| Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > constrext2chn | Structured version Visualization version GIF version | ||
| Description: If a constructible number generates some subfield 𝐿 of ℂ, then the degree of the extension of 𝐿 over ℚ is a power of two. Theorem 7.12 of [Stewart] p. 98. (Contributed by Thierry Arnoux, 26-Oct-2025.) |
| Ref | Expression |
|---|---|
| constrext2chn.q | ⊢ 𝑄 = (ℂfld ↾s ℚ) |
| constrext2chn.l | ⊢ 𝐿 = (ℂfld ↾s 𝑆) |
| constrext2chn.s | ⊢ 𝑆 = (ℂfld fldGen (ℚ ∪ {𝐴})) |
| constrext2chn.a | ⊢ (𝜑 → 𝐴 ∈ Constr) |
| Ref | Expression |
|---|---|
| constrext2chn | ⊢ (𝜑 → ∃𝑛 ∈ ℕ0 (𝐿[:]𝑄) = (2↑𝑛)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | constrcbvlem 33789 | . 2 ⊢ rec((𝑧 ∈ V ↦ {𝑦 ∈ ℂ ∣ (∃𝑖 ∈ 𝑧 ∃𝑗 ∈ 𝑧 ∃𝑘 ∈ 𝑧 ∃𝑙 ∈ 𝑧 ∃𝑜 ∈ ℝ ∃𝑝 ∈ ℝ (𝑦 = (𝑖 + (𝑜 · (𝑗 − 𝑖))) ∧ 𝑦 = (𝑘 + (𝑝 · (𝑙 − 𝑘))) ∧ (ℑ‘((∗‘(𝑗 − 𝑖)) · (𝑙 − 𝑘))) ≠ 0) ∨ ∃𝑖 ∈ 𝑧 ∃𝑗 ∈ 𝑧 ∃𝑘 ∈ 𝑧 ∃𝑚 ∈ 𝑧 ∃𝑞 ∈ 𝑧 ∃𝑜 ∈ ℝ (𝑦 = (𝑖 + (𝑜 · (𝑗 − 𝑖))) ∧ (abs‘(𝑦 − 𝑘)) = (abs‘(𝑚 − 𝑞))) ∨ ∃𝑖 ∈ 𝑧 ∃𝑗 ∈ 𝑧 ∃𝑘 ∈ 𝑧 ∃𝑙 ∈ 𝑧 ∃𝑚 ∈ 𝑧 ∃𝑞 ∈ 𝑧 (𝑖 ≠ 𝑙 ∧ (abs‘(𝑦 − 𝑖)) = (abs‘(𝑗 − 𝑘)) ∧ (abs‘(𝑦 − 𝑙)) = (abs‘(𝑚 − 𝑞))))}), {0, 1}) = rec((𝑠 ∈ V ↦ {𝑥 ∈ ℂ ∣ (∃𝑎 ∈ 𝑠 ∃𝑏 ∈ 𝑠 ∃𝑐 ∈ 𝑠 ∃𝑑 ∈ 𝑠 ∃𝑡 ∈ ℝ ∃𝑟 ∈ ℝ (𝑥 = (𝑎 + (𝑡 · (𝑏 − 𝑎))) ∧ 𝑥 = (𝑐 + (𝑟 · (𝑑 − 𝑐))) ∧ (ℑ‘((∗‘(𝑏 − 𝑎)) · (𝑑 − 𝑐))) ≠ 0) ∨ ∃𝑎 ∈ 𝑠 ∃𝑏 ∈ 𝑠 ∃𝑐 ∈ 𝑠 ∃𝑒 ∈ 𝑠 ∃𝑓 ∈ 𝑠 ∃𝑡 ∈ ℝ (𝑥 = (𝑎 + (𝑡 · (𝑏 − 𝑎))) ∧ (abs‘(𝑥 − 𝑐)) = (abs‘(𝑒 − 𝑓))) ∨ ∃𝑎 ∈ 𝑠 ∃𝑏 ∈ 𝑠 ∃𝑐 ∈ 𝑠 ∃𝑑 ∈ 𝑠 ∃𝑒 ∈ 𝑠 ∃𝑓 ∈ 𝑠 (𝑎 ≠ 𝑑 ∧ (abs‘(𝑥 − 𝑎)) = (abs‘(𝑏 − 𝑐)) ∧ (abs‘(𝑥 − 𝑑)) = (abs‘(𝑒 − 𝑓))))}), {0, 1}) | |
| 2 | eqid 2733 | . 2 ⊢ (ℂfld ↾s 𝑒) = (ℂfld ↾s 𝑒) | |
| 3 | eqid 2733 | . 2 ⊢ (ℂfld ↾s 𝑓) = (ℂfld ↾s 𝑓) | |
| 4 | oveq2 7360 | . . . . . 6 ⊢ (ℎ = 𝑒 → (ℂfld ↾s ℎ) = (ℂfld ↾s 𝑒)) | |
| 5 | 4 | adantl 481 | . . . . 5 ⊢ ((𝑔 = 𝑓 ∧ ℎ = 𝑒) → (ℂfld ↾s ℎ) = (ℂfld ↾s 𝑒)) |
| 6 | oveq2 7360 | . . . . . 6 ⊢ (𝑔 = 𝑓 → (ℂfld ↾s 𝑔) = (ℂfld ↾s 𝑓)) | |
| 7 | 6 | adantr 480 | . . . . 5 ⊢ ((𝑔 = 𝑓 ∧ ℎ = 𝑒) → (ℂfld ↾s 𝑔) = (ℂfld ↾s 𝑓)) |
| 8 | 5, 7 | breq12d 5106 | . . . 4 ⊢ ((𝑔 = 𝑓 ∧ ℎ = 𝑒) → ((ℂfld ↾s ℎ)/FldExt(ℂfld ↾s 𝑔) ↔ (ℂfld ↾s 𝑒)/FldExt(ℂfld ↾s 𝑓))) |
