| Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > constrext2chn | Structured version Visualization version GIF version | ||
| Description: If a constructible number generates some subfield 𝐿 of ℂ, then the degree of the extension of 𝐿 over ℚ is a power of two. Theorem 7.12 of [Stewart] p. 98. (Contributed by Thierry Arnoux, 26-Oct-2025.) |
| Ref | Expression |
|---|---|
| constrext2chn.q | ⊢ 𝑄 = (ℂfld ↾s ℚ) |
| constrext2chn.l | ⊢ 𝐿 = (ℂfld ↾s 𝑆) |
| constrext2chn.s | ⊢ 𝑆 = (ℂfld fldGen (ℚ ∪ {𝐴})) |
| constrext2chn.a | ⊢ (𝜑 → 𝐴 ∈ Constr) |
| Ref | Expression |
|---|---|
| constrext2chn | ⊢ (𝜑 → ∃𝑛 ∈ ℕ0 (𝐿[:]𝑄) = (2↑𝑛)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | constrcbvlem 33753 | . 2 ⊢ rec((𝑧 ∈ V ↦ {𝑦 ∈ ℂ ∣ (∃𝑖 ∈ 𝑧 ∃𝑗 ∈ 𝑧 ∃𝑘 ∈ 𝑧 ∃𝑙 ∈ 𝑧 ∃𝑜 ∈ ℝ ∃𝑝 ∈ ℝ (𝑦 = (𝑖 + (𝑜 · (𝑗 − 𝑖))) ∧ 𝑦 = (𝑘 + (𝑝 · (𝑙 − 𝑘))) ∧ (ℑ‘((∗‘(𝑗 − 𝑖)) · (𝑙 − 𝑘))) ≠ 0) ∨ ∃𝑖 ∈ 𝑧 ∃𝑗 ∈ 𝑧 ∃𝑘 ∈ 𝑧 ∃𝑚 ∈ 𝑧 ∃𝑞 ∈ 𝑧 ∃𝑜 ∈ ℝ (𝑦 = (𝑖 + (𝑜 · (𝑗 − 𝑖))) ∧ (abs‘(𝑦 − 𝑘)) = (abs‘(𝑚 − 𝑞))) ∨ ∃𝑖 ∈ 𝑧 ∃𝑗 ∈ 𝑧 ∃𝑘 ∈ 𝑧 ∃𝑙 ∈ 𝑧 ∃𝑚 ∈ 𝑧 ∃𝑞 ∈ 𝑧 (𝑖 ≠ 𝑙 ∧ (abs‘(𝑦 − 𝑖)) = (abs‘(𝑗 − 𝑘)) ∧ (abs‘(𝑦 − 𝑙)) = (abs‘(𝑚 − 𝑞))))}), {0, 1}) = rec((𝑠 ∈ V ↦ {𝑥 ∈ ℂ ∣ (∃𝑎 ∈ 𝑠 ∃𝑏 ∈ 𝑠 ∃𝑐 ∈ 𝑠 ∃𝑑 ∈ 𝑠 ∃𝑡 ∈ ℝ ∃𝑟 ∈ ℝ (𝑥 = (𝑎 + (𝑡 · (𝑏 − 𝑎))) ∧ 𝑥 = (𝑐 + (𝑟 · (𝑑 − 𝑐))) ∧ (ℑ‘((∗‘(𝑏 − 𝑎)) · (𝑑 − 𝑐))) ≠ 0) ∨ ∃𝑎 ∈ 𝑠 ∃𝑏 ∈ 𝑠 ∃𝑐 ∈ 𝑠 ∃𝑒 ∈ 𝑠 ∃𝑓 ∈ 𝑠 ∃𝑡 ∈ ℝ (𝑥 = (𝑎 + (𝑡 · (𝑏 − 𝑎))) ∧ (abs‘(𝑥 − 𝑐)) = (abs‘(𝑒 − 𝑓))) ∨ ∃𝑎 ∈ 𝑠 ∃𝑏 ∈ 𝑠 ∃𝑐 ∈ 𝑠 ∃𝑑 ∈ 𝑠 ∃𝑒 ∈ 𝑠 ∃𝑓 ∈ 𝑠 (𝑎 ≠ 𝑑 ∧ (abs‘(𝑥 − 𝑎)) = (abs‘(𝑏 − 𝑐)) ∧ (abs‘(𝑥 − 𝑑)) = (abs‘(𝑒 − 𝑓))))}), {0, 1}) | |
| 2 | eqid 2730 | . 2 ⊢ (ℂfld ↾s 𝑒) = (ℂfld ↾s 𝑒) | |
| 3 | eqid 2730 | . 2 ⊢ (ℂfld ↾s 𝑓) = (ℂfld ↾s 𝑓) | |
| 4 | oveq2 7402 | . . . . . 6 ⊢ (ℎ = 𝑒 → (ℂfld ↾s ℎ) = (ℂfld ↾s 𝑒)) | |
| 5 | 4 | adantl 481 | . . . . 5 ⊢ ((𝑔 = 𝑓 ∧ ℎ = 𝑒) → (ℂfld ↾s ℎ) = (ℂfld ↾s 𝑒)) |
| 6 | oveq2 7402 | . . . . . 6 ⊢ (𝑔 = 𝑓 → (ℂfld ↾s 𝑔) = (ℂfld ↾s 𝑓)) | |
| 7 | 6 | adantr 480 | . . . . 5 ⊢ ((𝑔 = 𝑓 ∧ ℎ = 𝑒) → (ℂfld ↾s 𝑔) = (ℂfld ↾s 𝑓)) |
