Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  constrext2chn Structured version   Visualization version   GIF version

Theorem constrext2chn 33722
Description: If a constructible number generates some subfield 𝐿 of , then the degree of the extension of 𝐿 over is a power of two. (Contributed by Thierry Arnoux, 26-Oct-2025.)
Hypotheses
Ref Expression
constrext2chn.q 𝑄 = (ℂflds ℚ)
constrext2chn.l 𝐿 = (ℂflds 𝑆)
constrext2chn.s 𝑆 = (ℂfld fldGen (ℚ ∪ {𝐴}))
constrext2chn.a (𝜑𝐴 ∈ Constr)
Assertion
Ref Expression
constrext2chn (𝜑 → ∃𝑛 ∈ ℕ0 (𝐿[:]𝑄) = (2↑𝑛))
Distinct variable groups:   𝐴,𝑛   𝑛,𝐿   𝑄,𝑛   𝑆,𝑛   𝜑,𝑛

Proof of Theorem constrext2chn
Dummy variables 𝑎 𝑏 𝑐 𝑑 𝑒 𝑓 𝑔 𝑖 𝑗 𝑘 𝑙 𝑚 𝑜 𝑝 𝑞 𝑟 𝑠 𝑡 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 oveq1 7419 . . . . . . . . . . . . . . . 16 (𝑜 = 𝑡 → (𝑜 · (𝑗𝑖)) = (𝑡 · (𝑗𝑖)))
21oveq2d 7428 . . . . . . . . . . . . . . 15 (𝑜 = 𝑡 → (𝑖 + (𝑜 · (𝑗𝑖))) = (𝑖 + (𝑡 · (𝑗𝑖))))
32eqeq2d 2745 . . . . . . . . . . . . . 14 (𝑜 = 𝑡 → (𝑦 = (𝑖 + (𝑜 · (𝑗𝑖))) ↔ 𝑦 = (𝑖 + (𝑡 · (𝑗𝑖)))))
433anbi1d 1441 . . . . . . . . . . . . 13 (𝑜 = 𝑡 → ((𝑦 = (𝑖 + (𝑜 · (𝑗𝑖))) ∧ 𝑦 = (𝑘 + (𝑝 · (𝑙𝑘))) ∧ (ℑ‘((∗‘(𝑗𝑖)) · (𝑙𝑘))) ≠ 0) ↔ (𝑦 = (𝑖 + (𝑡 · (𝑗𝑖))) ∧ 𝑦 = (𝑘 + (𝑝 · (𝑙𝑘))) ∧ (ℑ‘((∗‘(𝑗𝑖)) · (𝑙𝑘))) ≠ 0)))
5 oveq1 7419 . . . . . . . . . . . . . . . 16 (𝑝 = 𝑟 → (𝑝 · (𝑙𝑘)) = (𝑟 · (𝑙𝑘)))
65oveq2d 7428 . . . . . . . . . . . . . . 15 (𝑝 = 𝑟 → (𝑘 + (𝑝 · (𝑙𝑘))) = (𝑘 + (𝑟 · (𝑙𝑘))))
76eqeq2d 2745 . . . . . . . . . . . . . 14 (𝑝 = 𝑟 → (𝑦 = (𝑘 + (𝑝 · (𝑙𝑘))) ↔ 𝑦 = (𝑘 + (𝑟 · (𝑙𝑘)))))
873anbi2d 1442 . . . . . . . . . . . . 13 (𝑝 = 𝑟 → ((𝑦 = (𝑖 + (𝑡 · (𝑗𝑖))) ∧ 𝑦 = (𝑘 + (𝑝 · (𝑙𝑘))) ∧ (ℑ‘((∗‘(𝑗𝑖)) · (𝑙𝑘))) ≠ 0) ↔ (𝑦 = (𝑖 + (𝑡 · (𝑗𝑖))) ∧ 𝑦 = (𝑘 + (𝑟 · (𝑙𝑘))) ∧ (ℑ‘((∗‘(𝑗𝑖)) · (𝑙𝑘))) ≠ 0)))
94, 8cbvrex2vw 3228 . . . . . . . . . . . 12 (∃𝑜 ∈ ℝ ∃𝑝 ∈ ℝ (𝑦 = (𝑖 + (𝑜 · (𝑗𝑖))) ∧ 𝑦 = (𝑘 + (𝑝 · (𝑙𝑘))) ∧ (ℑ‘((∗‘(𝑗𝑖)) · (𝑙𝑘))) ≠ 0) ↔ ∃𝑡 ∈ ℝ ∃𝑟 ∈ ℝ (𝑦 = (𝑖 + (𝑡 · (𝑗𝑖))) ∧ 𝑦 = (𝑘 + (𝑟 · (𝑙𝑘))) ∧ (ℑ‘((∗‘(𝑗𝑖)) · (𝑙𝑘))) ≠ 0))
1092rexbii 3116 . . . . . . . . . . 11 (∃𝑘𝑧𝑙𝑧𝑜 ∈ ℝ ∃𝑝 ∈ ℝ (𝑦 = (𝑖 + (𝑜 · (𝑗𝑖))) ∧ 𝑦 = (𝑘 + (𝑝 · (𝑙𝑘))) ∧ (ℑ‘((∗‘(𝑗𝑖)) · (𝑙𝑘))) ≠ 0) ↔ ∃𝑘𝑧𝑙𝑧𝑡 ∈ ℝ ∃𝑟 ∈ ℝ (𝑦 = (𝑖 + (𝑡 · (𝑗𝑖))) ∧ 𝑦 = (𝑘 + (𝑟 · (𝑙𝑘))) ∧ (ℑ‘((∗‘(𝑗𝑖)) · (𝑙𝑘))) ≠ 0))
11 id 22 . . . . . . . . . . . . . . . 16 (𝑘 = 𝑐𝑘 = 𝑐)
12 oveq2 7420 . . . . . . . . . . . . . . . . 17 (𝑘 = 𝑐 → (𝑙𝑘) = (𝑙𝑐))
1312oveq2d 7428 . . . . . . . . . . . . . . . 16 (𝑘 = 𝑐 → (𝑟 · (𝑙𝑘)) = (𝑟 · (𝑙𝑐)))
1411, 13oveq12d 7430 . . . . . . . . . . . . . . 15 (𝑘 = 𝑐 → (𝑘 + (𝑟 · (𝑙𝑘))) = (𝑐 + (𝑟 · (𝑙𝑐))))
1514eqeq2d 2745 . . . . . . . . . . . . . 14 (𝑘 = 𝑐 → (𝑦 = (𝑘 + (𝑟 · (𝑙𝑘))) ↔ 𝑦 = (𝑐 + (𝑟 · (𝑙𝑐)))))
1612oveq2d 7428 . . . . . . . . . . . . . . . 16 (𝑘 = 𝑐 → ((∗‘(𝑗𝑖)) · (𝑙𝑘)) = ((∗‘(𝑗𝑖)) · (𝑙𝑐)))
1716fveq2d 6889 . . . . . . . . . . . . . . 15 (𝑘 = 𝑐 → (ℑ‘((∗‘(𝑗𝑖)) · (𝑙𝑘))) = (ℑ‘((∗‘(𝑗𝑖)) · (𝑙𝑐))))
1817neeq1d 2990 . . . . . . . . . . . . . 14 (𝑘 = 𝑐 → ((ℑ‘((∗‘(𝑗𝑖)) · (𝑙𝑘))) ≠ 0 ↔ (ℑ‘((∗‘(𝑗𝑖)) · (𝑙𝑐))) ≠ 0))
1915, 183anbi23d 1440 . . . . . . . . . . . . 13 (𝑘 = 𝑐 → ((𝑦 = (𝑖 + (𝑡 · (𝑗𝑖))) ∧ 𝑦 = (𝑘 + (𝑟 · (𝑙𝑘))) ∧ (ℑ‘((∗‘(𝑗𝑖)) · (𝑙𝑘))) ≠ 0) ↔ (𝑦 = (𝑖 + (𝑡 · (𝑗𝑖))) ∧ 𝑦 = (𝑐 + (𝑟 · (𝑙𝑐))) ∧ (ℑ‘((∗‘(𝑗𝑖)) · (𝑙𝑐))) ≠ 0)))
20192rexbidv 3209 . . . . . . . . . . . 12 (𝑘 = 𝑐 → (∃𝑡 ∈ ℝ ∃𝑟 ∈ ℝ (𝑦 = (𝑖 + (𝑡 · (𝑗𝑖))) ∧ 𝑦 = (𝑘 + (𝑟 · (𝑙𝑘))) ∧ (ℑ‘((∗‘(𝑗𝑖)) · (𝑙𝑘))) ≠ 0) ↔ ∃𝑡 ∈ ℝ ∃𝑟 ∈ ℝ (𝑦 = (𝑖 + (𝑡 · (𝑗𝑖))) ∧ 𝑦 = (𝑐 + (𝑟 · (𝑙𝑐))) ∧ (ℑ‘((∗‘(𝑗𝑖)) · (𝑙𝑐))) ≠ 0)))
21 oveq1 7419 . . . . . . . . . . . . . . . . 17 (𝑙 = 𝑑 → (𝑙𝑐) = (𝑑𝑐))
2221oveq2d 7428 . . . . . . . . . . . . . . . 16 (𝑙 = 𝑑 → (𝑟 · (𝑙𝑐)) = (𝑟 · (𝑑𝑐)))
2322oveq2d 7428 . . . . . . . . . . . . . . 15 (𝑙 = 𝑑 → (𝑐 + (𝑟 · (𝑙𝑐))) = (𝑐 + (𝑟 · (𝑑𝑐))))
2423eqeq2d 2745 . . . . . . . . . . . . . 14 (𝑙 = 𝑑 → (𝑦 = (𝑐 + (𝑟 · (𝑙𝑐))) ↔ 𝑦 = (𝑐 + (𝑟 · (𝑑𝑐)))))
2521oveq2d 7428 . . . . . . . . . . . . . . . 16 (𝑙 = 𝑑 → ((∗‘(𝑗𝑖)) · (𝑙𝑐)) = ((∗‘(𝑗𝑖)) · (𝑑𝑐)))
2625fveq2d 6889 . . . . . . . . . . . . . . 15 (𝑙 = 𝑑 → (ℑ‘((∗‘(𝑗𝑖)) · (𝑙𝑐))) = (ℑ‘((∗‘(𝑗𝑖)) · (𝑑𝑐))))
2726neeq1d 2990 . . . . . . . . . . . . . 14 (𝑙 = 𝑑 → ((ℑ‘((∗‘(𝑗𝑖)) · (𝑙𝑐))) ≠ 0 ↔ (ℑ‘((∗‘(𝑗𝑖)) · (𝑑𝑐))) ≠ 0))
2824, 273anbi23d 1440 . . . . . . . . . . . . 13 (𝑙 = 𝑑 → ((𝑦 = (𝑖 + (𝑡 · (𝑗𝑖))) ∧ 𝑦 = (𝑐 + (𝑟 · (𝑙𝑐))) ∧ (ℑ‘((∗‘(𝑗𝑖)) · (𝑙𝑐))) ≠ 0) ↔ (𝑦 = (𝑖 + (𝑡 · (𝑗𝑖))) ∧ 𝑦 = (𝑐 + (𝑟 · (𝑑𝑐))) ∧ (ℑ‘((∗‘(𝑗𝑖)) · (𝑑𝑐))) ≠ 0)))
29282rexbidv 3209 . . . . . . . . . . . 12 (𝑙 = 𝑑 → (∃𝑡 ∈ ℝ ∃𝑟 ∈ ℝ (𝑦 = (𝑖 + (𝑡 · (𝑗𝑖))) ∧ 𝑦 = (𝑐 + (𝑟 · (𝑙𝑐))) ∧ (ℑ‘((∗‘(𝑗𝑖)) · (𝑙𝑐))) ≠ 0) ↔ ∃𝑡 ∈ ℝ ∃𝑟 ∈ ℝ (𝑦 = (𝑖 + (𝑡 · (𝑗𝑖))) ∧ 𝑦 = (𝑐 + (𝑟 · (𝑑𝑐))) ∧ (ℑ‘((∗‘(𝑗𝑖)) · (𝑑𝑐))) ≠ 0)))
3020, 29cbvrex2vw 3228 . . . . . . . . . . 11 (∃𝑘𝑧𝑙𝑧𝑡 ∈ ℝ ∃𝑟 ∈ ℝ (𝑦 = (𝑖 + (𝑡 · (𝑗𝑖))) ∧ 𝑦 = (𝑘 + (𝑟 · (𝑙𝑘))) ∧ (ℑ‘((∗‘(𝑗𝑖)) · (𝑙𝑘))) ≠ 0) ↔ ∃𝑐𝑧𝑑𝑧𝑡 ∈ ℝ ∃𝑟 ∈ ℝ (𝑦 = (𝑖 + (𝑡 · (𝑗𝑖))) ∧ 𝑦 = (𝑐 + (𝑟 · (𝑑𝑐))) ∧ (ℑ‘((∗‘(𝑗𝑖)) · (𝑑𝑐))) ≠ 0))
3110, 30bitri 275 . . . . . . . . . 10 (∃𝑘𝑧𝑙𝑧𝑜 ∈ ℝ ∃𝑝 ∈ ℝ (𝑦 = (𝑖 + (𝑜 · (𝑗𝑖))) ∧ 𝑦 = (𝑘 + (𝑝 · (𝑙𝑘))) ∧ (ℑ‘((∗‘(𝑗𝑖)) · (𝑙𝑘))) ≠ 0) ↔ ∃𝑐𝑧𝑑𝑧𝑡 ∈ ℝ ∃𝑟 ∈ ℝ (𝑦 = (𝑖 + (𝑡 · (𝑗𝑖))) ∧ 𝑦 = (𝑐 + (𝑟 · (𝑑𝑐))) ∧ (ℑ‘((∗‘(𝑗𝑖)) · (𝑑𝑐))) ≠ 0))
32312rexbii 3116 . . . . . . . . 9 (∃𝑖𝑧𝑗𝑧𝑘𝑧𝑙𝑧𝑜 ∈ ℝ ∃𝑝 ∈ ℝ (𝑦 = (𝑖 + (𝑜 · (𝑗𝑖))) ∧ 𝑦 = (𝑘 + (𝑝 · (𝑙𝑘))) ∧ (ℑ‘((∗‘(𝑗𝑖)) · (𝑙𝑘))) ≠ 0) ↔ ∃𝑖𝑧𝑗𝑧𝑐𝑧𝑑𝑧𝑡 ∈ ℝ ∃𝑟 ∈ ℝ (𝑦 = (𝑖 + (𝑡 · (𝑗𝑖))) ∧ 𝑦 = (𝑐 + (𝑟 · (𝑑𝑐))) ∧ (ℑ‘((∗‘(𝑗𝑖)) · (𝑑𝑐))) ≠ 0))
