| Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > constrext2chn | Structured version Visualization version GIF version | ||
| Description: If a constructible number generates some subfield 𝐿 of ℂ, then the degree of the extension of 𝐿 over ℚ is a power of two. (Contributed by Thierry Arnoux, 26-Oct-2025.) |
| Ref | Expression |
|---|---|
| constrext2chn.q | ⊢ 𝑄 = (ℂfld ↾s ℚ) |
| constrext2chn.l | ⊢ 𝐿 = (ℂfld ↾s 𝑆) |
| constrext2chn.s | ⊢ 𝑆 = (ℂfld fldGen (ℚ ∪ {𝐴})) |
| constrext2chn.a | ⊢ (𝜑 → 𝐴 ∈ Constr) |
| Ref | Expression |
|---|---|
| constrext2chn | ⊢ (𝜑 → ∃𝑛 ∈ ℕ0 (𝐿[:]𝑄) = (2↑𝑛)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | constrcbvlem 33724 | . 2 ⊢ rec((𝑧 ∈ V ↦ {𝑦 ∈ ℂ ∣ (∃𝑖 ∈ 𝑧 ∃𝑗 ∈ 𝑧 ∃𝑘 ∈ 𝑧 ∃𝑙 ∈ 𝑧 ∃𝑜 ∈ ℝ ∃𝑝 ∈ ℝ (𝑦 = (𝑖 + (𝑜 · (𝑗 − 𝑖))) ∧ 𝑦 = (𝑘 + (𝑝 · (𝑙 − 𝑘))) ∧ (ℑ‘((∗‘(𝑗 − 𝑖)) · (𝑙 − 𝑘))) ≠ 0) ∨ ∃𝑖 ∈ 𝑧 ∃𝑗 ∈ 𝑧 ∃𝑘 ∈ 𝑧 ∃𝑚 ∈ 𝑧 ∃𝑞 ∈ 𝑧 ∃𝑜 ∈ ℝ (𝑦 = (𝑖 + (𝑜 · (𝑗 − 𝑖))) ∧ (abs‘(𝑦 − 𝑘)) = (abs‘(𝑚 − 𝑞))) ∨ ∃𝑖 ∈ 𝑧 ∃𝑗 ∈ 𝑧 ∃𝑘 ∈ 𝑧 ∃𝑙 ∈ 𝑧 ∃𝑚 ∈ 𝑧 ∃𝑞 ∈ 𝑧 (𝑖 ≠ 𝑙 ∧ (abs‘(𝑦 − 𝑖)) = (abs‘(𝑗 − 𝑘)) ∧ (abs‘(𝑦 − 𝑙)) = (abs‘(𝑚 − 𝑞))))}), {0, 1}) = rec((𝑠 ∈ V ↦ {𝑥 ∈ ℂ ∣ (∃𝑎 ∈ 𝑠 ∃𝑏 ∈ 𝑠 ∃𝑐 ∈ 𝑠 ∃𝑑 ∈ 𝑠 ∃𝑡 ∈ ℝ ∃𝑟 ∈ ℝ (𝑥 = (𝑎 + (𝑡 · (𝑏 − 𝑎))) ∧ 𝑥 = (𝑐 + (𝑟 · (𝑑 − 𝑐))) ∧ (ℑ‘((∗‘(𝑏 − 𝑎)) · (𝑑 − 𝑐))) ≠ 0) ∨ ∃𝑎 ∈ 𝑠 ∃𝑏 ∈ 𝑠 ∃𝑐 ∈ 𝑠 ∃𝑒 ∈ 𝑠 ∃𝑓 ∈ 𝑠 ∃𝑡 ∈ ℝ (𝑥 = (𝑎 + (𝑡 · (𝑏 − 𝑎))) ∧ (abs‘(𝑥 − 𝑐)) = (abs‘(𝑒 − 𝑓))) ∨ ∃𝑎 ∈ 𝑠 ∃𝑏 ∈ 𝑠 ∃𝑐 ∈ 𝑠 ∃𝑑 ∈ 𝑠 ∃𝑒 ∈ 𝑠 ∃𝑓 ∈ 𝑠 (𝑎 ≠ 𝑑 ∧ (abs‘(𝑥 − 𝑎)) = (abs‘(𝑏 − 𝑐)) ∧ (abs‘(𝑥 − 𝑑)) = (abs‘(𝑒 − 𝑓))))}), {0, 1}) | |
| 2 | eqid 2734 | . 2 ⊢ (ℂfld ↾s 𝑒) = (ℂfld ↾s 𝑒) | |
| 3 | eqid 2734 | . 2 ⊢ (ℂfld ↾s 𝑓) = (ℂfld ↾s 𝑓) | |
| 4 | oveq2 7408 | . . . . . 6 ⊢ (ℎ = 𝑒 → (ℂfld ↾s ℎ) = (ℂfld ↾s 𝑒)) | |
| 5 | 4 | adantl 481 | . . . . 5 ⊢ ((𝑔 = 𝑓 ∧ ℎ = 𝑒) → (ℂfld ↾s ℎ) = (ℂfld ↾s 𝑒)) |
| 6 | oveq2 7408 | . . . . . 6 ⊢ (𝑔 = 𝑓 → (ℂfld ↾s 𝑔) = (ℂfld ↾s 𝑓)) | |
| 7 | 6 | adantr 480 | . . . . 5 ⊢ ((𝑔 = 𝑓 ∧ ℎ = 𝑒) → (ℂfld ↾s 𝑔) = (ℂfld ↾s 𝑓)) |
| 8 | 5, 7 | breq12d 5130 | . . . 4 ⊢ ((𝑔 = 𝑓 ∧ ℎ = 𝑒) → ((ℂfld ↾s ℎ)/FldExt(ℂfld ↾s 𝑔) ↔ (ℂfld ↾s 𝑒)/FldExt(ℂfld ↾s 𝑓))) |