| 9 | 5, 7 | oveq12d 7370 | . . . . 5 ⊢ ((𝑔 = 𝑓 ∧ ℎ = 𝑒) → ((ℂfld ↾s ℎ)[:](ℂfld ↾s 𝑔)) = ((ℂfld ↾s 𝑒)[:](ℂfld ↾s 𝑓))) |
| 10 | 9 | eqeq1d 2735 | . . . 4 ⊢ ((𝑔 = 𝑓 ∧ ℎ = 𝑒) → (((ℂfld ↾s ℎ)[:](ℂfld ↾s 𝑔)) = 2 ↔ ((ℂfld ↾s 𝑒)[:](ℂfld ↾s 𝑓)) = 2)) |
| 11 | 8, 10 | anbi12d 632 | . . 3 ⊢ ((𝑔 = 𝑓 ∧ ℎ = 𝑒) → (((ℂfld ↾s ℎ)/FldExt(ℂfld ↾s 𝑔) ∧ ((ℂfld ↾s ℎ)[:](ℂfld ↾s 𝑔)) = 2) ↔ ((ℂfld ↾s 𝑒)/FldExt(ℂfld ↾s 𝑓) ∧ ((ℂfld ↾s 𝑒)[:](ℂfld ↾s 𝑓)) = 2))) |
| 12 | 11 | cbvopabv 5166 | . 2 ⊢ {〈𝑔, ℎ〉 ∣ ((ℂfld ↾s ℎ)/FldExt(ℂfld ↾s 𝑔) ∧ ((ℂfld ↾s ℎ)[:](ℂfld ↾s 𝑔)) = 2)} = {〈𝑓, 𝑒〉 ∣ ((ℂfld ↾s 𝑒)/FldExt(ℂfld ↾s 𝑓) ∧ ((ℂfld ↾s 𝑒)[:](ℂfld ↾s 𝑓)) = 2)} |
| 13 | peano1 7825 | . . 3 ⊢ ∅ ∈ ω | |
| 14 | 13 | a1i 11 | . 2 ⊢ (𝜑 → ∅ ∈ ω) |
| 15 | constrext2chn.q | . 2 ⊢ 𝑄 = (ℂfld ↾s ℚ) | |
| 16 | constrext2chn.l | . . 3 ⊢ 𝐿 = (ℂfld ↾s 𝑆) | |
| 17 | constrext2chn.s | . . . 4 ⊢ 𝑆 = (ℂfld fldGen (ℚ ∪ {𝐴})) | |
| 18 | 17 | oveq2i 7363 | . . 3 ⊢ (ℂfld ↾s 𝑆) = (ℂfld ↾s (ℂfld fldGen (ℚ ∪ {𝐴}))) |
| 19 | 16, 18 | eqtri 2756 | . 2 ⊢ 𝐿 = (ℂfld ↾s (ℂfld fldGen (ℚ ∪ {𝐴}))) |
| 20 | constrext2chn.a | . 2 ⊢ (𝜑 → 𝐴 ∈ Constr) | |
| 21 | 1, 2, 3, 12, 14, 15, 19, 20 | constrext2chnlem 33784 | 1 ⊢ (𝜑 → ∃𝑛 ∈ ℕ0 (𝐿[:]𝑄) = (2↑𝑛)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∨ w3o 1085 ∧ w3a 1086 = wceq 1541 ∈ wcel 2113 ≠ wne 2929 ∃wrex 3057 {crab 3396 Vcvv 3437 ∪ cun 3896 ∅c0 4282 {csn 4575 {cpr 4577 class class class wbr 5093 {copab 5155 ↦ cmpt 5174 ‘cfv 6486 (class class class)co 7352 ωcom 7802 reccrdg 8334 ℂcc 11011 ℝcr 11012 0cc0 11013 1c1 11014 + caddc 11016 · cmul 11018 − cmin 11351 2c2 12187 ℕ0cn0 12388 ℚcq 12848 ↑cexp 13970 ∗ccj 15005 ℑcim 15007 abscabs 15143 ↾s cress 17143 ℂfldccnfld 21293 fldGen cfldgen 33283 /FldExtcfldext 33672 [:]cextdg 33674 Constrcconstr 33763 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-10 2146 ax-11 2162 ax-12 2182 ax-ext 2705 ax-rep 5219 ax-sep 5236 ax-nul 5246 ax-pow 5305 ax-pr 5372 ax-un 7674 ax-reg 9485 ax-inf2 9538 ax-ac2 10361 ax-cnex 11069 ax-resscn 11070 ax-1cn 11071 ax-icn 11072 ax-addcl 