33 oveq2 7420 . . . . . . . . . . . . . . . 16 (𝑞 = 𝑓 → (𝑚𝑞) = (𝑚𝑓))
3433fveq2d 6889 . . . . . . . . . . . . . . 15 (𝑞 = 𝑓 → (abs‘(𝑚𝑞)) = (abs‘(𝑚𝑓)))
3534eqeq2d 2745 . . . . . . . . . . . . . 14 (𝑞 = 𝑓 → ((abs‘(𝑦𝑘)) = (abs‘(𝑚𝑞)) ↔ (abs‘(𝑦𝑘)) = (abs‘(𝑚𝑓))))
3635anbi2d 630 . . . . . . . . . . . . 13 (𝑞 = 𝑓 → ((𝑦 = (𝑖 + (𝑜 · (𝑗𝑖))) ∧ (abs‘(𝑦𝑘)) = (abs‘(𝑚𝑞))) ↔ (𝑦 = (𝑖 + (𝑜 · (𝑗𝑖))) ∧ (abs‘(𝑦𝑘)) = (abs‘(𝑚𝑓)))))
373anbi1d 631 . . . . . . . . . . . . 13 (𝑜 = 𝑡 → ((𝑦 = (𝑖 + (𝑜 · (𝑗𝑖))) ∧ (abs‘(𝑦𝑘)) = (abs‘(𝑚𝑓))) ↔ (𝑦 = (𝑖 + (𝑡 · (𝑗𝑖))) ∧ (abs‘(𝑦𝑘)) = (abs‘(𝑚𝑓)))))
3836, 37cbvrex2vw 3228 . . . . . . . . . . . 12 (∃𝑞𝑧𝑜 ∈ ℝ (𝑦 = (𝑖 + (𝑜 · (𝑗𝑖))) ∧ (abs‘(𝑦𝑘)) = (abs‘(𝑚𝑞))) ↔ ∃𝑓𝑧𝑡 ∈ ℝ (𝑦 = (𝑖 + (𝑡 · (𝑗𝑖))) ∧ (abs‘(𝑦𝑘)) = (abs‘(𝑚𝑓))))
39382rexbii 3116 . . . . . . . . . . 11 (∃𝑘𝑧𝑚𝑧𝑞𝑧𝑜 ∈ ℝ (𝑦 = (𝑖 + (𝑜 · (𝑗𝑖))) ∧ (abs‘(𝑦𝑘)) = (abs‘(𝑚𝑞))) ↔ ∃𝑘𝑧𝑚𝑧𝑓𝑧𝑡 ∈ ℝ (𝑦 = (𝑖 + (𝑡 · (𝑗𝑖))) ∧ (abs‘(𝑦𝑘)) = (abs‘(𝑚𝑓))))
40 oveq2 7420 . . . . . . . . . . . . . . . 16 (𝑘 = 𝑐 → (𝑦𝑘) = (𝑦𝑐))
4140fveq2d 6889 . . . . . . . . . . . . . . 15 (𝑘 = 𝑐 → (abs‘(𝑦𝑘)) = (abs‘(𝑦𝑐)))
4241eqeq1d 2736 . . . . . . . . . . . . . 14 (𝑘 = 𝑐 → ((abs‘(𝑦𝑘)) = (abs‘(𝑚𝑓)) ↔ (abs‘(𝑦𝑐)) = (abs‘(𝑚𝑓))))
4342anbi2d 630 . . . . . . . . . . . . 13 (𝑘 = 𝑐 → ((𝑦 = (𝑖 + (𝑡 · (𝑗𝑖))) ∧ (abs‘(𝑦𝑘)) = (abs‘(𝑚𝑓))) ↔ (𝑦 = (𝑖 + (𝑡 · (𝑗𝑖))) ∧ (abs‘(𝑦𝑐)) = (abs‘(𝑚𝑓)))))
44432rexbidv 3209 . . . . . . . . . . . 12 (𝑘 = 𝑐 → (∃𝑓𝑧𝑡 ∈ ℝ (𝑦 = (𝑖 + (𝑡 · (𝑗𝑖))) ∧ (abs‘(𝑦𝑘)) = (abs‘(𝑚𝑓))) ↔ ∃𝑓𝑧𝑡 ∈ ℝ (𝑦 = (𝑖 + (𝑡 · (𝑗𝑖))) ∧ (abs‘(𝑦𝑐)) = (abs‘(𝑚𝑓)))))
45 oveq1 7419 . . . . . . . . . . . . . . . 16 (𝑚 = 𝑒 → (𝑚𝑓) = (𝑒𝑓))
4645fveq2d 6889 . . . . . . . . . . . . . . 15 (𝑚 = 𝑒 → (abs‘(𝑚𝑓)) = (abs‘(𝑒𝑓)))
4746eqeq2d 2745 . . . . . . . . . . . . . 14 (𝑚 = 𝑒 → ((abs‘(𝑦𝑐)) = (abs‘(𝑚𝑓)) ↔ (abs‘(𝑦𝑐)) = (abs‘(𝑒𝑓))))
4847anbi2d 630 . . . . . . . . . . . . 13 (𝑚 = 𝑒 → ((𝑦 = (𝑖 + (𝑡 · (𝑗𝑖))) ∧ (abs‘(𝑦𝑐)) = (abs‘(𝑚𝑓))) ↔ (𝑦 = (𝑖 + (𝑡 · (𝑗𝑖))) ∧ (abs‘(𝑦𝑐)) = (abs‘(𝑒𝑓)))))
49482rexbidv 3209 . . . . . . . . . . . 12 (𝑚 = 𝑒 → (∃𝑓𝑧𝑡 ∈ ℝ (𝑦 = (𝑖 + (𝑡 · (𝑗𝑖))) ∧ (abs‘(𝑦𝑐)) = (abs‘(𝑚𝑓))) ↔ ∃𝑓𝑧𝑡 ∈ ℝ (𝑦 = (𝑖 + (𝑡 · (𝑗𝑖))) ∧ (abs‘(𝑦𝑐)) = (abs‘(𝑒𝑓)))))
5044, 49cbvrex2vw 3228 . . . . . . . . . . 11 (∃𝑘𝑧𝑚𝑧𝑓𝑧𝑡 ∈ ℝ (𝑦 = (𝑖 + (𝑡 · (𝑗𝑖))) ∧ (abs‘(𝑦𝑘)) = (abs‘(𝑚𝑓))) ↔ ∃𝑐𝑧𝑒𝑧𝑓𝑧𝑡 ∈ ℝ (𝑦 = (𝑖 + (𝑡 · (𝑗𝑖))) ∧ (abs‘(𝑦𝑐)) = (abs‘(𝑒𝑓))))
5139, 50bitri 275 . . . . . . . . . 10 (∃𝑘𝑧𝑚𝑧𝑞𝑧𝑜 ∈ ℝ (𝑦 = (𝑖 + (𝑜 · (𝑗𝑖))) ∧ (abs‘(𝑦𝑘)) = (abs‘(𝑚𝑞))) ↔ ∃𝑐𝑧𝑒𝑧𝑓𝑧𝑡 ∈ ℝ (𝑦 = (𝑖 + (𝑡 · (𝑗𝑖))) ∧ (abs‘(𝑦𝑐)) = (abs‘(𝑒𝑓))))
52512rexbii 3116 . . . . . . . . 9 (∃𝑖𝑧𝑗𝑧𝑘𝑧𝑚𝑧𝑞𝑧𝑜 ∈ ℝ (𝑦 = (𝑖 + (𝑜 · (𝑗𝑖))) ∧ (abs‘(𝑦𝑘)) = (abs‘(𝑚𝑞))) ↔ ∃𝑖𝑧𝑗𝑧𝑐𝑧𝑒𝑧𝑓𝑧𝑡 ∈ ℝ (𝑦 = (𝑖 + (𝑡 · (𝑗𝑖))) ∧ (abs‘(𝑦𝑐)) = (abs‘(𝑒𝑓))))
53 oveq1 7419 . . . . . . . . . . . . . . . 16 (𝑚 = 𝑒 → (𝑚𝑞) = (𝑒𝑞))
5453fveq2d 6889 . . . . . . . . . . . . . . 15 (𝑚 = 𝑒 → (abs‘(𝑚𝑞)) = (abs‘(𝑒𝑞)))
5554eqeq2d 2745 . . . . . . . . . . . . . 14 (𝑚 = 𝑒 → ((abs‘(𝑦𝑙)) = (abs‘(𝑚𝑞)) ↔ (abs‘(𝑦𝑙)) = (abs‘(𝑒𝑞))))
56553anbi3d 1443 . . . . . . . . . . . . 13 (𝑚 = 𝑒 → ((𝑖𝑙 ∧ (abs‘(𝑦𝑖)) = (abs‘(𝑗𝑘)) ∧ (abs‘(𝑦𝑙)) = (abs‘(𝑚𝑞))) ↔ (𝑖𝑙 ∧ (abs‘(𝑦𝑖)) = (abs‘(𝑗𝑘)) ∧ (abs‘(𝑦𝑙)) = (abs‘(𝑒𝑞)))))
57 oveq2 7420 . . . . . . . . . . . . . . . 16 (𝑞 = 𝑓 → (𝑒𝑞) = (𝑒𝑓))
5857fveq2d 6889 . . . . . . . . . . . . . . 15 (𝑞 = 𝑓 → (abs‘(𝑒𝑞)) = (abs‘(𝑒𝑓)))
5958eqeq2d 2745 . . . . . . . . . . . . . 14 (𝑞 = 𝑓 → ((abs‘(𝑦𝑙)) = (abs‘(𝑒𝑞)) ↔ (abs‘(𝑦𝑙)) = (abs‘(𝑒𝑓))))
60593anbi3d 1443 . . . . . . . . . . . . 13 (𝑞 = 𝑓 → ((𝑖𝑙 ∧ (abs‘(𝑦𝑖)) = (abs‘(𝑗𝑘)) ∧ (abs‘(𝑦𝑙)) = (abs‘(𝑒𝑞))) ↔ (𝑖𝑙 ∧ (abs‘(𝑦𝑖)) = (abs‘(𝑗𝑘)) ∧ (abs‘(𝑦𝑙)) = (abs‘(𝑒𝑓)))))
6156, 60cbvrex2vw 3228 . . . . . . . . . . . 12 (∃𝑚𝑧𝑞𝑧 (𝑖𝑙 ∧ (abs‘(𝑦𝑖)) = (abs‘(𝑗𝑘)) ∧ (abs‘(𝑦𝑙)) = (abs‘(𝑚𝑞))) ↔ ∃𝑒𝑧𝑓𝑧 (𝑖𝑙 ∧ (abs‘(𝑦𝑖)) = (abs‘(𝑗𝑘)) ∧ (abs‘(𝑦𝑙)) = (abs‘(𝑒𝑓))))
62612rexbii 3116 . . . . . . . . . . 11 (∃𝑘𝑧𝑙𝑧𝑚𝑧𝑞𝑧 (𝑖𝑙 ∧ (abs‘(𝑦𝑖)) = (abs‘(𝑗𝑘)) ∧ (abs‘(𝑦𝑙)) = (abs‘(𝑚𝑞))) ↔ ∃𝑘𝑧𝑙𝑧𝑒𝑧𝑓𝑧 (𝑖𝑙 ∧ (abs‘(𝑦𝑖)) = (abs‘(𝑗𝑘)) ∧ (abs‘(𝑦𝑙)) = (abs‘(𝑒𝑓))))
63 oveq2 7420 . . . . . . . . . . . . . . . 16 (𝑘 = 𝑐 → (𝑗𝑘) = (𝑗𝑐))
6463fveq2d 6889 . . . . . . . . . . . . . . 15 (𝑘 = 𝑐 → (abs‘(𝑗𝑘)) = (abs‘(𝑗𝑐)))
6564eqeq2d 2745 . . . . . . . . . . . . . 14 (𝑘 = 𝑐 → ((abs‘(𝑦𝑖)) = (abs‘(𝑗𝑘)) ↔ (abs‘(𝑦𝑖)) = (abs‘(𝑗𝑐))))
66653anbi2d 1442 . . . . . . . . . . . . 13 (𝑘 = 𝑐 → ((𝑖𝑙 ∧ (abs‘(𝑦𝑖)) = (abs‘(𝑗𝑘)) ∧ (abs‘(𝑦𝑙)) = (abs‘(𝑒𝑓))) ↔ (𝑖𝑙 ∧ (abs‘(𝑦𝑖)) = (abs‘(𝑗𝑐)) ∧ (abs‘(𝑦𝑙)) = (abs‘(𝑒𝑓)))))
67662rexbidv 3209 . . . . . . . . . . . 12 (𝑘 = 𝑐 → (∃𝑒𝑧𝑓𝑧 (𝑖𝑙 ∧ (abs‘(𝑦𝑖)) = (abs‘(𝑗𝑘)) ∧ (abs‘(𝑦𝑙)) = (abs‘(𝑒𝑓))) ↔ ∃𝑒𝑧𝑓𝑧 (𝑖𝑙 ∧ (abs‘(𝑦𝑖)) = (abs‘(𝑗𝑐)) ∧ (abs‘(𝑦𝑙)) = (abs‘(𝑒𝑓)))))
68 neeq2 2994 . . . . . . . . . . . . . 14 (𝑙 = 𝑑 → (𝑖𝑙𝑖𝑑))
69 oveq2 7420 . . . . . . . . . . . . . . . 16 (𝑙 = 𝑑 → (𝑦𝑙) = (𝑦𝑑))
7069fveq2d 6889 . . . . . . . . . . . . . . 15 (𝑙 = 𝑑 → (abs‘(𝑦𝑙)) = (abs‘(𝑦𝑑)))
7170eqeq1d 2736 . . . . . . . . . . . . . 14 (𝑙 = 𝑑 → ((abs‘(𝑦𝑙)) = (abs‘(𝑒𝑓)) ↔ (abs‘(𝑦𝑑)) = (abs‘(𝑒𝑓))))
7268, 713anbi13d 1439 . . . . . . . . . . . . 13 (𝑙 = 𝑑 → ((𝑖𝑙 ∧ (abs‘(𝑦𝑖)) = (abs‘(𝑗𝑐)) ∧ (abs‘(𝑦𝑙)) = (abs‘(𝑒𝑓))) ↔ (𝑖𝑑 ∧ (abs‘(𝑦𝑖)) = (abs‘(𝑗𝑐)) ∧ (abs‘(𝑦𝑑)) = (abs‘(𝑒𝑓)))))
73722rexbidv 3209 . . . . . . . . . . . 12 (𝑙 = 𝑑 → (∃𝑒𝑧𝑓𝑧 (𝑖𝑙 ∧ (abs‘(𝑦𝑖)) = (abs‘(𝑗𝑐)) ∧ (abs‘(𝑦𝑙)) = (abs‘(𝑒𝑓))) ↔ ∃𝑒𝑧𝑓𝑧 (𝑖𝑑 ∧ (abs‘(𝑦𝑖)) = (abs‘(𝑗𝑐)) ∧ (abs‘(𝑦𝑑)) = (abs‘(𝑒𝑓)))))