| 9 | 5, 7 | oveq12d 7418 | . . . . 5 ⊢ ((𝑔 = 𝑓 ∧ ℎ = 𝑒) → ((ℂfld ↾s ℎ)[:](ℂfld ↾s 𝑔)) = ((ℂfld ↾s 𝑒)[:](ℂfld ↾s 𝑓))) |
| 10 | 9 | eqeq1d 2736 | . . . 4 ⊢ ((𝑔 = 𝑓 ∧ ℎ = 𝑒) → (((ℂfld ↾s ℎ)[:](ℂfld ↾s 𝑔)) = 2 ↔ ((ℂfld ↾s 𝑒)[:](ℂfld ↾s 𝑓)) = 2)) |
| 11 | 8, 10 | anbi12d 632 | . . 3 ⊢ ((𝑔 = 𝑓 ∧ ℎ = 𝑒) → (((ℂfld ↾s ℎ)/FldExt(ℂfld ↾s 𝑔) ∧ ((ℂfld ↾s ℎ)[:](ℂfld ↾s 𝑔)) = 2) ↔ ((ℂfld ↾s 𝑒)/FldExt(ℂfld ↾s 𝑓) ∧ ((ℂfld ↾s 𝑒)[:](ℂfld ↾s 𝑓)) = 2))) |
| 12 | 11 | cbvopabv 5190 | . 2 ⊢ {〈𝑔, ℎ〉 ∣ ((ℂfld ↾s ℎ)/FldExt(ℂfld ↾s 𝑔) ∧ ((ℂfld ↾s ℎ)[:](ℂfld ↾s 𝑔)) = 2)} = {〈𝑓, 𝑒〉 ∣ ((ℂfld ↾s 𝑒)/FldExt(ℂfld ↾s 𝑓) ∧ ((ℂfld ↾s 𝑒)[:](ℂfld ↾s 𝑓)) = 2)} |
| 13 | peano1 7879 | . . 3 ⊢ ∅ ∈ ω | |
| 14 | 13 | a1i 11 | . 2 ⊢ (𝜑 → ∅ ∈ ω) |
| 15 | constrext2chn.q | . 2 ⊢ 𝑄 = (ℂfld ↾s ℚ) | |
| 16 | constrext2chn.l | . . 3 ⊢ 𝐿 = (ℂfld ↾s 𝑆) | |
| 17 | constrext2chn.s | . . . 4 ⊢ 𝑆 = (ℂfld fldGen (ℚ ∪ {𝐴})) | |
| 18 | 17 | oveq2i 7411 | . . 3 ⊢ (ℂfld ↾s 𝑆) = (ℂfld ↾s (ℂfld fldGen (ℚ ∪ {𝐴}))) |
| 19 | 16, 18 | eqtri 2757 | . 2 ⊢ 𝐿 = (ℂfld ↾s (ℂfld fldGen (ℚ ∪ {𝐴}))) |
| 20 | constrext2chn.a | . 2 ⊢ (𝜑 → 𝐴 ∈ Constr) | |
| 21 | 1, 2, 3, 12, 14, 15, 19, 20 | constrext2chnlem 33719 | 1 ⊢ (𝜑 → ∃𝑛 ∈ ℕ0 (𝐿[:]𝑄) = (2↑𝑛)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∨ w3o 1085 ∧ w3a 1086 = wceq 1539 ∈ wcel 2107 ≠ wne 2931 ∃wrex 3059 {crab 3413 Vcvv 3457 ∪ cun 3922 ∅c0 4306 {csn 4599 {cpr 4601 class class class wbr 5117 {copab 5179 ↦ cmpt 5199 ‘cfv 6528 (class class class)co 7400 ωcom 7856 reccrdg 8418 ℂcc 11120 ℝcr 11121 0cc0 11122 1c1 11123 + caddc 11125 · cmul 11127 − cmin 11459 2c2 12288 ℕ0cn0 12494 ℚcq 12957 ↑cexp 14069 ∗ccj 15104 ℑcim 15106 abscabs 15242 ↾s cress 17238 ℂfldccnfld 21302 fldGen cfldgen 33241 /FldExtcfldext 33613 [:]cextdg 33616 Constrcconstr 33698 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-11 2156 ax-12 2176 ax-ext 2706 ax-rep 5247 ax-sep 5264 ax-nul 5274 ax-pow 5333 ax-pr 5400 ax-un 7724 ax-reg 9599 ax-inf2 9648 ax-ac2 10470 ax-cnex 11178 ax-resscn 11179 ax-1cn 11180 ax-icn 11181 ax-addcl 11182 ax-addrcl 11183 ax-mulcl 11184 ax-mulrcl 11185 