11073 ax-addrcl 11074 ax-mulcl 11075 ax-mulrcl 11076 ax-mulcom 11077 ax-addass 11078 ax-mulass 11079 ax-distr 11080 ax-i2m1 11081 ax-1ne0 11082 ax-1rid 11083 ax-rnegex 11084 ax-rrecex 11085 ax-cnre 11086 ax-pre-lttri 11087 ax-pre-lttrn 11088 ax-pre-ltadd 11089 ax-pre-mulgt0 11090 ax-pre-sup 11091 ax-addf 11092 ax-mulf 11093 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2725 df-clel 2808 df-nfc 2882 df-ne 2930 df-nel 3034 df-ral 3049 df-rex 3058 df-rmo 3347 df-reu 3348 df-rab 3397 df-v 3439 df-sbc 3738 df-csb 3847 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-pss 3918 df-nul 4283 df-if 4475 df-pw 4551 df-sn 4576 df-pr 4578 df-tp 4580 df-op 4582 df-uni 4859 df-int 4898 df-iun 4943 df-iin 4944 df-br 5094 df-opab 5156 df-mpt 5175 df-tr 5201 df-id 5514 df-eprel 5519 df-po 5527 df-so 5528 df-fr 5572 df-se 5573 df-we 5574 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-rn 5630 df-res 5631 df-ima 5632 df-pred 6253 df-ord 6314 df-on 6315 df-lim 6316 df-suc 6317 df-iota 6442 df-fun 6488 df-fn 6489 df-f 6490 df-f1 6491 df-fo 6492 df-f1o 6493 df-fv 6494 df-isom 6495 df-riota 7309 df-ov 7355 df-oprab 7356 df-mpo 7357 df-of 7616 df-ofr 7617 df-rpss 7662 df-om 7803 df-1st 7927 df-2nd 7928 df-supp 8097 df-tpos 8162 df-frecs 8217 df-wrecs 8248 df-recs 8297 df-rdg 8335 df-1o 8391 df-2o 8392 df-oadd 8395 df-er 8628 df-ec 8630 df-qs 8634 df-map 8758 df-pm 8759 df-ixp 8828 df-en 8876 df-dom 8877 df-sdom 8878 df-fin 8879 df-fsupp 9253 df-sup 9333 df-inf 9334 df-oi 9403 df-r1 9664 df-rank 9665 df-dju 9801 df-card 9839 df-acn 9842 df-ac 10014 df-pnf 11155 df-mnf 11156 df-xr 11157 df-ltxr 11158 df-le 11159 df-sub 11353 df-neg 11354 df-div 11782 df-nn 12133 df-2 12195 df-3 12196 df-4 12197 df-5 12198 df-6 12199 df-7 12200 df-8 12201 df-9 12202 df-n0 12389 df-xnn0 12462 df-z 12476 df-dec 12595 df-uz 12739 df-q 12849 df-rp 12893 df-xneg 13013 df-xmul 13015 df-ico 13253 df-fz 13410 df-fzo 13557 df-fl 13698 df-mod 13776 df-seq 13911 df-exp 13971 df-hash 14240 df-word 14423 df-lsw 14472 df-concat 