7467, 73cbvrex2vw 3228 . . . . . . . . . . 11 (∃𝑘𝑧𝑙𝑧𝑒𝑧𝑓𝑧 (𝑖𝑙 ∧ (abs‘(𝑦𝑖)) = (abs‘(𝑗𝑘)) ∧ (abs‘(𝑦𝑙)) = (abs‘(𝑒𝑓))) ↔ ∃𝑐𝑧𝑑𝑧𝑒𝑧𝑓𝑧 (𝑖𝑑 ∧ (abs‘(𝑦𝑖)) = (abs‘(𝑗𝑐)) ∧ (abs‘(𝑦𝑑)) = (abs‘(𝑒𝑓))))
7562, 74bitri 275 . . . . . . . . . 10 (∃𝑘𝑧𝑙𝑧𝑚𝑧𝑞𝑧 (𝑖𝑙 ∧ (abs‘(𝑦𝑖)) = (abs‘(𝑗𝑘)) ∧ (abs‘(𝑦𝑙)) = (abs‘(𝑚𝑞))) ↔ ∃𝑐𝑧𝑑𝑧𝑒𝑧𝑓𝑧 (𝑖𝑑 ∧ (abs‘(𝑦𝑖)) = (abs‘(𝑗𝑐)) ∧ (abs‘(𝑦𝑑)) = (abs‘(𝑒𝑓))))
76752rexbii 3116 . . . . . . . . 9 (∃𝑖𝑧𝑗𝑧𝑘𝑧𝑙𝑧𝑚𝑧𝑞𝑧 (𝑖𝑙 ∧ (abs‘(𝑦𝑖)) = (abs‘(𝑗𝑘)) ∧ (abs‘(𝑦𝑙)) = (abs‘(𝑚𝑞))) ↔ ∃𝑖𝑧𝑗𝑧𝑐𝑧𝑑𝑧𝑒𝑧𝑓𝑧 (𝑖𝑑 ∧ (abs‘(𝑦𝑖)) = (abs‘(𝑗𝑐)) ∧ (abs‘(𝑦𝑑)) = (abs‘(𝑒𝑓))))
7732, 52, 763orbi123i 1156 . . . . . . . 8 ((∃𝑖𝑧𝑗𝑧𝑘𝑧𝑙𝑧𝑜 ∈ ℝ ∃𝑝 ∈ ℝ (𝑦 = (𝑖 + (𝑜 · (𝑗𝑖))) ∧ 𝑦 = (𝑘 + (𝑝 · (𝑙𝑘))) ∧ (ℑ‘((∗‘(𝑗𝑖)) · (𝑙𝑘))) ≠ 0) ∨ ∃𝑖𝑧𝑗𝑧𝑘𝑧𝑚𝑧𝑞𝑧𝑜 ∈ ℝ (𝑦 = (𝑖 + (𝑜 · (𝑗𝑖))) ∧ (abs‘(𝑦𝑘)) = (abs‘(𝑚𝑞))) ∨ ∃𝑖𝑧𝑗𝑧𝑘𝑧𝑙𝑧𝑚𝑧𝑞𝑧 (𝑖𝑙 ∧ (abs‘(𝑦𝑖)) = (abs‘(𝑗𝑘)) ∧ (abs‘(𝑦𝑙)) = (abs‘(𝑚𝑞)))) ↔ (∃𝑖𝑧𝑗𝑧𝑐𝑧𝑑𝑧𝑡 ∈ ℝ ∃𝑟 ∈ ℝ (𝑦 = (𝑖 + (𝑡 · (𝑗𝑖))) ∧ 𝑦 = (𝑐 + (𝑟 · (𝑑𝑐))) ∧ (ℑ‘((∗‘(𝑗𝑖)) · (𝑑𝑐))) ≠ 0) ∨ ∃𝑖𝑧𝑗𝑧𝑐𝑧𝑒𝑧𝑓𝑧𝑡 ∈ ℝ (𝑦 = (𝑖 + (𝑡 · (𝑗𝑖))) ∧ (abs‘(𝑦𝑐)) = (abs‘(𝑒𝑓))) ∨ ∃𝑖𝑧𝑗𝑧𝑐𝑧𝑑𝑧𝑒𝑧𝑓𝑧 (𝑖𝑑 ∧ (abs‘(𝑦𝑖)) = (abs‘(𝑗𝑐)) ∧ (abs‘(𝑦𝑑)) = (abs‘(𝑒𝑓)))))
78 id 22 . . . . . . . . . . . . . . 15 (𝑖 = 𝑎𝑖 = 𝑎)
79 oveq2 7420 . . . . . . . . . . . . . . . 16 (𝑖 = 𝑎 → (𝑗𝑖) = (𝑗𝑎))
8079oveq2d 7428 . . . . . . . . . . . . . . 15 (𝑖 = 𝑎 → (𝑡 · (𝑗𝑖)) = (𝑡 · (𝑗𝑎)))
8178, 80oveq12d 7430 . . . . . . . . . . . . . 14 (𝑖 = 𝑎 → (𝑖 + (𝑡 · (𝑗𝑖))) = (𝑎 + (𝑡 · (𝑗𝑎))))
8281eqeq2d 2745 . . . . . . . . . . . . 13 (𝑖 = 𝑎 → (𝑦 = (𝑖 + (𝑡 · (𝑗𝑖))) ↔ 𝑦 = (𝑎 + (𝑡 · (𝑗𝑎)))))
8379fveq2d 6889 . . . . . . . . . . . . . . . 16 (𝑖 = 𝑎 → (∗‘(𝑗𝑖)) = (∗‘(𝑗𝑎)))
8483oveq1d 7427 . . . . . . . . . . . . . . 15 (𝑖 = 𝑎 → ((∗‘(𝑗𝑖)) · (𝑑𝑐)) = ((∗‘(𝑗𝑎)) · (𝑑𝑐)))
8584fveq2d 6889 . . . . . . . . . . . . . 14 (𝑖 = 𝑎 → (ℑ‘((∗‘(𝑗𝑖)) · (𝑑𝑐))) = (ℑ‘((∗‘(𝑗𝑎)) · (𝑑𝑐))))
8685neeq1d 2990 . . . . . . . . . . . . 13 (𝑖 = 𝑎 → ((ℑ‘((∗‘(𝑗𝑖)) · (𝑑𝑐))) ≠ 0 ↔ (ℑ‘((∗‘(𝑗𝑎)) · (𝑑𝑐))) ≠ 0))
8782, 863anbi13d 1439 . . . . . . . . . . . 12 (𝑖 = 𝑎 → ((𝑦 = (𝑖 + (𝑡 · (𝑗𝑖))) ∧ 𝑦 = (𝑐 + (𝑟 · (𝑑𝑐))) ∧ (ℑ‘((∗‘(𝑗𝑖)) · (𝑑𝑐))) ≠ 0) ↔ (𝑦 = (𝑎 + (𝑡 · (𝑗𝑎))) ∧ 𝑦 = (𝑐 + (𝑟 · (𝑑𝑐))) ∧ (ℑ‘((∗‘(𝑗𝑎)) · (𝑑𝑐))) ≠ 0)))
88872rexbidv 3209 . . . . . . . . . . 11 (𝑖 = 𝑎 → (∃𝑡 ∈ ℝ ∃𝑟 ∈ ℝ (𝑦 = (𝑖 + (𝑡 · (𝑗𝑖))) ∧ 𝑦 = (𝑐 + (𝑟 · (𝑑𝑐))) ∧ (ℑ‘((∗‘(𝑗𝑖)) · (𝑑𝑐))) ≠ 0) ↔ ∃𝑡 ∈ ℝ ∃𝑟 ∈ ℝ (𝑦 = (𝑎 + (𝑡 · (𝑗𝑎))) ∧ 𝑦 = (𝑐 + (𝑟 · (𝑑𝑐))) ∧ (ℑ‘((∗‘(𝑗𝑎)) · (𝑑𝑐))) ≠ 0)))
89882rexbidv 3209 . . . . . . . . . 10 (𝑖 = 𝑎 → (∃𝑐𝑧𝑑𝑧𝑡 ∈ ℝ ∃𝑟 ∈ ℝ (𝑦 = (𝑖 + (𝑡 · (𝑗𝑖))) ∧ 𝑦 = (𝑐 + (𝑟 · (𝑑𝑐))) ∧ (ℑ‘((∗‘(𝑗𝑖)) · (𝑑𝑐))) ≠ 0) ↔ ∃𝑐𝑧𝑑𝑧𝑡 ∈ ℝ ∃𝑟 ∈ ℝ (𝑦 = (𝑎 + (𝑡 · (𝑗𝑎))) ∧ 𝑦 = (𝑐 + (𝑟 · (𝑑𝑐))) ∧ (ℑ‘((∗‘(𝑗𝑎)) · (𝑑𝑐))) ≠ 0)))
90 oveq1 7419 . . . . . . . . . . . . . . . 16 (𝑗 = 𝑏 → (𝑗𝑎) = (𝑏𝑎))
9190oveq2d 7428 . . . . . . . . . . . . . . 15 (𝑗 = 𝑏 → (𝑡 · (𝑗𝑎)) = (𝑡 · (𝑏𝑎)))
9291oveq2d 7428 . . . . . . . . . . . . . 14 (𝑗 = 𝑏 → (𝑎 + (𝑡 · (𝑗𝑎))) = (𝑎 + (𝑡 · (𝑏𝑎))))
9392eqeq2d 2745 . . . . . . . . . . . . 13 (𝑗 = 𝑏 → (𝑦 = (𝑎 + (𝑡 · (𝑗𝑎))) ↔ 𝑦 = (𝑎 + (𝑡 · (𝑏𝑎)))))
9490fveq2d 6889 . . . . . . . . . . . . . . . 16 (𝑗 = 𝑏 → (∗‘(𝑗𝑎)) = (∗‘(𝑏𝑎)))
9594oveq1d 7427 . . . . . . . . . . . . . . 15 (𝑗 = 𝑏 → ((∗‘(𝑗𝑎)) · (𝑑𝑐)) = ((∗‘(𝑏𝑎)) · (𝑑𝑐)))
9695fveq2d 6889 . . . . . . . . . . . . . 14 (𝑗 = 𝑏 → (ℑ‘((∗‘(𝑗𝑎)) · (𝑑𝑐))) = (ℑ‘((∗‘(𝑏𝑎)) · (𝑑𝑐))))
9796neeq1d 2990 . . . . . . . . . . . . 13 (𝑗 = 𝑏 → ((ℑ‘((∗‘(𝑗𝑎)) · (𝑑𝑐))) ≠ 0 ↔ (ℑ‘((∗‘(𝑏𝑎)) · (𝑑𝑐))) ≠ 0))
9893, 973anbi13d 1439 . . . . . . . . . . . 12 (𝑗 = 𝑏 → ((𝑦 = (𝑎 + (𝑡 · (𝑗𝑎))) ∧ 𝑦 = (𝑐 + (𝑟 · (𝑑𝑐))) ∧ (ℑ‘((∗‘(𝑗𝑎)) · (𝑑𝑐))) ≠ 0) ↔ (𝑦 = (𝑎 + (𝑡 · (𝑏𝑎))) ∧ 𝑦 = (𝑐 + (𝑟 · (𝑑𝑐))) ∧ (ℑ‘((∗‘(𝑏𝑎)) · (𝑑𝑐))) ≠ 0)))
99982rexbidv 3209 . . . . . . . . . . 11 (𝑗 = 𝑏 → (∃𝑡 ∈ ℝ ∃𝑟 ∈ ℝ (𝑦 = (𝑎 + (𝑡 · (𝑗𝑎))) ∧ 𝑦 = (𝑐 + (𝑟 · (𝑑𝑐))) ∧ (ℑ‘((∗‘(𝑗𝑎)) · (𝑑𝑐))) ≠ 0) ↔ ∃𝑡 ∈ ℝ ∃𝑟 ∈ ℝ (𝑦 = (𝑎 + (𝑡 · (𝑏𝑎))) ∧ 𝑦 = (𝑐 + (𝑟 · (𝑑𝑐))) ∧ (ℑ‘((∗‘(𝑏𝑎)) · (𝑑𝑐))) ≠ 0)))
100992rexbidv 3209 . . . . . . . . . 10 (𝑗 = 𝑏 → (∃𝑐𝑧𝑑𝑧𝑡 ∈ ℝ ∃𝑟 ∈ ℝ (𝑦 = (𝑎 + (𝑡 · (𝑗𝑎))) ∧ 𝑦 = (𝑐 + (𝑟 · (𝑑𝑐))) ∧ (ℑ‘((∗‘(𝑗𝑎)) · (𝑑𝑐))) ≠ 0) ↔ ∃𝑐𝑧𝑑𝑧𝑡 ∈ ℝ ∃𝑟 ∈ ℝ (𝑦 = (𝑎 + (𝑡 · (𝑏𝑎))) ∧ 𝑦 = (𝑐 + (𝑟 · (𝑑𝑐))) ∧ (ℑ‘((∗‘(𝑏𝑎)) · (𝑑𝑐))) ≠ 0)))
10189, 100cbvrex2vw 3228 . . . . . . . . 9 (∃𝑖𝑧𝑗𝑧𝑐𝑧𝑑𝑧𝑡 ∈ ℝ ∃𝑟 ∈ ℝ (𝑦 = (𝑖 + (𝑡 · (𝑗𝑖))) ∧ 𝑦 = (𝑐 + (𝑟 · (𝑑𝑐))) ∧ (ℑ‘((∗‘(𝑗𝑖)) · (𝑑𝑐))) ≠ 0) ↔ ∃𝑎𝑧𝑏𝑧𝑐𝑧𝑑𝑧𝑡 ∈ ℝ ∃𝑟 ∈ ℝ (𝑦 = (𝑎 + (𝑡 · (𝑏𝑎))) ∧ 𝑦 = (𝑐 + (𝑟 · (𝑑𝑐))) ∧ (ℑ‘((∗‘(𝑏𝑎)) · (𝑑𝑐))) ≠ 0))
10282anbi1d 631 . . . . . . . . . . . 12 (𝑖 = 𝑎 → ((𝑦 = (𝑖 + (𝑡 · (𝑗𝑖))) ∧ (abs‘(𝑦𝑐)) = (abs‘(𝑒𝑓))) ↔ (𝑦 = (𝑎 + (𝑡 · (𝑗𝑎))) ∧ (abs‘(𝑦𝑐)) = (abs‘(𝑒𝑓)))))
1031022rexbidv 3209 . . . . . . . . . . 11 (𝑖 = 𝑎 → (∃𝑓𝑧𝑡 ∈ ℝ (𝑦 = (𝑖 + (𝑡 · (𝑗𝑖))) ∧ (abs‘(𝑦𝑐)) = (abs‘(𝑒𝑓))) ↔ ∃𝑓𝑧𝑡 ∈ ℝ (𝑦 = (𝑎 + (𝑡 · (𝑗𝑎))) ∧ (abs‘(𝑦𝑐)) = (abs‘(𝑒𝑓)))))
1041032rexbidv 3209 . . . . . . . . . 10 (𝑖 = 𝑎 → (∃𝑐𝑧𝑒𝑧𝑓𝑧𝑡 ∈ ℝ (𝑦 = (𝑖 + (𝑡 · (𝑗𝑖))) ∧ (abs‘(𝑦𝑐)) = (abs‘(𝑒𝑓))) ↔ ∃𝑐𝑧𝑒𝑧𝑓𝑧𝑡 ∈ ℝ (𝑦 = (𝑎 + (𝑡 · (𝑗𝑎))) ∧ (abs‘(𝑦𝑐)) = (abs‘(𝑒𝑓)))))
10593anbi1d 631 . . . . . . . . . . . 12 (𝑗 = 𝑏 → ((𝑦 = (𝑎 + (𝑡 · (𝑗𝑎))) ∧ (abs‘(𝑦𝑐)) = (abs‘(𝑒𝑓))) ↔ (𝑦 = (𝑎 + (𝑡 · (𝑏𝑎))) ∧ (abs‘(𝑦𝑐)) = (abs‘(𝑒𝑓)))))
1061052rexbidv 3209 . . . . . . . . . . 11 (𝑗 = 𝑏 → (∃𝑓𝑧𝑡 ∈ ℝ (𝑦 = (𝑎 + (𝑡 · (𝑗𝑎))) ∧ (abs‘(𝑦𝑐)) = (abs‘(𝑒𝑓))) ↔ ∃𝑓𝑧𝑡 ∈ ℝ (𝑦 = (𝑎 + (𝑡 · (𝑏𝑎))) ∧ (abs‘(𝑦𝑐)) = (abs‘(𝑒𝑓)))))
1071062rexbidv 3209 . . . . . . . . . 10 (𝑗 = 𝑏 → (∃𝑐𝑧𝑒𝑧𝑓𝑧𝑡 ∈ ℝ (𝑦 = (𝑎 + (𝑡 · (𝑗𝑎))) ∧ (abs‘(𝑦𝑐)) = (abs‘(𝑒𝑓))) ↔ ∃𝑐𝑧𝑒𝑧𝑓𝑧𝑡 ∈ ℝ (𝑦 = (𝑎 + (𝑡 · (𝑏𝑎))) ∧ (abs‘(𝑦𝑐)) = (abs‘(𝑒𝑓)))))