ax-mulcom 11186 ax-addass 11187 ax-mulass 11188 ax-distr 11189 ax-i2m1 11190 ax-1ne0 11191 ax-1rid 11192 ax-rnegex 11193 ax-rrecex 11194 ax-cnre 11195 ax-pre-lttri 11196 ax-pre-lttrn 11197 ax-pre-ltadd 11198 ax-pre-mulgt0 11199 ax-pre-sup 11200 ax-addf 11201 ax-mulf 11202 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2064 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2726 df-clel 2808 df-nfc 2884 df-ne 2932 df-nel 3036 df-ral 3051 df-rex 3060 df-rmo 3357 df-reu 3358 df-rab 3414 df-v 3459 df-sbc 3764 df-csb 3873 df-dif 3927 df-un 3929 df-in 3931 df-ss 3941 df-pss 3944 df-nul 4307 df-if 4499 df-pw 4575 df-sn 4600 df-pr 4602 df-tp 4604 df-op 4606 df-uni 4882 df-int 4921 df-iun 4967 df-iin 4968 df-br 5118 df-opab 5180 df-mpt 5200 df-tr 5228 df-id 5546 df-eprel 5551 df-po 5559 df-so 5560 df-fr 5604 df-se 5605 df-we 5606 df-xp 5658 df-rel 5659 df-cnv 5660 df-co 5661 df-dm 5662 df-rn 5663 df-res 5664 df-ima 5665 df-pred 6288 df-ord 6353 df-on 6354 df-lim 6355 df-suc 6356 df-iota 6481 df-fun 6530 df-fn 6531 df-f 6532 df-f1 6533 df-fo 6534 df-f1o 6535 df-fv 6536 df-isom 6537 df-riota 7357 df-ov 7403 df-oprab 7404 df-mpo 7405 df-of 7666 df-ofr 7667 df-rpss 7712 df-om 7857 df-1st 7983 df-2nd 7984 df-supp 8155 df-tpos 8220 df-frecs 8275 df-wrecs 8306 df-recs 8380 df-rdg 8419 df-1o 8475 df-2o 8476 df-oadd 8479 df-er 8714 df-ec 8716 df-qs 8720 df-map 8837 df-pm 8838 df-ixp 8907 df-en 8955 df-dom 8956 df-sdom 8957 df-fin 8958 df-fsupp 9369 df-sup 9449 df-inf 9450 df-oi 9517 df-r1 9771 df-rank 9772 df-dju 9908 df-card 9946 df-acn 9949 df-ac 10123 df-pnf 11264 df-mnf 11265 df-xr 11266 df-ltxr 11267 df-le 11268 df-sub 11461 df-neg 11462 df-div 11888 df-nn 12234 df-2 12296 df-3 12297 df-4 12298 df-5 12299 df-6 12300 df-7 12301 df-8 12302 df-9 12303 df-n0 12495 df-xnn0 12568 df-z 12582 df-dec 12702 df-uz 12846 df-q 12958 df-rp 13002 df-xneg 13121 df-xmul 13123 df-ico 13360 df-fz 13515 df-fzo 13662 df-fl 13799 df-mod 13877 df-seq 14010 df-exp 14070 df-hash 14339 df-word 14522 df-lsw 14570 df-concat 