14480 df-s1 14506 df-substr 14551 df-pfx 14581 df-cj 15008 df-re 15009 df-im 15010 df-sqrt 15144 df-abs 15145 df-dvds 16166 df-gcd 16408 df-prm 16585 df-pc 16751 df-struct 17060 df-sets 17077 df-slot 17095 df-ndx 17107 df-base 17123 df-ress 17144 df-plusg 17176 df-mulr 17177 df-starv 17178 df-sca 17179 df-vsca 17180 df-ip 17181 df-tset 17182 df-ple 17183 df-ocomp 17184 df-ds 17185 df-unif 17186 df-hom 17187 df-cco 17188 df-0g 17347 df-gsum 17348 df-prds 17353 df-pws 17355 df-imas 17414 df-qus 17415 df-mre 17490 df-mrc 17491 df-mri 17492 df-acs 17493 df-proset 18202 df-drs 18203 df-poset 18221 df-ipo 18436 df-chn 18514 df-mgm 18550 df-sgrp 18629 df-mnd 18645 df-mhm 18693 df-submnd 18694 df-grp 18851 df-minusg 18852 df-sbg 18853 df-mulg 18983 df-subg 19038 df-nsg 19039 df-eqg 19040 df-ghm 19127 df-gim 19173 df-cntz 19231 df-oppg 19260 df-lsm 19550 df-cmn 19696 df-abl 19697 df-mgp 20061 df-rng 20073 df-ur 20102 df-srg 20107 df-ring 20155 df-cring 20156 df-oppr 20257 df-dvdsr 20277 df-unit 20278 df-irred 20279 df-invr 20308 df-dvr 20321 df-rhm 20392 df-nzr 20430 df-subrng 20463 df-subrg 20487 df-rlreg 20611 df-domn 20612 df-idom 20613 df-drng 20648 df-field 20649 df-sdrg 20704 df-lmod 20797 df-lss 20867 df-lsp 20907 df-lmhm 20958 df-lmim 20959 df-lmic 20960 df-lbs 21011 df-lvec 21039 df-sra 21109 df-rgmod 21110 df-lidl 21147 df-rsp 21148 df-2idl 21189 df-lpidl 21261 df-lpir 21262 df-pid 21276 df-cnfld 21294 df-dsmm 21671 df-frlm 21686 df-uvc 21722 df-lindf 21745 df-linds 21746 df-assa 21792 df-asp 21793 df-ascl 21794 df-psr 21848 df-mvr 21849 df-mpl 21850 df-opsr 21852 df-evls 22010 df-evl 22011 df-psr1 22093 df-vr1 22094 df-ply1 22095 df-coe1 22096 df-evls1 22231 df-evl1 22232 df-mdeg 25988 df-deg1 25989 df-mon1 26064 df-uc1p 26065 df-q1p 26066 df-r1p 26067 df-ig1p 26068 df-fldgen 33284 df-mxidl 33432 df-dim 33633 df-fldext 33675 df-extdg 33676 df-irng 33718 df-minply 33734 df-constr 33764 |
| This theorem is referenced by: constrcon 33808 |
| Copyright terms: Public domain | W3C validator |