108104, 107cbvrex2vw 3228 . . . . . . . . 9 (∃𝑖𝑧𝑗𝑧𝑐𝑧𝑒𝑧𝑓𝑧𝑡 ∈ ℝ (𝑦 = (𝑖 + (𝑡 · (𝑗𝑖))) ∧ (abs‘(𝑦𝑐)) = (abs‘(𝑒𝑓))) ↔ ∃𝑎𝑧𝑏𝑧𝑐𝑧𝑒𝑧𝑓𝑧𝑡 ∈ ℝ (𝑦 = (𝑎 + (𝑡 · (𝑏𝑎))) ∧ (abs‘(𝑦𝑐)) = (abs‘(𝑒𝑓))))
109 neeq1 2993 . . . . . . . . . . . . 13 (𝑖 = 𝑎 → (𝑖𝑑𝑎𝑑))
110 oveq2 7420 . . . . . . . . . . . . . . 15 (𝑖 = 𝑎 → (𝑦𝑖) = (𝑦𝑎))
111110fveq2d 6889 . . . . . . . . . . . . . 14 (𝑖 = 𝑎 → (abs‘(𝑦𝑖)) = (abs‘(𝑦𝑎)))
112111eqeq1d 2736 . . . . . . . . . . . . 13 (𝑖 = 𝑎 → ((abs‘(𝑦𝑖)) = (abs‘(𝑗𝑐)) ↔ (abs‘(𝑦𝑎)) = (abs‘(𝑗𝑐))))
113109, 1123anbi12d 1438 . . . . . . . . . . . 12 (𝑖 = 𝑎 → ((𝑖𝑑 ∧ (abs‘(𝑦𝑖)) = (abs‘(𝑗𝑐)) ∧ (abs‘(𝑦𝑑)) = (abs‘(𝑒𝑓))) ↔ (𝑎𝑑 ∧ (abs‘(𝑦𝑎)) = (abs‘(𝑗𝑐)) ∧ (abs‘(𝑦𝑑)) = (abs‘(𝑒𝑓)))))
1141132rexbidv 3209 . . . . . . . . . . 11 (𝑖 = 𝑎 → (∃𝑒𝑧𝑓𝑧 (𝑖𝑑 ∧ (abs‘(𝑦𝑖)) = (abs‘(𝑗𝑐)) ∧ (abs‘(𝑦𝑑)) = (abs‘(𝑒𝑓))) ↔ ∃𝑒𝑧𝑓𝑧 (𝑎𝑑 ∧ (abs‘(𝑦𝑎)) = (abs‘(𝑗𝑐)) ∧ (abs‘(𝑦𝑑)) = (abs‘(𝑒𝑓)))))
1151142rexbidv 3209 . . . . . . . . . 10 (𝑖 = 𝑎 → (∃𝑐𝑧𝑑𝑧𝑒𝑧𝑓𝑧 (𝑖𝑑 ∧ (abs‘(𝑦𝑖)) = (abs‘(𝑗𝑐)) ∧ (abs‘(𝑦𝑑)) = (abs‘(𝑒𝑓))) ↔ ∃𝑐𝑧𝑑𝑧𝑒𝑧𝑓𝑧 (𝑎𝑑 ∧ (abs‘(𝑦𝑎)) = (abs‘(𝑗𝑐)) ∧ (abs‘(𝑦𝑑)) = (abs‘(𝑒𝑓)))))
116 oveq1 7419 . . . . . . . . . . . . . . 15 (𝑗 = 𝑏 → (𝑗𝑐) = (𝑏𝑐))
117116fveq2d 6889 . . . . . . . . . . . . . 14 (𝑗 = 𝑏 → (abs‘(𝑗𝑐)) = (abs‘(𝑏𝑐)))
118117eqeq2d 2745 . . . . . . . . . . . . 13 (𝑗 = 𝑏 → ((abs‘(𝑦𝑎)) = (abs‘(𝑗𝑐)) ↔ (abs‘(𝑦𝑎)) = (abs‘(𝑏𝑐))))
1191183anbi2d 1442 . . . . . . . . . . . 12 (𝑗 = 𝑏 → ((𝑎𝑑 ∧ (abs‘(𝑦𝑎)) = (abs‘(𝑗𝑐)) ∧ (abs‘(𝑦𝑑)) = (abs‘(𝑒𝑓))) ↔ (𝑎𝑑 ∧ (abs‘(𝑦𝑎)) = (abs‘(𝑏𝑐)) ∧ (abs‘(𝑦𝑑)) = (abs‘(𝑒𝑓)))))
1201192rexbidv 3209 . . . . . . . . . . 11 (𝑗 = 𝑏 → (∃𝑒𝑧𝑓𝑧 (𝑎𝑑 ∧ (abs‘(𝑦𝑎)) = (abs‘(𝑗𝑐)) ∧ (abs‘(𝑦𝑑)) = (abs‘(𝑒𝑓))) ↔ ∃𝑒𝑧𝑓𝑧 (𝑎𝑑 ∧ (abs‘(𝑦𝑎)) = (abs‘(𝑏𝑐)) ∧ (abs‘(𝑦𝑑)) = (abs‘(𝑒𝑓)))))
1211202rexbidv 3209 . . . . . . . . . 10 (𝑗 = 𝑏 → (∃𝑐𝑧𝑑𝑧𝑒𝑧𝑓𝑧 (𝑎𝑑 ∧ (abs‘(𝑦𝑎)) = (abs‘(𝑗𝑐)) ∧ (abs‘(𝑦𝑑)) = (abs‘(𝑒𝑓))) ↔ ∃𝑐𝑧𝑑𝑧𝑒𝑧𝑓𝑧 (𝑎𝑑 ∧ (abs‘(𝑦𝑎)) = (abs‘(𝑏𝑐)) ∧ (abs‘(𝑦𝑑)) = (abs‘(𝑒𝑓)))))
122115, 121cbvrex2vw 3228 . . . . . . . . 9 (∃𝑖𝑧𝑗𝑧𝑐𝑧𝑑𝑧𝑒𝑧𝑓𝑧 (𝑖𝑑 ∧ (abs‘(𝑦𝑖)) = (abs‘(𝑗𝑐)) ∧ (abs‘(𝑦𝑑)) = (abs‘(𝑒𝑓))) ↔ ∃𝑎𝑧𝑏𝑧𝑐𝑧𝑑𝑧𝑒𝑧𝑓𝑧 (𝑎𝑑 ∧ (abs‘(𝑦𝑎)) = (abs‘(𝑏𝑐)) ∧ (abs‘(𝑦𝑑)) = (abs‘(𝑒𝑓))))
123101, 108, 1223orbi123i 1156 . . . . . . . 8 ((∃𝑖𝑧𝑗𝑧𝑐𝑧𝑑𝑧𝑡 ∈ ℝ ∃𝑟 ∈ ℝ (𝑦 = (𝑖 + (𝑡 · (𝑗𝑖))) ∧ 𝑦 = (𝑐 + (𝑟 · (𝑑𝑐))) ∧ (ℑ‘((∗‘(𝑗𝑖)) · (𝑑𝑐))) ≠ 0) ∨ ∃𝑖𝑧𝑗𝑧𝑐𝑧𝑒𝑧𝑓𝑧𝑡 ∈ ℝ (𝑦 = (𝑖 + (𝑡 · (𝑗𝑖))) ∧ (abs‘(𝑦𝑐)) = (abs‘(𝑒𝑓))) ∨ ∃𝑖𝑧𝑗𝑧𝑐𝑧𝑑𝑧𝑒𝑧𝑓𝑧 (𝑖𝑑 ∧ (abs‘(𝑦𝑖)) = (abs‘(𝑗𝑐)) ∧ (abs‘(𝑦𝑑)) = (abs‘(𝑒𝑓)))) ↔ (∃𝑎𝑧𝑏𝑧𝑐𝑧𝑑𝑧𝑡 ∈ ℝ ∃𝑟 ∈ ℝ (𝑦 = (𝑎 + (𝑡 · (𝑏𝑎))) ∧ 𝑦 = (𝑐 + (𝑟 · (𝑑𝑐))) ∧ (ℑ‘((∗‘(𝑏𝑎)) · (𝑑𝑐))) ≠ 0) ∨ ∃𝑎𝑧𝑏𝑧𝑐𝑧𝑒𝑧𝑓𝑧𝑡 ∈ ℝ (𝑦 = (𝑎 + (𝑡 · (𝑏𝑎))) ∧ (abs‘(𝑦𝑐)) = (abs‘(𝑒𝑓))) ∨ ∃𝑎𝑧𝑏𝑧𝑐𝑧𝑑𝑧𝑒𝑧𝑓𝑧 (𝑎𝑑 ∧ (abs‘(𝑦𝑎)) = (abs‘(𝑏𝑐)) ∧ (abs‘(𝑦𝑑)) = (abs‘(𝑒𝑓)))))
12477, 123bitri 275 . . . . . . 7 ((∃𝑖𝑧𝑗𝑧𝑘𝑧𝑙𝑧𝑜 ∈ ℝ ∃𝑝 ∈ ℝ (𝑦 = (𝑖 + (𝑜 · (𝑗𝑖))) ∧ 𝑦 = (𝑘 + (𝑝 · (𝑙𝑘))) ∧ (ℑ‘((∗‘(𝑗𝑖)) · (𝑙𝑘))) ≠ 0) ∨ ∃𝑖𝑧𝑗𝑧𝑘𝑧𝑚𝑧𝑞𝑧𝑜 ∈ ℝ (𝑦 = (𝑖 + (𝑜 · (𝑗𝑖))) ∧ (abs‘(𝑦𝑘)) = (abs‘(𝑚𝑞))) ∨ ∃𝑖𝑧𝑗𝑧𝑘𝑧𝑙𝑧𝑚𝑧𝑞𝑧 (𝑖𝑙 ∧ (abs‘(𝑦𝑖)) = (abs‘(𝑗𝑘)) ∧ (abs‘(𝑦𝑙)) = (abs‘(𝑚𝑞)))) ↔ (∃𝑎𝑧𝑏𝑧𝑐𝑧𝑑𝑧𝑡 ∈ ℝ ∃𝑟 ∈ ℝ (𝑦 = (𝑎 + (𝑡 · (𝑏𝑎))) ∧ 𝑦 = (𝑐 + (𝑟 · (𝑑𝑐))) ∧ (ℑ‘((∗‘(𝑏𝑎)) · (𝑑𝑐))) ≠ 0) ∨ ∃𝑎𝑧𝑏𝑧𝑐𝑧𝑒𝑧𝑓𝑧𝑡 ∈ ℝ (𝑦 = (𝑎 + (𝑡 · (𝑏𝑎))) ∧ (abs‘(𝑦𝑐)) = (abs‘(𝑒𝑓))) ∨ ∃𝑎𝑧𝑏𝑧𝑐𝑧𝑑𝑧𝑒𝑧𝑓𝑧 (𝑎𝑑 ∧ (abs‘(𝑦𝑎)) = (abs‘(𝑏𝑐)) ∧ (abs‘(𝑦𝑑)) = (abs‘(𝑒𝑓)))))
125124rabbii 3425 . . . . . 6 {𝑦 ∈ ℂ ∣ (∃𝑖𝑧𝑗𝑧𝑘𝑧𝑙𝑧𝑜 ∈ ℝ ∃𝑝 ∈ ℝ (𝑦 = (𝑖 + (𝑜 · (𝑗𝑖))) ∧ 𝑦 = (𝑘 + (𝑝 · (𝑙𝑘))) ∧ (ℑ‘((∗‘(𝑗𝑖)) · (𝑙𝑘))) ≠ 0) ∨ ∃𝑖𝑧𝑗𝑧𝑘𝑧𝑚𝑧𝑞𝑧𝑜 ∈ ℝ (𝑦 = (𝑖 + (𝑜 · (𝑗𝑖))) ∧ (abs‘(𝑦𝑘)) = (abs‘(𝑚𝑞))) ∨ ∃𝑖𝑧𝑗𝑧𝑘𝑧𝑙𝑧𝑚𝑧𝑞𝑧 (𝑖𝑙 ∧ (abs‘(𝑦𝑖)) = (abs‘(𝑗𝑘)) ∧ (abs‘(𝑦𝑙)) = (abs‘(𝑚𝑞))))} = {𝑦 ∈ ℂ ∣ (∃𝑎𝑧𝑏𝑧𝑐𝑧𝑑𝑧𝑡 ∈ ℝ ∃𝑟 ∈ ℝ (𝑦 = (𝑎 + (𝑡 · (𝑏𝑎))) ∧ 𝑦 = (𝑐 + (𝑟 · (𝑑𝑐))) ∧ (ℑ‘((∗‘(𝑏𝑎)) · (𝑑𝑐))) ≠ 0) ∨ ∃𝑎𝑧𝑏𝑧𝑐𝑧𝑒𝑧𝑓𝑧𝑡 ∈ ℝ (𝑦 = (𝑎 + (𝑡 · (𝑏𝑎))) ∧ (abs‘(𝑦𝑐)) = (abs‘(𝑒𝑓))) ∨ ∃𝑎𝑧𝑏𝑧𝑐𝑧𝑑𝑧𝑒𝑧𝑓𝑧 (𝑎𝑑 ∧ (abs‘(𝑦𝑎)) = (abs‘(𝑏𝑐)) ∧ (abs‘(𝑦𝑑)) = (abs‘(𝑒𝑓))))}
126 eqeq1 2738 . . . . . . . . . . . 12 (𝑦 = 𝑥 → (𝑦 = (𝑎 + (𝑡 · (𝑏𝑎))) ↔ 𝑥 = (𝑎 + (𝑡 · (𝑏𝑎)))))
127 eqeq1 2738 . . . . . . . . . . . 12 (𝑦 = 𝑥 → (𝑦 = (𝑐 + (𝑟 · (𝑑𝑐))) ↔ 𝑥 = (𝑐 + (𝑟 · (𝑑𝑐)))))
128 biidd 262 . . . . . . . . . . . 12 (𝑦 = 𝑥 → ((ℑ‘((∗‘(𝑏𝑎)) · (𝑑𝑐))) ≠ 0 ↔ (ℑ‘((∗‘(𝑏𝑎)) · (𝑑𝑐))) ≠ 0))
129126, 127, 1283anbi123d 1437 . . . . . . . . . . 11 (𝑦 = 𝑥 → ((𝑦 = (𝑎 + (𝑡 · (𝑏𝑎))) ∧ 𝑦 = (𝑐 + (𝑟 · (𝑑𝑐))) ∧ (ℑ‘((∗‘(𝑏𝑎)) · (𝑑𝑐))) ≠ 0) ↔ (𝑥 = (𝑎 + (𝑡 · (𝑏𝑎))) ∧ 𝑥 = (𝑐 + (𝑟 · (𝑑𝑐))) ∧ (ℑ‘((∗‘(𝑏𝑎)) · (𝑑𝑐))) ≠ 0)))
1301292rexbidv 3209 . . . . . . . . . 10 (𝑦 = 𝑥 → (∃𝑡 ∈ ℝ ∃𝑟 ∈ ℝ (𝑦 = (𝑎 + (𝑡 · (𝑏𝑎))) ∧ 𝑦 = (𝑐 + (𝑟 · (𝑑𝑐))) ∧ (ℑ‘((∗‘(𝑏𝑎)) · (𝑑𝑐))) ≠ 0) ↔ ∃𝑡 ∈ ℝ ∃𝑟 ∈ ℝ (𝑥 = (𝑎 + (𝑡 · (𝑏𝑎))) ∧ 𝑥 = (𝑐 + (𝑟 · (𝑑𝑐))) ∧ (ℑ‘((∗‘(𝑏𝑎)) · (𝑑𝑐))) ≠ 0)))
1311302rexbidv 3209 . . . . . . . . 9 (𝑦 = 𝑥 → (∃𝑐𝑧𝑑𝑧𝑡 ∈ ℝ ∃𝑟 ∈ ℝ (𝑦 = (𝑎 + (𝑡 · (𝑏𝑎))) ∧ 𝑦 = (𝑐 + (𝑟 · (𝑑𝑐))) ∧ (ℑ‘((∗‘(𝑏𝑎)) · (𝑑𝑐))) ≠ 0) ↔ ∃𝑐𝑧𝑑𝑧𝑡 ∈ ℝ ∃𝑟 ∈ ℝ (𝑥 = (𝑎 + (𝑡 · (𝑏𝑎))) ∧ 𝑥 = (𝑐 + (𝑟 · (𝑑𝑐))) ∧ (ℑ‘((∗‘(𝑏𝑎)) · (𝑑𝑐))) ≠ 0)))
1321312rexbidv 3209 . . . . . . . 8 (𝑦 = 𝑥 → (∃𝑎𝑧𝑏𝑧𝑐𝑧𝑑𝑧𝑡 ∈ ℝ ∃𝑟 ∈ ℝ (𝑦 = (𝑎 + (𝑡 · (𝑏𝑎))) ∧ 𝑦 = (𝑐 + (𝑟 · (𝑑𝑐))) ∧ (ℑ‘((∗‘(𝑏𝑎)) · (𝑑𝑐))) ≠ 0) ↔ ∃𝑎𝑧𝑏𝑧𝑐𝑧𝑑𝑧𝑡 ∈ ℝ ∃𝑟 ∈ ℝ (𝑥 = (𝑎 + (𝑡 · (𝑏𝑎))) ∧ 𝑥 = (𝑐 + (𝑟 · (𝑑𝑐))) ∧ (ℑ‘((∗‘(𝑏𝑎)) · (𝑑𝑐))) ≠ 0)))
133 oveq1 7419 . . . . . . . . . . . . . 14 (𝑦 = 𝑥 → (𝑦𝑐) = (𝑥𝑐))
134133fveq2d 6889 . . . . . . . . . . . . 13 (𝑦 = 𝑥 → (abs‘(𝑦𝑐)) = (abs‘(𝑥𝑐)))
135134eqeq1d 2736 . . . . . . . . . . . 12 (𝑦 = 𝑥 → ((abs‘(𝑦𝑐)) = (abs‘(𝑒𝑓)) ↔ (abs‘(𝑥𝑐)) = (abs‘(𝑒𝑓))))