14578 df-s1 14603 df-substr 14648 df-pfx 14678 df-cj 15107 df-re 15108 df-im 15109 df-sqrt 15243 df-abs 15244 df-dvds 16260 df-gcd 16501 df-prm 16678 df-pc 16844 df-struct 17153 df-sets 17170 df-slot 17188 df-ndx 17200 df-base 17216 df-ress 17239 df-plusg 17271 df-mulr 17272 df-starv 17273 df-sca 17274 df-vsca 17275 df-ip 17276 df-tset 17277 df-ple 17278 df-ocomp 17279 df-ds 17280 df-unif 17281 df-hom 17282 df-cco 17283 df-0g 17442 df-gsum 17443 df-prds 17448 df-pws 17450 df-imas 17509 df-qus 17510 df-mre 17585 df-mrc 17586 df-mri 17587 df-acs 17588 df-proset 18293 df-drs 18294 df-poset 18312 df-ipo 18525 df-mgm 18605 df-sgrp 18684 df-mnd 18700 df-mhm 18748 df-submnd 18749 df-grp 18906 df-minusg 18907 df-sbg 18908 df-mulg 19038 df-subg 19093 df-nsg 19094 df-eqg 19095 df-ghm 19183 df-gim 19229 df-cntz 19287 df-oppg 19316 df-lsm 19604 df-cmn 19750 df-abl 19751 df-mgp 20088 df-rng 20100 df-ur 20129 df-srg 20134 df-ring 20182 df-cring 20183 df-oppr 20284 df-dvdsr 20304 df-unit 20305 df-irred 20306 df-invr 20335 df-dvr 20348 df-rhm 20419 df-nzr 20460 df-subrng 20493 df-subrg 20517 df-rlreg 20641 df-domn 20642 df-idom 20643 df-drng 20678 df-field 20679 df-sdrg 20734 df-lmod 20806 df-lss 20876 df-lsp 20916 df-lmhm 20967 df-lmim 20968 df-lmic 20969 df-lbs 21020 df-lvec 21048 df-sra 21118 df-rgmod 21119 df-lidl 21156 df-rsp 21157 df-2idl 21198 df-lpidl 21270 df-lpir 21271 df-pid 21285 df-cnfld 21303 df-dsmm 21679 df-frlm 21694 df-uvc 21730 df-lindf 21753 df-linds 21754 df-assa 21800 df-asp 21801 df-ascl 21802 df-psr 21856 df-mvr 21857 df-mpl 21858 df-opsr 21860 df-evls 22019 df-evl 22020 df-psr1 22102 df-vr1 22103 df-ply1 22104 df-coe1 22105 df-evls1 22240 df-evl1 22241 df-mdeg 25999 df-deg1 26000 df-mon1 26075 df-uc1p 26076 df-q1p 26077 df-r1p 26078 df-ig1p 26079 df-chn 32923 df-fldgen 33242 df-mxidl 33412 df-dim 33574 df-fldext 33617 df-extdg 33618 df-irng 33660 df-minply 33669 df-constr 33699 |
| This theorem is referenced by: constrcon 33743 |
| Copyright terms: Public domain | W3C validator |