-if 4499  df-pw 4575  df-sn 4600  df-pr 4602  df-tp 4604  df-op 4606  df-uni 4882  df-int 4921  df-iun 4967  df-iin 4968  df-br 5118  df-opab 5180  df-mpt 5200  df-tr 5228  df-id 5546  df-eprel 5551  df-po 5559  df-so 5560  df-fr 5604  df-se 5605  df-we 5606  df-xp 5658  df-rel 5659  df-cnv 5660  df-co 5661  df-dm 5662  df-rn 5663  df-res 5664  df-ima 5665  df-pred 6288  df-ord 6353  df-on 6354  df-lim 6355  df-suc 6356  df-iota 6481  df-fun 6530  df-fn 6531  df-f 6532  df-f1 6533  df-fo 6534  df-f1o 6535  df-fv 6536  df-isom 6537  df-riota 7357  df-ov 7403  df-oprab 7404  df-mpo 7405  df-of 7666  df-ofr 7667  df-rpss 7712  df-om 7857  df-1st 7983  df-2nd 7984  df-supp 8155  df-tpos 8220  df-frecs 8275  df-wrecs 8306  df-recs 8380  df-rdg 8419  df-1o 8475  df-2o 8476  df-oadd 8479  df-er 8714  df-ec 8716  df-qs 8720  df-map 8837  df-pm 8838  df-ixp 8907  df-en 8955  df-dom 8956  df-sdom 8957  df-fin 8958  df-fsupp 9369  df-sup 9449  df-inf 9450  df-oi 9517  df-r1 9771  df-rank 9772  df-dju 9908  df-card 9946  df-acn 9949  df-ac 10123  df-pnf 11264  df-mnf 11265  df-xr 11266  df-ltxr 11267  df-le 11268  df-sub 11461  df-neg 11462  df-div 11888  df-nn 12234  df-2 12296  df-3 12297  df-4 12298  df-5 12299  df-6 12300  df-7 12301  df-8 12302  df-9 12303  df-n0 12495  df-xnn0 12568  df-z 12582  df-dec 12702  df-uz 12846  df-q 12958  df-rp 13002  df-xneg 13121  df-xmul 13123  df-ico 13360  df-fz 13515  df-fzo 13662  df-fl 13799  df-mod 13877  df-seq 14010  df-exp 14070  df-hash 14339  df-word 14522  df-lsw 14570  df-concat 14578  df-s1 14603  df-substr 14648  df-pfx 14678  df-cj 15107  df-re 15108  df-im 15109  df-sqrt 15243  df-abs 15244  df-dvds 16260  df-gcd 16501  df-prm 16678  df-pc 16844  df-struct 17153  df-sets 17170  df-slot 17188  df-ndx 17200  df-base 17216  df-ress 17239  df-plusg 17271  df-mulr 17272  df-starv 17273  df-sca 17274  df-vsca 17275  df-ip 17276  df-tset 17277  df-ple 17278  df-ocomp 17279  df-ds 17280  df-unif 17281  df-hom 17282  df-cco 17283  df-0g 17442  df-gsum 17443  df-prds 17448  df-pws 17450  df-imas 17509  df-qus 17510  df-mre 17585  df-mrc 17586  df-mri 17587  df-acs 17588  df-proset 18293  df-drs 18294  df-poset 18312  df-ipo 18525  df-mgm 18605  df-sgrp 18684  df-mnd 18700  df-mhm 18748  df-submnd 18749  df-grp 18906  df-minusg 18907  df-sbg 18908  df-mulg 19038  df-subg 19093  df-nsg 19094  df-eqg 19095  df-ghm 19183  df-gim 19229  df-cntz 19287  df-oppg 19316  df-lsm 19604  df-cmn 19750  df-abl 19751  df-mgp 20088  df-rng 20100  df-ur 20129  df-srg 20134  df-ring 20182  df-cring 20183  df-oppr 20284  df-dvdsr 20304  df-unit 20305  df-irred 20306  df-invr 20335  df-dvr 20348  df-rhm 20419  df-nzr 20460  df-subrng 20493  df-subrg 20517  df-rlreg 20641  df-domn 20642  df-idom 20643  df-drng 20678  df-field 20679  df-sdrg 20734  df-lmod 20806  df-lss 20876  df-lsp 20916  df-lmhm 20967  df-lmim 20968  df-lmic 20969  df-lbs 21020  df-lvec 21048  df-sra 21118  df-rgmod 21119  df-lidl 21156  df-rsp 21157  df-2idl 21198  df-lpidl 21270  df-lpir 21271  df-pid 21285  df-cnfld 21303  df-dsmm 21679  df-frlm 21694  df-uvc 21730  df-lindf 21753  df-linds 21754  df-assa 21800  df-asp 21801  df-ascl 21802  df-psr 21856  df-mvr 21857  df-mpl 21858  df-opsr 21860  df-evls 22019  df-evl 22020  df-psr1 22102  df-vr1 22103  df-ply1 22104  df-coe1 22105  df-evls1 22240  df-evl1 22241  df-mdeg 25999  df-deg1 26000  df-mon1 26075  df-uc1p 26076  df-q1p 26077  df-r1p 26078  df-ig1p 26079  df-chn 32923  df-fldgen 33242  df-mxidl 33412  df-dim 33574  df-fldext 33617  df-extdg 33618  df-irng 33660  df-minply 33669  df-constr 33699
This theorem is referenced by:  constrcon  33743
  Copyright terms: Public domain W3C validator