136126, 135anbi12d 632 . . . . . . . . . . 11 (𝑦 = 𝑥 → ((𝑦 = (𝑎 + (𝑡 · (𝑏𝑎))) ∧ (abs‘(𝑦𝑐)) = (abs‘(𝑒𝑓))) ↔ (𝑥 = (𝑎 + (𝑡 · (𝑏𝑎))) ∧ (abs‘(𝑥𝑐)) = (abs‘(𝑒𝑓)))))
1371362rexbidv 3209 . . . . . . . . . 10 (𝑦 = 𝑥 → (∃𝑓𝑧𝑡 ∈ ℝ (𝑦 = (𝑎 + (𝑡 · (𝑏𝑎))) ∧ (abs‘(𝑦𝑐)) = (abs‘(𝑒𝑓))) ↔ ∃𝑓𝑧𝑡 ∈ ℝ (𝑥 = (𝑎 + (𝑡 · (𝑏𝑎))) ∧ (abs‘(𝑥𝑐)) = (abs‘(𝑒𝑓)))))
1381372rexbidv 3209 . . . . . . . . 9 (𝑦 = 𝑥 → (∃𝑐𝑧𝑒𝑧𝑓𝑧𝑡 ∈ ℝ (𝑦 = (𝑎 + (𝑡 · (𝑏𝑎))) ∧ (abs‘(𝑦𝑐)) = (abs‘(𝑒𝑓))) ↔ ∃𝑐𝑧𝑒𝑧𝑓𝑧𝑡 ∈ ℝ (𝑥 = (𝑎 + (𝑡 · (𝑏𝑎))) ∧ (abs‘(𝑥𝑐)) = (abs‘(𝑒𝑓)))))
1391382rexbidv 3209 . . . . . . . 8 (𝑦 = 𝑥 → (∃𝑎𝑧𝑏𝑧𝑐𝑧𝑒𝑧𝑓𝑧𝑡 ∈ ℝ (𝑦 = (𝑎 + (𝑡 · (𝑏𝑎))) ∧ (abs‘(𝑦𝑐)) = (abs‘(𝑒𝑓))) ↔ ∃𝑎𝑧𝑏𝑧𝑐𝑧𝑒𝑧𝑓𝑧𝑡 ∈ ℝ (𝑥 = (𝑎 + (𝑡 · (𝑏𝑎))) ∧ (abs‘(𝑥𝑐)) = (abs‘(𝑒𝑓)))))
140 biidd 262 . . . . . . . . . . . 12 (𝑦 = 𝑥 → (𝑎𝑑𝑎𝑑))
141 oveq1 7419 . . . . . . . . . . . . . 14 (𝑦 = 𝑥 → (𝑦𝑎) = (𝑥𝑎))
142141fveq2d 6889 . . . . . . . . . . . . 13 (𝑦 = 𝑥 → (abs‘(𝑦𝑎)) = (abs‘(𝑥𝑎)))
143142eqeq1d 2736 . . . . . . . . . . . 12 (𝑦 = 𝑥 → ((abs‘(𝑦𝑎)) = (abs‘(𝑏𝑐)) ↔ (abs‘(𝑥𝑎)) = (abs‘(𝑏𝑐))))
144 oveq1 7419 . . . . . . . . . . . . . 14 (𝑦 = 𝑥 → (𝑦𝑑) = (𝑥𝑑))
145144fveq2d 6889 . . . . . . . . . . . . 13 (𝑦 = 𝑥 → (abs‘(𝑦𝑑)) = (abs‘(𝑥𝑑)))
146145eqeq1d 2736 . . . . . . . . . . . 12 (𝑦 = 𝑥 → ((abs‘(𝑦𝑑)) = (abs‘(𝑒𝑓)) ↔ (abs‘(𝑥𝑑)) = (abs‘(𝑒𝑓))))
147140, 143, 1463anbi123d 1437 . . . . . . . . . . 11 (𝑦 = 𝑥 → ((𝑎𝑑 ∧ (abs‘(𝑦𝑎)) = (abs‘(𝑏𝑐)) ∧ (abs‘(𝑦𝑑)) = (abs‘(𝑒𝑓))) ↔ (𝑎𝑑 ∧ (abs‘(𝑥𝑎)) = (abs‘(𝑏𝑐)) ∧ (abs‘(𝑥𝑑)) = (abs‘(𝑒𝑓)))))
1481472rexbidv 3209 . . . . . . . . . 10 (𝑦 = 𝑥 → (∃𝑒𝑧𝑓𝑧 (𝑎𝑑 ∧ (abs‘(𝑦𝑎)) = (abs‘(𝑏𝑐)) ∧ (abs‘(𝑦𝑑)) = (abs‘(𝑒𝑓))) ↔ ∃𝑒𝑧𝑓𝑧 (𝑎𝑑 ∧ (abs‘(𝑥𝑎)) = (abs‘(𝑏𝑐)) ∧ (abs‘(𝑥𝑑)) = (abs‘(𝑒𝑓)))))
1491482rexbidv 3209 . . . . . . . . 9 (𝑦 = 𝑥 → (∃𝑐𝑧𝑑𝑧𝑒𝑧𝑓𝑧 (𝑎𝑑 ∧ (abs‘(𝑦𝑎)) = (abs‘(𝑏𝑐)) ∧ (abs‘(𝑦𝑑)) = (abs‘(𝑒𝑓))) ↔ ∃𝑐𝑧𝑑𝑧𝑒𝑧𝑓𝑧 (𝑎𝑑 ∧ (abs‘(𝑥𝑎)) = (abs‘(𝑏𝑐)) ∧ (abs‘(𝑥𝑑)) = (abs‘(𝑒𝑓)))))
1501492rexbidv 3209 . . . . . . . 8 (𝑦 = 𝑥 → (∃𝑎𝑧𝑏𝑧𝑐𝑧𝑑𝑧𝑒𝑧𝑓𝑧 (𝑎𝑑 ∧ (abs‘(𝑦𝑎)) = (abs‘(𝑏𝑐)) ∧ (abs‘(𝑦𝑑)) = (abs‘(𝑒𝑓))) ↔ ∃𝑎𝑧𝑏𝑧𝑐𝑧𝑑𝑧𝑒𝑧𝑓𝑧 (𝑎𝑑 ∧ (abs‘(𝑥𝑎)) = (abs‘(𝑏𝑐)) ∧ (abs‘(𝑥𝑑)) = (abs‘(𝑒𝑓)))))
151132, 139, 1503orbi123d 1436 . . . . . . 7 (𝑦 = 𝑥 → ((∃𝑎𝑧𝑏𝑧𝑐𝑧𝑑𝑧𝑡 ∈ ℝ ∃𝑟 ∈ ℝ (𝑦 = (𝑎 + (𝑡 · (𝑏𝑎))) ∧ 𝑦 = (𝑐 + (𝑟 · (𝑑𝑐))) ∧ (ℑ‘((∗‘(𝑏𝑎)) · (𝑑𝑐))) ≠ 0) ∨ ∃𝑎𝑧𝑏𝑧𝑐𝑧𝑒𝑧𝑓𝑧𝑡 ∈ ℝ (𝑦 = (𝑎 + (𝑡 · (𝑏𝑎))) ∧ (abs‘(𝑦𝑐)) = (abs‘(𝑒𝑓))) ∨ ∃𝑎𝑧𝑏𝑧𝑐𝑧𝑑𝑧𝑒𝑧𝑓𝑧 (𝑎𝑑 ∧ (abs‘(𝑦𝑎)) = (abs‘(𝑏𝑐)) ∧ (abs‘(𝑦𝑑)) = (abs‘(𝑒𝑓)))) ↔ (∃𝑎𝑧𝑏𝑧𝑐𝑧𝑑𝑧𝑡 ∈ ℝ ∃𝑟 ∈ ℝ (𝑥 = (𝑎 + (𝑡 · (𝑏𝑎))) ∧ 𝑥 = (𝑐 + (𝑟 · (𝑑𝑐))) ∧ (ℑ‘((∗‘(𝑏𝑎)) · (𝑑𝑐))) ≠ 0) ∨ ∃𝑎𝑧𝑏𝑧𝑐𝑧𝑒𝑧𝑓𝑧𝑡 ∈ ℝ (𝑥 = (𝑎 + (𝑡 · (𝑏𝑎))) ∧ (abs‘(𝑥𝑐)) = (abs‘(𝑒𝑓))) ∨ ∃𝑎𝑧𝑏𝑧𝑐𝑧𝑑𝑧𝑒𝑧𝑓𝑧 (𝑎𝑑 ∧ (abs‘(𝑥𝑎)) = (abs‘(𝑏𝑐)) ∧ (abs‘(𝑥𝑑)) = (abs‘(𝑒𝑓))))))
152151cbvrabv 3430 . . . . . 6 {𝑦 ∈ ℂ ∣ (∃𝑎𝑧𝑏𝑧𝑐𝑧𝑑𝑧𝑡 ∈ ℝ ∃𝑟 ∈ ℝ (𝑦 = (𝑎 + (𝑡 · (𝑏𝑎))) ∧ 𝑦 = (𝑐 + (𝑟 · (𝑑𝑐))) ∧ (ℑ‘((∗‘(𝑏𝑎)) · (𝑑𝑐))) ≠ 0) ∨ ∃𝑎𝑧𝑏𝑧𝑐𝑧𝑒𝑧𝑓𝑧𝑡 ∈ ℝ (𝑦 = (𝑎 + (𝑡 · (𝑏𝑎))) ∧ (abs‘(𝑦𝑐)) = (abs‘(𝑒𝑓))) ∨ ∃𝑎𝑧𝑏𝑧𝑐𝑧𝑑𝑧𝑒𝑧𝑓𝑧 (𝑎𝑑 ∧ (abs‘(𝑦𝑎)) = (abs‘(𝑏𝑐)) ∧ (abs‘(𝑦𝑑)) = (abs‘(𝑒𝑓))))} = {𝑥 ∈ ℂ ∣ (∃𝑎𝑧𝑏𝑧𝑐𝑧𝑑𝑧𝑡 ∈ ℝ ∃𝑟 ∈ ℝ (𝑥 = (𝑎 + (𝑡 · (𝑏𝑎))) ∧ 𝑥 = (𝑐 + (𝑟 · (𝑑𝑐))) ∧ (ℑ‘((∗‘(𝑏𝑎)) · (𝑑𝑐))) ≠ 0) ∨ ∃𝑎𝑧𝑏𝑧𝑐𝑧𝑒𝑧𝑓𝑧𝑡 ∈ ℝ (𝑥 = (𝑎 + (𝑡 · (𝑏𝑎))) ∧ (abs‘(𝑥𝑐)) = (abs‘(𝑒𝑓))) ∨ ∃𝑎𝑧𝑏𝑧𝑐𝑧𝑑𝑧𝑒𝑧𝑓𝑧 (𝑎𝑑 ∧ (abs‘(𝑥𝑎)) = (abs‘(𝑏𝑐)) ∧ (abs‘(𝑥𝑑)) = (abs‘(𝑒𝑓))))}
153125, 152eqtri 2757 . . . . 5 {𝑦 ∈ ℂ ∣ (∃𝑖𝑧𝑗𝑧𝑘𝑧𝑙𝑧𝑜 ∈ ℝ ∃𝑝 ∈ ℝ (𝑦 = (𝑖 + (𝑜 · (𝑗𝑖))) ∧ 𝑦 = (𝑘 + (𝑝 · (𝑙𝑘))) ∧ (ℑ‘((∗‘(𝑗𝑖)) · (𝑙𝑘))) ≠ 0) ∨ ∃𝑖𝑧𝑗𝑧𝑘𝑧𝑚𝑧𝑞𝑧𝑜 ∈ ℝ (𝑦 = (𝑖 + (𝑜 · (𝑗𝑖))) ∧ (abs‘(𝑦𝑘)) = (abs‘(𝑚𝑞))) ∨ ∃𝑖𝑧𝑗𝑧𝑘𝑧𝑙𝑧𝑚𝑧𝑞𝑧 (𝑖𝑙 ∧ (abs‘(𝑦𝑖)) = (abs‘(𝑗𝑘)) ∧ (abs‘(𝑦𝑙)) = (abs‘(𝑚𝑞))))} = {𝑥 ∈ ℂ ∣ (∃𝑎𝑧𝑏𝑧𝑐𝑧𝑑𝑧𝑡 ∈ ℝ ∃𝑟 ∈ ℝ (𝑥 = (𝑎 + (𝑡 · (𝑏𝑎))) ∧ 𝑥 = (𝑐 + (𝑟 · (𝑑𝑐))) ∧ (ℑ‘((∗‘(𝑏𝑎)) · (𝑑𝑐))) ≠ 0) ∨ ∃𝑎𝑧𝑏𝑧𝑐𝑧𝑒𝑧𝑓𝑧𝑡 ∈ ℝ (𝑥 = (𝑎 + (𝑡 · (𝑏𝑎))) ∧ (abs‘(𝑥𝑐)) = (abs‘(𝑒𝑓))) ∨ ∃𝑎𝑧𝑏𝑧𝑐𝑧𝑑𝑧𝑒𝑧𝑓𝑧 (𝑎𝑑 ∧ (abs‘(𝑥𝑎)) = (abs‘(𝑏𝑐)) ∧ (abs‘(𝑥𝑑)) = (abs‘(𝑒𝑓))))}
154153mpteq2i 5227 . . . 4 (𝑧 ∈ V ↦ {𝑦 ∈ ℂ ∣ (∃𝑖𝑧𝑗𝑧𝑘𝑧𝑙𝑧𝑜 ∈ ℝ ∃𝑝 ∈ ℝ (𝑦 = (𝑖 + (𝑜 · (𝑗𝑖))) ∧ 𝑦 = (𝑘 + (𝑝 · (𝑙𝑘))) ∧ (ℑ‘((∗‘(𝑗𝑖)) · (𝑙𝑘))) ≠ 0) ∨ ∃𝑖𝑧𝑗𝑧𝑘𝑧𝑚𝑧𝑞𝑧𝑜 ∈ ℝ (𝑦 = (𝑖 + (𝑜 · (𝑗𝑖))) ∧ (abs‘(𝑦𝑘)) = (abs‘(𝑚𝑞))) ∨ ∃𝑖𝑧𝑗𝑧𝑘𝑧𝑙𝑧𝑚𝑧𝑞𝑧 (𝑖𝑙 ∧ (abs‘(𝑦𝑖)) = (abs‘(𝑗𝑘)) ∧ (abs‘(𝑦𝑙)) = (abs‘(𝑚𝑞))))}) = (𝑧 ∈ V ↦ {𝑥 ∈ ℂ ∣ (∃𝑎𝑧𝑏𝑧𝑐𝑧𝑑𝑧𝑡 ∈ ℝ ∃𝑟 ∈ ℝ (𝑥 = (𝑎 + (𝑡 · (𝑏𝑎))) ∧ 𝑥 = (𝑐 + (𝑟 · (𝑑𝑐))) ∧ (ℑ‘((∗‘(𝑏𝑎)) · (𝑑𝑐))) ≠ 0) ∨ ∃𝑎𝑧𝑏𝑧𝑐𝑧𝑒𝑧𝑓𝑧𝑡 ∈ ℝ (𝑥 = (𝑎 + (𝑡 · (𝑏𝑎))) ∧ (abs‘(𝑥𝑐)) = (abs‘(𝑒𝑓))) ∨ ∃𝑎𝑧𝑏𝑧𝑐𝑧𝑑𝑧𝑒𝑧𝑓𝑧 (𝑎𝑑 ∧ (abs‘(𝑥𝑎)) = (abs‘(𝑏𝑐)) ∧ (abs‘(𝑥𝑑)) = (abs‘(𝑒𝑓))))})
155 elequ2 2122 . . . . . . . . 9 (𝑧 = 𝑠 → (𝑎𝑧𝑎𝑠))
156 elequ2 2122 . . . . . . . . . . 11 (𝑧 = 𝑠 → (𝑏𝑧𝑏𝑠))
157 elequ2 2122 . . . . . . . . . . . . 13 (𝑧 = 𝑠 → (𝑐𝑧𝑐𝑠))
158 rexeq 3305 . . . . . . . . . . . . 13 (𝑧 = 𝑠 → (∃𝑑𝑧𝑡 ∈ ℝ ∃𝑟 ∈ ℝ (𝑥 = (𝑎 + (𝑡 · (𝑏𝑎))) ∧ 𝑥 = (𝑐 + (𝑟 · (𝑑𝑐))) ∧ (ℑ‘((∗‘(𝑏𝑎)) · (𝑑𝑐))) ≠ 0) ↔ ∃𝑑𝑠𝑡 ∈ ℝ ∃𝑟 ∈ ℝ (𝑥 = (𝑎 + (𝑡 · (𝑏𝑎))) ∧ 𝑥 = (𝑐 + (𝑟 · (𝑑𝑐))) ∧ (ℑ‘((∗‘(𝑏𝑎)) · (𝑑𝑐))) ≠ 0)))
159157, 158anbi12d 632 . . . . . . . . . . . 12 (𝑧 = 𝑠 → ((𝑐𝑧 ∧ ∃𝑑𝑧𝑡 ∈ ℝ ∃𝑟 ∈ ℝ (𝑥 = (𝑎 + (𝑡 · (𝑏𝑎))) ∧ 𝑥 = (𝑐 + (𝑟 · (𝑑𝑐))) ∧ (ℑ‘((∗‘(𝑏𝑎)) · (𝑑𝑐))) ≠ 0)) ↔ (𝑐𝑠 ∧ ∃𝑑𝑠𝑡 ∈ ℝ ∃𝑟 ∈ ℝ (𝑥 = (𝑎 + (𝑡 · (𝑏𝑎))) ∧ 𝑥 = (𝑐 + (𝑟 · (𝑑𝑐))) ∧ (ℑ‘((∗‘(𝑏𝑎)) · (𝑑𝑐))) ≠ 0))))
160159rexbidv2 3162 . . . . . . . . . . 11 (𝑧 = 𝑠 → (∃𝑐𝑧𝑑𝑧𝑡 ∈ ℝ ∃𝑟 ∈ ℝ (𝑥 = (𝑎 + (𝑡 · (𝑏𝑎))) ∧ 𝑥 = (𝑐 + (𝑟 · (𝑑𝑐))) ∧ (ℑ‘((∗‘(𝑏𝑎)) · (𝑑𝑐))) ≠ 0) ↔ ∃𝑐𝑠𝑑𝑠𝑡 ∈ ℝ ∃𝑟 ∈ ℝ (𝑥 = (𝑎 + (𝑡 · (𝑏𝑎))) ∧ 𝑥 = (𝑐 + (𝑟 · (𝑑𝑐))) ∧ (ℑ‘((∗‘(𝑏𝑎)) · (𝑑𝑐))) ≠ 0)))
161156, 160anbi12d 632 . . . . . . . . . 10 (𝑧 = 𝑠 → ((𝑏𝑧 ∧ ∃𝑐𝑧𝑑𝑧𝑡 ∈ ℝ ∃𝑟 ∈ ℝ (𝑥 = (𝑎 + (𝑡 · (𝑏𝑎))) ∧ 𝑥 = (𝑐 + (𝑟 · (𝑑𝑐))) ∧ (ℑ‘((∗‘(𝑏𝑎)) · (𝑑𝑐))) ≠ 0)) ↔ (𝑏𝑠 ∧ ∃𝑐𝑠𝑑𝑠𝑡 ∈ ℝ ∃𝑟 ∈ ℝ (𝑥 = (𝑎 + (𝑡 · (𝑏𝑎))) ∧ 𝑥 = (𝑐 + (𝑟 · (𝑑𝑐))) ∧ (ℑ‘((∗‘(𝑏𝑎)) · (𝑑𝑐))) ≠ 0))))
162161rexbidv2 3162 . . . . . . . . 9 (𝑧 = 𝑠 → (∃𝑏𝑧𝑐𝑧𝑑𝑧𝑡 ∈ ℝ ∃𝑟 ∈ ℝ (𝑥 = (𝑎 + (𝑡 · (𝑏𝑎))) ∧ 𝑥 = (𝑐 + (𝑟 · (𝑑𝑐))) ∧ (ℑ‘((∗‘(𝑏𝑎)) · (𝑑𝑐))) ≠ 0) ↔ ∃𝑏𝑠𝑐𝑠𝑑𝑠𝑡 ∈ ℝ ∃𝑟 ∈ ℝ (𝑥 = (𝑎 + (𝑡 · (𝑏𝑎))) ∧ 𝑥 = (𝑐 + (𝑟 · (𝑑𝑐))) ∧ (ℑ‘((∗‘(𝑏𝑎)) · (𝑑𝑐))) ≠ 0)))
163155, 162anbi12d 632 . . . . . . . 8 (𝑧 = 𝑠 → ((𝑎𝑧 ∧ ∃𝑏𝑧𝑐𝑧𝑑𝑧𝑡 ∈ ℝ ∃𝑟 ∈ ℝ (𝑥 = (𝑎 + (𝑡 · (𝑏𝑎))) ∧ 𝑥 = (𝑐 + (𝑟 · (𝑑𝑐))) ∧ (ℑ‘((∗‘(𝑏𝑎)) · (𝑑𝑐))) ≠ 0)) ↔ (𝑎𝑠 ∧ ∃𝑏𝑠𝑐𝑠𝑑𝑠𝑡 ∈ ℝ ∃𝑟 ∈ ℝ (𝑥 = (𝑎 + (𝑡 · (𝑏𝑎))) ∧ 𝑥 = (𝑐 + (𝑟 · (𝑑𝑐))) ∧ (ℑ‘((∗‘(𝑏𝑎)) · (𝑑𝑐))) ≠ 0))))
164163rexbidv2 3162 . . . . . . 7 (𝑧 = 𝑠 → (∃𝑎𝑧𝑏𝑧𝑐𝑧𝑑𝑧𝑡 ∈ ℝ ∃𝑟 ∈ ℝ (𝑥 = (𝑎 + (𝑡 · (𝑏𝑎))) ∧ 𝑥 = (𝑐 + (𝑟 · (𝑑𝑐))) ∧ (ℑ‘((∗‘(𝑏𝑎)) · (𝑑𝑐))) ≠ 0) ↔ ∃𝑎𝑠𝑏𝑠𝑐𝑠𝑑𝑠𝑡 ∈ ℝ ∃𝑟 ∈ ℝ (𝑥 = (𝑎 + (𝑡 · (𝑏𝑎))) ∧ 𝑥 = (𝑐 + (𝑟 · (𝑑𝑐))) ∧ (ℑ‘((∗‘(𝑏𝑎)) · (𝑑𝑐))) ≠ 0)))
165 elequ2 2122 . . . . . . . . . . . . . . 15 (𝑧 = 𝑠 → (𝑒𝑧𝑒𝑠))
166 rexeq 3305 . . . . . . . . . . . . . . 15 (𝑧 = 𝑠 → (∃𝑓𝑧𝑡 ∈ ℝ (𝑥 = (𝑎 + (𝑡 · (𝑏𝑎))) ∧ (abs‘(𝑥𝑐)) = (abs‘(𝑒𝑓))) ↔ ∃𝑓𝑠𝑡 ∈ ℝ (𝑥 = (𝑎 + (𝑡 · (𝑏𝑎))) ∧ (abs‘(𝑥𝑐)) = (abs‘(𝑒𝑓)))))
167165, 166anbi12d 632 . . . . . . . . . . . . . 14 (𝑧 = 𝑠 → ((𝑒𝑧 ∧ ∃𝑓𝑧𝑡 ∈ ℝ (𝑥 = (𝑎 + (𝑡 · (𝑏𝑎))) ∧ (abs‘(𝑥𝑐)) = (abs‘(𝑒𝑓)))) ↔ (𝑒𝑠 ∧ ∃𝑓𝑠𝑡 ∈ ℝ (𝑥 = (𝑎 + (𝑡 · (𝑏𝑎))) ∧ (abs‘(𝑥𝑐)) = (abs‘(𝑒𝑓))))))
168167rexbidv2 3162 . . . . . . . . . . . . 13 (𝑧 = 𝑠 → (∃𝑒𝑧𝑓𝑧𝑡 ∈ ℝ (𝑥 = (𝑎 + (𝑡 · (𝑏𝑎))) ∧ (abs‘(𝑥𝑐)) = (abs‘(𝑒𝑓))) ↔ ∃𝑒𝑠𝑓𝑠𝑡 ∈ ℝ (𝑥 = (𝑎 + (𝑡 · (𝑏𝑎))) ∧ (abs‘(𝑥𝑐)) = (abs‘(𝑒𝑓)))))
169157, 168anbi12d 632 . . . . . . . . . . . 12 (𝑧 = 𝑠 → ((𝑐𝑧 ∧ ∃𝑒𝑧𝑓𝑧𝑡 ∈ ℝ (𝑥 = (𝑎 + (𝑡 · (𝑏𝑎))) ∧ (abs‘(𝑥𝑐)) = (abs‘(𝑒𝑓)))) ↔ (𝑐𝑠 ∧ ∃𝑒𝑠𝑓𝑠𝑡 ∈ ℝ (𝑥 = (𝑎 + (𝑡 · (𝑏𝑎))) ∧ (abs‘(𝑥𝑐)) = (abs‘(𝑒𝑓))))))
170169rexbidv2 3162 . . . . . . . . . . 11 (𝑧 = 𝑠 → (∃𝑐𝑧𝑒𝑧𝑓𝑧𝑡 ∈ ℝ (𝑥 = (𝑎 + (𝑡 · (𝑏𝑎))) ∧ (abs‘(𝑥𝑐)) = (abs‘(𝑒𝑓))) ↔ ∃𝑐𝑠𝑒𝑠𝑓𝑠𝑡 ∈ ℝ (𝑥 = (𝑎 + (𝑡 · (𝑏𝑎))) ∧ (abs‘(𝑥𝑐)) = (abs‘(𝑒𝑓)))))
171156, 170anbi12d 632 . . . . . . . . . 10 (𝑧 = 𝑠 → ((𝑏𝑧 ∧ ∃𝑐𝑧𝑒𝑧𝑓𝑧𝑡 ∈ ℝ (𝑥 = (𝑎 + (𝑡 · (𝑏𝑎))) ∧ (abs‘(𝑥𝑐)) = (abs‘(𝑒𝑓)))) ↔ (𝑏𝑠 ∧ ∃𝑐𝑠𝑒𝑠𝑓𝑠𝑡 ∈ ℝ (𝑥 = (𝑎 + (𝑡 · (𝑏𝑎))) ∧ (abs‘(𝑥𝑐)) = (abs‘(𝑒𝑓))))))
172171rexbidv2 3162 . . . . . . . . 9 (𝑧 = 𝑠 → (∃𝑏𝑧𝑐𝑧𝑒𝑧𝑓𝑧𝑡 ∈ ℝ (𝑥 = (𝑎 + (𝑡 · (𝑏𝑎))) ∧ (abs‘(𝑥𝑐)) = (abs‘(𝑒𝑓))) ↔ ∃𝑏𝑠𝑐𝑠𝑒𝑠𝑓𝑠𝑡 ∈ ℝ (𝑥 = (𝑎 + (𝑡 · (𝑏𝑎))) ∧ (abs‘(𝑥𝑐)) = (abs‘(𝑒𝑓)))))
173155, 172anbi12d 632 . . . . . . . 8 (𝑧 = 𝑠 → ((𝑎𝑧 ∧ ∃𝑏𝑧𝑐𝑧𝑒𝑧𝑓𝑧𝑡 ∈ ℝ (𝑥 = (𝑎 + (𝑡 · (𝑏𝑎))) ∧ (abs‘(𝑥𝑐)) = (abs‘(𝑒𝑓)))) ↔ (𝑎𝑠 ∧ ∃𝑏𝑠𝑐𝑠𝑒𝑠𝑓𝑠𝑡 ∈ ℝ (𝑥 = (𝑎 + (𝑡 · (𝑏𝑎))) ∧ (abs‘(𝑥𝑐)) = (abs‘(𝑒𝑓))))))
174173rexbidv2 3162 . . . . . . 7 (𝑧 = 𝑠 → (∃𝑎𝑧𝑏𝑧𝑐𝑧𝑒𝑧𝑓𝑧𝑡 ∈ ℝ (𝑥 = (𝑎 + (𝑡 · (𝑏𝑎))) ∧ (abs‘(𝑥𝑐)) = (abs‘(𝑒𝑓))) ↔ ∃𝑎𝑠𝑏𝑠𝑐𝑠𝑒𝑠𝑓𝑠𝑡 ∈ ℝ (𝑥 = (𝑎 + (𝑡 · (𝑏𝑎))) ∧ (abs‘(𝑥𝑐)) = (abs‘(𝑒𝑓)))))
175 elequ2 2122 . . . . . . . . . . . . . . 15 (𝑧 = 𝑠 → (𝑑𝑧𝑑𝑠))
176 rexeq 3305 . . . . . . . . . . . . . . . . 17 (𝑧 = 𝑠 → (∃𝑓𝑧 (𝑎𝑑 ∧ (abs‘(𝑥𝑎)) = (abs‘(𝑏𝑐)) ∧ (abs‘(𝑥𝑑)) = (abs‘(𝑒𝑓))) ↔ ∃𝑓𝑠 (𝑎𝑑 ∧ (abs‘(𝑥𝑎)) = (abs‘(𝑏𝑐)) ∧ (abs‘(𝑥𝑑)) = (abs‘(𝑒𝑓)))))
177165, 176anbi12d 632 . . . . . . . . . . . . . . . 16 (𝑧 = 𝑠 → ((𝑒𝑧 ∧ ∃𝑓𝑧 (𝑎𝑑 ∧ (abs‘(𝑥𝑎)) = (abs‘(𝑏𝑐)) ∧ (abs‘(𝑥𝑑)) = (abs‘(𝑒𝑓)))) ↔ (𝑒𝑠 ∧ ∃𝑓𝑠 (𝑎𝑑 ∧ (abs‘(𝑥𝑎)) = (abs‘(𝑏𝑐)) ∧ (abs‘(𝑥𝑑)) = (abs‘(𝑒𝑓))))))
178177rexbidv2 3162 . . . . . . . . . . . . . . 15 (𝑧 = 𝑠 → (∃𝑒𝑧𝑓𝑧 (𝑎𝑑 ∧ (abs‘(𝑥𝑎)) = (abs‘(𝑏𝑐)) ∧ (abs‘(𝑥𝑑)) = (abs‘(𝑒𝑓))) ↔ ∃𝑒𝑠𝑓𝑠 (𝑎𝑑 ∧ (abs‘(𝑥𝑎)) = (abs‘(𝑏𝑐)) ∧ (abs‘(𝑥𝑑)) = (abs‘(𝑒𝑓)))))
179175, 178anbi12d 632 . . . . . . . . . . . . . 14 (𝑧 = 𝑠 → ((𝑑𝑧 ∧ ∃𝑒𝑧𝑓𝑧 (𝑎𝑑 ∧ (abs‘(𝑥𝑎)) = (abs‘(𝑏𝑐)) ∧ (abs‘(𝑥𝑑)) = (abs‘(𝑒𝑓)))) ↔ (𝑑𝑠 ∧ ∃𝑒𝑠𝑓𝑠 (𝑎𝑑 ∧ (abs‘(𝑥𝑎)) = (abs‘(𝑏𝑐)) ∧ (abs‘(𝑥𝑑)) = (abs‘(𝑒𝑓))))))
180179rexbidv2 3162 . . . . . . . . . . . . 13 (𝑧 = 𝑠 → (∃𝑑𝑧𝑒𝑧𝑓𝑧 (𝑎𝑑 ∧ (abs‘(𝑥𝑎)) = (abs‘(𝑏𝑐)) ∧ (abs‘(𝑥𝑑)) = (abs‘(𝑒𝑓))) ↔ ∃𝑑𝑠𝑒𝑠𝑓𝑠 (𝑎𝑑 ∧ (abs‘(𝑥𝑎)) = (abs‘(𝑏𝑐)) ∧ (abs‘(𝑥𝑑)) = (abs‘(𝑒𝑓)))))
181157, 180anbi12d 632 . . . . . . . . . . . 12 (𝑧 = 𝑠 → ((𝑐𝑧 ∧ ∃𝑑𝑧𝑒𝑧𝑓𝑧 (𝑎𝑑 ∧ (abs‘(𝑥𝑎)) = (abs‘(𝑏𝑐)) ∧ (abs‘(𝑥𝑑)) = (abs‘(𝑒𝑓)))) ↔ (𝑐𝑠 ∧ ∃𝑑𝑠𝑒𝑠𝑓𝑠 (𝑎𝑑 ∧ (abs‘(𝑥𝑎)) = (abs‘(𝑏𝑐)) ∧ (abs‘(𝑥𝑑)) = (abs‘(𝑒𝑓))))))
182181rexbidv2 3162 . . . . . . . . . . 11 (𝑧 = 𝑠 → (∃𝑐𝑧𝑑𝑧𝑒𝑧𝑓𝑧 (𝑎𝑑 ∧ (abs‘(𝑥𝑎)) = (abs‘(𝑏𝑐)) ∧ (abs‘(𝑥𝑑)) = (abs‘(𝑒𝑓))) ↔ ∃𝑐𝑠𝑑𝑠𝑒𝑠𝑓𝑠 (𝑎𝑑 ∧ (abs‘(𝑥𝑎)) = (abs‘(𝑏𝑐)) ∧ (abs‘(𝑥𝑑)) = (abs‘(𝑒𝑓)))))
183156, 182anbi12d 632 . . . . . . . . . 10 (𝑧 = 𝑠 → ((𝑏𝑧 ∧ ∃𝑐𝑧𝑑𝑧𝑒𝑧𝑓𝑧 (𝑎𝑑 ∧ (abs‘(𝑥𝑎)) = (abs‘(𝑏𝑐)) ∧ (abs‘(𝑥𝑑)) = (abs‘(𝑒𝑓)))) ↔ (𝑏𝑠 ∧ ∃𝑐𝑠𝑑𝑠𝑒𝑠𝑓𝑠 (𝑎𝑑 ∧ (abs‘(𝑥𝑎)) = (abs‘(𝑏𝑐)) ∧ (abs‘(𝑥𝑑)) = (abs‘(𝑒𝑓))))))
184183rexbidv2 3162 . . . . . . . . 9 (𝑧 = 𝑠 → (∃𝑏𝑧𝑐𝑧𝑑𝑧𝑒𝑧𝑓𝑧 (𝑎𝑑 ∧ (abs‘(𝑥𝑎)) = (abs‘(𝑏𝑐)) ∧ (abs‘(𝑥𝑑)) = (abs‘(𝑒𝑓))) ↔ ∃𝑏𝑠𝑐𝑠𝑑𝑠𝑒𝑠𝑓𝑠 (𝑎𝑑 ∧ (abs‘(𝑥𝑎)) = (abs‘(𝑏𝑐)) ∧ (abs‘(𝑥𝑑)) = (abs‘(𝑒𝑓)))))
185155, 184anbi12d 632 . . . . . . . 8 (𝑧 = 𝑠 → ((𝑎𝑧 ∧ ∃𝑏𝑧𝑐𝑧𝑑𝑧𝑒𝑧𝑓𝑧 (𝑎𝑑 ∧ (abs‘(𝑥𝑎)) = (abs‘(𝑏𝑐)) ∧ (abs‘(𝑥𝑑)) = (abs‘(𝑒𝑓)))) ↔ (𝑎𝑠 ∧ ∃𝑏𝑠𝑐𝑠𝑑𝑠𝑒𝑠𝑓𝑠 (𝑎𝑑 ∧ (abs‘(𝑥𝑎)) = (abs‘(𝑏𝑐)) ∧ (abs‘(𝑥𝑑)) = (abs‘(𝑒𝑓))))))
186185rexbidv2 3162 . . . . . . 7 (𝑧 = 𝑠 → (∃𝑎𝑧𝑏𝑧𝑐𝑧𝑑𝑧𝑒𝑧𝑓𝑧 (𝑎𝑑 ∧ (abs‘(𝑥𝑎)) = (abs‘(𝑏𝑐)) ∧ (abs‘(𝑥𝑑)) = (abs‘(𝑒𝑓))) ↔ ∃𝑎𝑠𝑏𝑠𝑐𝑠𝑑𝑠𝑒𝑠𝑓𝑠 (𝑎𝑑 ∧ (abs‘(𝑥𝑎)) = (abs‘(𝑏𝑐)) ∧ (abs‘(𝑥𝑑)) = (abs‘(𝑒𝑓)))))
187164, 174, 1863orbi123d 1436 . . . . . 6 (𝑧 = 𝑠 → ((∃𝑎𝑧𝑏𝑧𝑐𝑧𝑑𝑧𝑡 ∈ ℝ ∃𝑟 ∈ ℝ (𝑥 = (𝑎 + (𝑡 · (𝑏𝑎))) ∧ 𝑥 = (𝑐 + (𝑟 · (𝑑𝑐))) ∧ (ℑ‘((∗‘(𝑏𝑎)) · (𝑑𝑐))) ≠ 0) ∨ ∃𝑎𝑧𝑏𝑧𝑐𝑧𝑒𝑧𝑓𝑧𝑡 ∈ ℝ (𝑥 = (𝑎 + (𝑡 · (𝑏𝑎))) ∧ (abs‘(𝑥𝑐)) = (abs‘(𝑒𝑓))) ∨ ∃𝑎𝑧𝑏𝑧𝑐𝑧𝑑𝑧𝑒𝑧𝑓𝑧 (𝑎𝑑 ∧ (abs‘(𝑥𝑎)) = (abs‘(𝑏𝑐)) ∧ (abs‘(𝑥𝑑)) = (abs‘(𝑒𝑓)))) ↔ (∃𝑎𝑠𝑏𝑠𝑐𝑠𝑑𝑠𝑡 ∈ ℝ ∃𝑟 ∈ ℝ (𝑥 = (𝑎 + (𝑡 · (𝑏𝑎))) ∧ 𝑥 = (𝑐 + (𝑟 · (𝑑𝑐))) ∧ (ℑ‘((∗‘(𝑏𝑎)) · (𝑑𝑐))) ≠ 0) ∨ ∃𝑎𝑠𝑏𝑠𝑐𝑠𝑒𝑠𝑓𝑠𝑡 ∈ ℝ (𝑥 = (𝑎 + (𝑡 · (𝑏𝑎))) ∧ (abs‘(𝑥𝑐)) = (abs‘(𝑒𝑓))) ∨ ∃𝑎𝑠𝑏𝑠𝑐𝑠𝑑𝑠𝑒𝑠𝑓𝑠 (𝑎𝑑 ∧ (abs‘(𝑥𝑎)) = (abs‘(𝑏𝑐)) ∧ (abs‘(𝑥𝑑)) = (abs‘(𝑒𝑓))))))
188187rabbidv 3427 . . . . 5 (𝑧 = 𝑠 → {𝑥 ∈ ℂ ∣ (∃𝑎𝑧𝑏𝑧𝑐𝑧𝑑𝑧𝑡 ∈ ℝ ∃𝑟 ∈ ℝ (𝑥 = (𝑎 + (𝑡 · (𝑏𝑎))) ∧ 𝑥 = (𝑐 + (𝑟 · (𝑑𝑐))) ∧ (ℑ‘((∗‘(𝑏𝑎)) · (𝑑𝑐))) ≠ 0) ∨ ∃𝑎𝑧𝑏𝑧𝑐𝑧𝑒𝑧𝑓𝑧𝑡 ∈ ℝ (𝑥 = (𝑎 + (𝑡 · (𝑏𝑎))) ∧ (abs‘(𝑥𝑐)) = (abs‘(𝑒𝑓))) ∨ ∃𝑎𝑧𝑏𝑧𝑐𝑧𝑑𝑧𝑒𝑧𝑓𝑧 (𝑎𝑑 ∧ (abs‘(𝑥𝑎)) = (abs‘(𝑏𝑐)) ∧ (abs‘(𝑥𝑑)) = (abs‘(𝑒𝑓))))} = {𝑥 ∈ ℂ ∣ (∃𝑎𝑠𝑏𝑠𝑐𝑠𝑑𝑠𝑡 ∈ ℝ ∃𝑟 ∈ ℝ (𝑥 = (𝑎 + (𝑡 · (𝑏𝑎))) ∧ 𝑥 = (𝑐 + (𝑟 · (𝑑𝑐))) ∧ (ℑ‘((∗‘(𝑏𝑎)) · (𝑑𝑐))) ≠ 0) ∨ ∃𝑎𝑠𝑏𝑠𝑐𝑠𝑒𝑠𝑓𝑠𝑡 ∈ ℝ (𝑥 = (𝑎 + (𝑡 · (𝑏𝑎))) ∧ (abs‘(𝑥𝑐)) = (abs‘(𝑒𝑓))) ∨ ∃𝑎𝑠𝑏𝑠𝑐𝑠𝑑𝑠𝑒𝑠𝑓𝑠 (𝑎𝑑 ∧ (abs‘(𝑥𝑎)) = (abs‘(𝑏𝑐)) ∧ (abs‘(𝑥𝑑)) = (abs‘(𝑒𝑓))))})
189188cbvmptv 5235 . . . 4 (𝑧 ∈ V ↦ {𝑥 ∈ ℂ ∣ (∃𝑎𝑧𝑏𝑧𝑐𝑧𝑑𝑧𝑡 ∈ ℝ ∃𝑟 ∈ ℝ (𝑥 = (𝑎 + (𝑡 · (𝑏𝑎))) ∧ 𝑥 = (𝑐 + (𝑟 · (𝑑𝑐))) ∧ (ℑ‘((∗‘(𝑏𝑎)) · (𝑑𝑐))) ≠ 0) ∨ ∃𝑎𝑧𝑏𝑧𝑐𝑧𝑒𝑧𝑓𝑧𝑡 ∈ ℝ (𝑥 = (𝑎 + (𝑡 · (𝑏𝑎))) ∧ (abs‘(𝑥𝑐)) = (abs‘(𝑒𝑓))) ∨ ∃𝑎𝑧𝑏𝑧𝑐𝑧𝑑𝑧𝑒𝑧𝑓𝑧 (𝑎𝑑 ∧ (abs‘(𝑥𝑎)) = (abs‘(𝑏𝑐)) ∧ (abs‘(𝑥𝑑)) = (abs‘(𝑒𝑓))))}) = (𝑠 ∈ V ↦ {𝑥 ∈ ℂ ∣ (∃𝑎𝑠𝑏𝑠𝑐𝑠𝑑𝑠𝑡 ∈ ℝ ∃𝑟 ∈ ℝ (𝑥 = (𝑎 + (𝑡 · (𝑏𝑎))) ∧ 𝑥 = (𝑐 + (𝑟 · (𝑑𝑐))) ∧ (ℑ‘((∗‘(𝑏𝑎)) · (𝑑𝑐))) ≠ 0) ∨ ∃𝑎𝑠𝑏𝑠𝑐𝑠𝑒𝑠𝑓𝑠𝑡 ∈ ℝ (𝑥 = (𝑎 + (𝑡 · (𝑏𝑎))) ∧ (abs‘(𝑥𝑐)) = (abs‘(𝑒𝑓))) ∨ ∃𝑎𝑠𝑏𝑠𝑐𝑠𝑑𝑠𝑒𝑠𝑓𝑠 (𝑎𝑑 ∧ (abs‘(𝑥𝑎)) = (abs‘(𝑏𝑐)) ∧ (abs‘(𝑥𝑑)) = (abs‘(𝑒𝑓))))})
190154, 189eqtri 2757 . . 3 (𝑧 ∈ V ↦ {𝑦 ∈ ℂ ∣ (∃𝑖𝑧𝑗𝑧𝑘𝑧𝑙𝑧𝑜 ∈ ℝ ∃𝑝 ∈ ℝ (𝑦 = (𝑖 + (𝑜 · (𝑗𝑖))) ∧ 𝑦 = (𝑘 + (𝑝 · (𝑙𝑘))) ∧ (ℑ‘((∗‘(𝑗𝑖)) · (𝑙𝑘))) ≠ 0) ∨ ∃𝑖𝑧𝑗𝑧𝑘𝑧𝑚𝑧𝑞𝑧𝑜 ∈ ℝ (𝑦 = (𝑖 + (𝑜 · (𝑗𝑖))) ∧ (abs‘(𝑦𝑘)) = (abs‘(𝑚𝑞))) ∨ ∃𝑖𝑧𝑗𝑧𝑘𝑧𝑙𝑧𝑚𝑧𝑞𝑧 (𝑖𝑙 ∧ (abs‘(𝑦𝑖)) = (abs‘(𝑗𝑘)) ∧ (abs‘(𝑦𝑙)) = (abs‘(𝑚𝑞))))}) = (𝑠 ∈ V ↦ {𝑥 ∈ ℂ ∣ (∃𝑎𝑠𝑏𝑠𝑐𝑠𝑑𝑠𝑡 ∈ ℝ ∃𝑟 ∈ ℝ (𝑥 = (𝑎 + (𝑡 · (𝑏𝑎))) ∧ 𝑥 = (𝑐 + (𝑟 · (𝑑𝑐))) ∧ (ℑ‘((∗‘(𝑏𝑎)) · (𝑑𝑐))) ≠ 0) ∨ ∃𝑎𝑠𝑏𝑠𝑐𝑠𝑒𝑠𝑓𝑠𝑡 ∈ ℝ (𝑥 = (𝑎 + (𝑡 · (𝑏𝑎))) ∧ (abs‘(𝑥𝑐)) = (abs‘(𝑒𝑓))) ∨ ∃𝑎𝑠𝑏𝑠𝑐𝑠𝑑𝑠𝑒𝑠𝑓𝑠 (𝑎𝑑 ∧ (abs‘(𝑥𝑎)) = (abs‘(𝑏𝑐)) ∧ (abs‘(𝑥𝑑)) = (abs‘(𝑒𝑓))))})
191 rdgeq1 8432 . . 3 ((𝑧 ∈ V ↦ {𝑦 ∈ ℂ ∣ (∃𝑖𝑧𝑗𝑧𝑘𝑧𝑙𝑧𝑜 ∈ ℝ ∃𝑝 ∈ ℝ (𝑦 = (𝑖 + (𝑜 · (𝑗𝑖))) ∧ 𝑦 = (𝑘 + (𝑝 · (𝑙𝑘))) ∧ (ℑ‘((∗‘(𝑗𝑖)) · (𝑙𝑘))) ≠ 0) ∨ ∃𝑖𝑧𝑗𝑧𝑘𝑧𝑚𝑧𝑞𝑧𝑜 ∈ ℝ (𝑦 = (𝑖 + (𝑜 · (𝑗𝑖))) ∧ (abs‘(𝑦𝑘)) = (abs‘(𝑚𝑞))) ∨ ∃𝑖𝑧𝑗𝑧𝑘𝑧𝑙𝑧𝑚𝑧𝑞𝑧 (𝑖𝑙 ∧ (abs‘(𝑦𝑖)) = (abs‘(𝑗𝑘)) ∧ (abs‘(𝑦𝑙)) = (abs‘(𝑚𝑞))))}) = (𝑠 ∈ V ↦ {𝑥 ∈ ℂ ∣ (∃𝑎𝑠𝑏𝑠𝑐𝑠𝑑𝑠𝑡 ∈ ℝ ∃𝑟 ∈ ℝ (𝑥 = (𝑎 + (𝑡 · (𝑏𝑎))) ∧ 𝑥 = (𝑐 + (𝑟 · (𝑑𝑐))) ∧ (ℑ‘((∗‘(𝑏𝑎)) · (𝑑𝑐))) ≠ 0) ∨ ∃𝑎𝑠𝑏𝑠𝑐𝑠𝑒𝑠𝑓𝑠𝑡 ∈ ℝ (𝑥 = (𝑎 + (𝑡 · (𝑏𝑎))) ∧ (abs‘(𝑥𝑐)) = (abs‘(𝑒𝑓))) ∨ ∃𝑎𝑠𝑏𝑠𝑐𝑠𝑑𝑠𝑒𝑠𝑓𝑠 (𝑎𝑑 ∧ (abs‘(𝑥𝑎)) = (abs‘(𝑏𝑐)) ∧ (abs‘(𝑥𝑑)) = (abs‘(𝑒𝑓))))}) → rec((𝑧 ∈ V ↦ {𝑦 ∈ ℂ ∣ (∃𝑖𝑧𝑗𝑧𝑘𝑧𝑙𝑧𝑜 ∈ ℝ ∃𝑝 ∈ ℝ (𝑦 = (𝑖 + (𝑜 · (𝑗𝑖))) ∧ 𝑦 = (𝑘 + (𝑝 · (𝑙𝑘))) ∧ (ℑ‘((∗‘(𝑗𝑖)) · (𝑙𝑘))) ≠ 0) ∨ ∃𝑖𝑧𝑗𝑧𝑘𝑧𝑚𝑧𝑞𝑧𝑜 ∈ ℝ (𝑦 = (𝑖 + (𝑜 · (𝑗𝑖))) ∧ (abs‘(𝑦𝑘)) = (abs‘(𝑚𝑞))) ∨ ∃𝑖𝑧𝑗𝑧𝑘𝑧𝑙𝑧𝑚𝑧𝑞𝑧 (𝑖𝑙 ∧ (abs‘(𝑦𝑖)) = (abs‘(𝑗𝑘)) ∧ (abs‘(𝑦𝑙)) = (abs‘(𝑚𝑞))))}), {0, 1}) = rec((𝑠 ∈ V ↦ {𝑥 ∈ ℂ ∣ (∃𝑎𝑠𝑏𝑠𝑐𝑠𝑑𝑠𝑡 ∈ ℝ ∃𝑟 ∈ ℝ (𝑥 = (𝑎 + (𝑡 · (𝑏𝑎))) ∧ 𝑥 = (𝑐 + (𝑟 · (𝑑𝑐))) ∧ (ℑ‘((∗‘(𝑏𝑎)) · (𝑑𝑐))) ≠ 0) ∨ ∃𝑎𝑠𝑏𝑠𝑐𝑠𝑒𝑠𝑓𝑠𝑡 ∈ ℝ (𝑥 = (𝑎 + (𝑡 · (𝑏𝑎))) ∧ (abs‘(𝑥𝑐)) = (abs‘(𝑒𝑓))) ∨ ∃𝑎𝑠𝑏𝑠𝑐𝑠𝑑𝑠𝑒𝑠𝑓𝑠 (𝑎𝑑 ∧ (abs‘(𝑥𝑎)) = (abs‘(𝑏𝑐)) ∧ (abs‘(𝑥𝑑)) = (abs‘(𝑒𝑓))))}), {0, 1}))
192190, 191ax-mp 5 . 2 rec((𝑧 ∈ V ↦ {𝑦 ∈ ℂ ∣ (∃𝑖𝑧𝑗𝑧𝑘𝑧𝑙𝑧𝑜 ∈ ℝ ∃𝑝 ∈ ℝ (𝑦 = (𝑖 + (𝑜 · (𝑗𝑖))) ∧ 𝑦 = (𝑘 + (𝑝 · (𝑙𝑘))) ∧ (ℑ‘((∗‘(𝑗𝑖)) · (𝑙𝑘))) ≠ 0) ∨ ∃𝑖𝑧𝑗𝑧𝑘𝑧𝑚𝑧𝑞𝑧𝑜 ∈ ℝ (𝑦 = (𝑖 + (𝑜 · (𝑗𝑖))) ∧ (abs‘(𝑦𝑘)) = (abs‘(𝑚𝑞))) ∨ ∃𝑖𝑧𝑗𝑧𝑘𝑧𝑙𝑧𝑚𝑧𝑞𝑧 (𝑖𝑙 ∧ (abs‘(𝑦𝑖)) = (abs‘(𝑗𝑘)) ∧ (abs‘(𝑦𝑙)) = (abs‘(𝑚𝑞))))}), {0, 1}) = rec((𝑠 ∈ V ↦ {𝑥 ∈ ℂ ∣ (∃𝑎𝑠𝑏𝑠𝑐𝑠𝑑𝑠𝑡 ∈ ℝ ∃𝑟 ∈ ℝ (𝑥 = (𝑎 + (𝑡 · (𝑏𝑎))) ∧ 𝑥 = (𝑐 + (𝑟 · (𝑑𝑐))) ∧ (ℑ‘((∗‘(𝑏𝑎)) · (𝑑𝑐))) ≠ 0) ∨ ∃𝑎𝑠𝑏𝑠𝑐𝑠𝑒𝑠𝑓𝑠𝑡 ∈ ℝ (𝑥 = (𝑎 + (𝑡 · (𝑏𝑎))) ∧ (abs‘(𝑥𝑐)) = (abs‘(𝑒𝑓))) ∨ ∃𝑎𝑠𝑏𝑠𝑐𝑠𝑑𝑠𝑒𝑠𝑓𝑠 (𝑎𝑑 ∧ (abs‘(𝑥𝑎)) = (abs‘(𝑏𝑐)) ∧ (abs‘(𝑥𝑑)) = (abs‘(𝑒𝑓))))}), {0, 1})
193 eqid 2734 . 2 (ℂflds 𝑒) = (ℂflds 𝑒)
194 eqid 2734 . 2 (ℂflds 𝑓) = (ℂflds 𝑓)
195 oveq2 7420 . . . . . 6 ( = 𝑒 → (ℂflds ) = (ℂflds 𝑒))
196195adantl 481 . . . . 5 ((𝑔 = 𝑓 = 𝑒) → (ℂflds ) = (ℂflds 𝑒))
197 oveq2 7420 . . . . . 6 (𝑔 = 𝑓 → (ℂflds 𝑔) = (ℂflds 𝑓))
198197adantr 480 . . . . 5 ((𝑔 = 𝑓 = 𝑒) → (ℂflds 𝑔) = (ℂflds 𝑓))
199196, 198breq12d 5136 . . . 4 ((𝑔 = 𝑓 = 𝑒) → ((ℂflds )/FldExt(ℂflds 𝑔) ↔ (ℂflds 𝑒)/FldExt(ℂflds 𝑓)))
200196, 198oveq12d 7430 . . . . 5 ((𝑔 = 𝑓 = 𝑒) → ((ℂflds )[:](ℂflds 𝑔)) = ((ℂflds 𝑒)[:](ℂflds 𝑓)))
201200eqeq1d 2736 . . . 4 ((𝑔 = 𝑓 = 𝑒) → (((ℂflds )[:](ℂflds 𝑔)) = 2 ↔ ((ℂflds 𝑒)[:](ℂflds 𝑓)) = 2))
202199, 201anbi12d 632 . . 3 ((𝑔 = 𝑓 = 𝑒) → (((ℂflds )/FldExt(ℂflds 𝑔) ∧ ((ℂflds )[:](ℂflds 𝑔)) = 2) ↔ ((ℂflds 𝑒)/FldExt(ℂflds 𝑓) ∧ ((ℂflds 𝑒)[:](ℂflds 𝑓)) = 2)))
203202cbvopabv 5196 . 2 {⟨𝑔, ⟩ ∣ ((ℂflds )/FldExt(ℂflds 𝑔) ∧ ((ℂflds )[:](ℂflds 𝑔)) = 2)} = {⟨𝑓, 𝑒⟩ ∣ ((ℂflds 𝑒)/FldExt(ℂflds 𝑓) ∧ ((ℂflds 𝑒)[:](ℂflds 𝑓)) = 2)}
204 peano1 7891 . . 3 ∅ ∈ ω
205204a1i 11 . 2 (𝜑 → ∅ ∈ ω)
206 constrext2chn.q . 2 𝑄 = (ℂflds ℚ)
207 constrext2chn.l . . 3 𝐿 = (ℂflds 𝑆)
208 constrext2chn.s . . . 4 𝑆 = (ℂfld fldGen (ℚ ∪ {𝐴}))
209208oveq2i 7423 . . 3 (ℂflds 𝑆) = (ℂflds (ℂfld fldGen (ℚ ∪ {𝐴})))
210207, 209eqtri 2757 . 2 𝐿 = (ℂflds (ℂfld fldGen (ℚ ∪ {𝐴})))
211 constrext2chn.a . 2 (𝜑𝐴 ∈ Constr)
212192, 193, 194, 203, 205, 206, 210, 211constrext2chnlem 33721 1 (𝜑 → ∃𝑛 ∈ ℕ0 (𝐿[:]𝑄) = (2↑𝑛))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3o 1085  w3a 1086   = wceq 1539  wcel 2107  wne 2931  wrex 3059  {crab 3419  Vcvv 3463  cun 3929  c0 4313  {csn 4606  {cpr 4608   class class class wbr 5123  {copab 5185  cmpt 5205  cfv 6540  (class class class)co 7412  ωcom 7868  reccrdg 8430  cc 11134  cr 11135  0cc0 11136  1c1 11137   + caddc 11139   · cmul 11141  cmin 11473  2c2 12302  0cn0 12508  cq 12971  cexp 14083  ccj 15116  cim 15118  abscabs 15254  s cress 17251  fldccnfld 21325   fldGen cfldgen 33243  /FldExtcfldext 33615  [:]cextdg 33618  Constrcconstr 33700
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-10 2140  ax-11 2156  ax-12 2176  ax-ext 2706  ax-rep 5259  ax-sep 5276  ax-nul 5286  ax-pow 5345  ax-pr 5412  ax-un 7736  ax-reg 9613  ax-inf2 9662  ax-ac2 10484  ax-cnex 11192  ax-resscn 11193  ax-1cn 11194  ax-icn 11195  ax-addcl 11196  ax-addrcl 11197  ax-mulcl 11198  ax-mulrcl 11199  ax-mulcom 11200  ax-addass 11201  ax-mulass 11202  ax-distr 11203  ax-i2m1 11204  ax-1ne0 11205  ax-1rid 11206  ax-rnegex 11207  ax-rrecex 11208  ax-cnre 11209  ax-pre-lttri 11210  ax-pre-lttrn 11211  ax-pre-ltadd 11212  ax-pre-mulgt0 11213  ax-pre-sup 11214  ax-addf 11215  ax-mulf 11216
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1779  df-nf 1783  df-sb 2064  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2726  df-clel 2808  df-nfc 2884  df-ne 2932  df-nel 3036  df-ral 3051  df-rex 3060  df-rmo 3363  df-reu 3364  df-rab 3420  df-v 3465  df-sbc 3771  df-csb 3880  df-dif 3934  df-un 3936  df-in 3938  df-ss 3948  df-pss 3951  df-nul 4314  df-if 4506  df-pw 4582  df-sn 4607  df-pr 4609  df-tp 4611  df-op 4613  df-uni 4888  df-int 4927  df-iun 4973  df-iin 4974  df-br 5124  df-opab 5186  df-mpt 5206  df-tr 5240  df-id 5558  df-eprel 5564  df-po 5572  df-so 5573  df-fr 5617  df-se 5618  df-we 5619  df-xp 5671  df-rel 5672  df-cnv 5673  df-co 5674  df-dm 5675  df-rn 5676  df-res 5677  df-ima 5678  df-pred 6301  df-ord 6366  df-on 6367  df-lim 6368  df-suc 6369  df-iota 6493  df-fun 6542  df-fn 6543  df-f 6544  df-f1 6545  df-fo 6546  df-f1o 6547  df-fv 6548  df-isom 6549  df-riota 7369  df-ov 7415  df-oprab 7416  df-mpo 7417  df-of 7678  df-ofr 7679  df-rpss 7724  df-om 7869  df-1st 7995  df-2nd 7996  df-supp 8167  df-tpos 8232  df-frecs 8287  df-wrecs 8318  df-recs 8392  df-rdg 8431  df-1o 8487  df-2o 8488  df-oadd 8491  df-er 8726  df-ec 8728  df-qs 8732  df-map 8849  df-pm 8850  df-ixp 8919  df-en 8967  df-dom 8968  df-sdom 8969  df-fin 8970  df-fsupp 9383  df-sup 9463  df-inf 9464  df-oi 9531  df-r1 9785  df-rank 9786  df-dju 9922  df-card 9960  df-acn 9963  df-ac 10137  df-pnf 11278  df-mnf 11279  df-xr 11280  df-ltxr 11281  df-le 11282  df-sub 11475  df-neg 11476  df-div 11902  df-nn 12248  df-2 12310  df-3 12311  df-4 12312  df-5 12313  df-6 12314  df-7 12315  df-8 12316  df-9 12317  df-n0 12509  df-xnn0 12582  df-z 12596  df-dec 12716  df-uz 12860  df-q 12972  df-rp 13016  df-xneg 13135  df-xmul 13137  df-ico 13374  df-fz 13529  df-fzo 13676  df-fl 13813  df-mod 13891  df-seq 14024  df-exp 14084  df-hash 14351  df-word 14534  df-lsw 14582  df-concat 14590  df-s1 14615  df-substr 14660  df-pfx 14690  df-cj 15119  df-re 15120  df-im 15121  df-sqrt 15255  df-abs 15256  df-dvds 16272  df-gcd 16513  df-prm 16690  df-pc 16856  df-struct 17165  df-sets 17182  df-slot 17200  df-ndx 17212  df-base 17229  df-ress 17252  df-plusg 17285  df-mulr 17286  df-starv 17287  df-sca 17288  df-vsca 17289  df-ip 17290  df-tset 17291  df-ple 17292  df-ocomp 17293  df-ds 17294  df-unif 17295  df-hom 17296  df-cco 17297  df-0g 17456  df-gsum 17457  df-prds 17462  df-pws 17464  df-imas 17523  df-qus 17524  df-mre 17599  df-mrc 17600  df-mri 17601  df-acs 17602  df-proset 18309  df-drs 18310  df-poset 18328  df-ipo 18541  df-mgm 18621  df-sgrp 18700  df-mnd 18716  df-mhm 18764  df-submnd 18765  df-grp 18922  df-minusg 18923  df-sbg 18924  df-mulg 19054  df-subg 19109  df-nsg 19110  df-eqg 19111  df-ghm 19199  df-gim 19245  df-cntz 19303  df-oppg 19332  df-lsm 19621  df-cmn 19767  df-abl 19768  df-mgp 20105  df-rng 20117  df-ur 20146  df-srg 20151  df-ring 20199  df-cring 20200  df-oppr 20301  df-dvdsr 20324  df-unit 20325  df-irred 20326  df-invr 20355  df-dvr 20368  df-rhm 20439  df-nzr 20480  df-subrng 20513  df-subrg 20537  df-rlreg 20661  df-domn 20662  df-idom 20663  df-drng 20698  df-field 20699  df-sdrg 20755  df-lmod 20827  df-lss 20897  df-lsp 20937  df-lmhm 20988  df-lmim 20989  df-lmic 20990  df-lbs 21041  df-lvec 21069  df-sra 21139  df-rgmod 21140  df-lidl 21179  df-rsp 21180  df-2idl 21221  df-lpidl 21293  df-lpir 21294  df-pid 21308  df-cnfld 21326  df-dsmm 21705  df-frlm 21720  df-uvc 21756  df-lindf 21779  df-linds 21780  df-assa 21826  df-asp 21827  df-ascl 21828  df-psr 21882  df-mvr 21883  df-mpl 21884  df-opsr 21886  df-evls 22045  df-evl 22046  df-psr1 22128  df-vr1 22129  df-ply1 22130  df-coe1 22131  df-evls1 22266  df-evl1 22267  df-mdeg 26029  df-deg1 26030  df-mon1 26105  df-uc1p 26106  df-q1p 26107  df-r1p 26108  df-ig1p 26109  df-chn 32925  df-fldgen 33244  df-mxidl 33414  df-dim 33576  df-fldext 33619  df-extdg 33620  df-irng 33662  df-minply 33671  df-constr 33701
This theorem is referenced by:  constrcon  33723
  Copyright terms: Public domain W3C validator