| 8 | 5, 7 | breq12d 5128 | . . . 4 ⊢ ((𝑔 = 𝑓 ∧ ℎ = 𝑒) → ((ℂfld ↾s ℎ)/FldExt(ℂfld ↾s 𝑔) ↔ (ℂfld ↾s 𝑒)/FldExt(ℂfld ↾s 𝑓))) |
| 9 | 5, 7 | oveq12d 7412 | . . . . 5 ⊢ ((𝑔 = 𝑓 ∧ ℎ = 𝑒) → ((ℂfld ↾s ℎ)[:](ℂfld ↾s 𝑔)) = ((ℂfld ↾s 𝑒)[:](ℂfld ↾s 𝑓))) |
| 10 | 9 | eqeq1d 2732 | . . . 4 ⊢ ((𝑔 = 𝑓 ∧ ℎ = 𝑒) → (((ℂfld ↾s ℎ)[:](ℂfld ↾s 𝑔)) = 2 ↔ ((ℂfld ↾s 𝑒)[:](ℂfld ↾s 𝑓)) = 2)) |
| 11 | 8, 10 | anbi12d 632 | . . 3 ⊢ ((𝑔 = 𝑓 ∧ ℎ = 𝑒) → (((ℂfld ↾s ℎ)/FldExt(ℂfld ↾s 𝑔) ∧ ((ℂfld ↾s ℎ)[:](ℂfld ↾s 𝑔)) = 2) ↔ ((ℂfld ↾s 𝑒)/FldExt(ℂfld ↾s 𝑓) ∧ ((ℂfld ↾s 𝑒)[:](ℂfld ↾s 𝑓)) = 2))) |
| 12 | 11 | cbvopabv 5188 | . 2 ⊢ {〈𝑔, ℎ〉 ∣ ((ℂfld ↾s ℎ)/FldExt(ℂfld ↾s 𝑔) ∧ ((ℂfld ↾s ℎ)[:](ℂfld ↾s 𝑔)) = 2)} = {〈𝑓, 𝑒〉 ∣ ((ℂfld ↾s 𝑒)/FldExt(ℂfld ↾s 𝑓) ∧ ((ℂfld ↾s 𝑒)[:](ℂfld ↾s 𝑓)) = 2)} |
| 13 | peano1 7873 | . . 3 ⊢ ∅ ∈ ω | |
| 14 | 13 | a1i 11 | . 2 ⊢ (𝜑 → ∅ ∈ ω) |
| 15 | constrext2chn.q | . 2 ⊢ 𝑄 = (ℂfld ↾s ℚ) | |
| 16 | constrext2chn.l | . . 3 ⊢ 𝐿 = (ℂfld ↾s 𝑆) | |
| 17 | constrext2chn.s | . . . 4 ⊢ 𝑆 = (ℂfld fldGen (ℚ ∪ {𝐴})) | |
| 18 | 17 | oveq2i 7405 | . . 3 ⊢ (ℂfld ↾s 𝑆) = (ℂfld ↾s (ℂfld fldGen (ℚ ∪ {𝐴}))) |
| 19 | 16, 18 | eqtri 2753 | . 2 ⊢ 𝐿 = (ℂfld ↾s (ℂfld fldGen (ℚ ∪ {𝐴}))) |
| 20 | constrext2chn.a | . 2 ⊢ (𝜑 → 𝐴 ∈ Constr) | |
| 21 | 1, 2, 3, 12, 14, 15, 19, 20 | constrext2chnlem 33748 | 1 ⊢ (𝜑 → ∃𝑛 ∈ ℕ0 (𝐿[:]𝑄) = (2↑𝑛)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∨ w3o 1085 ∧ w3a 1086 = wceq 1540 ∈ wcel 2109 ≠ wne 2927 ∃wrex 3055 {crab 3411 Vcvv 3455 ∪ cun 3920 ∅c0 4304 {csn 4597 {cpr 4599 class class class wbr 5115 {copab 5177 ↦ cmpt 5196 ‘cfv 6519 (class class class)co 7394 ωcom 7850 reccrdg 8386 ℂcc 11084 ℝcr 11085 0cc0 11086 1c1 11087 + caddc 11089 · cmul 11091 − cmin 11423 2c2 12252 ℕ0cn0 12458 ℚcq 12921 ↑cexp 14036 ∗ccj 15072 ℑcim 15074 abscabs 15210 ↾s cress 17206 ℂfldccnfld 21270 fldGen cfldgen 33268 /FldExtcfldext 33642 [:]cextdg 33644 Constrcconstr 33727 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-rep 5242 ax-sep 5259 ax-nul 5269 ax-pow 5328 ax-pr 5395 ax-un 7718 ax-reg 9563 ax-inf2 9612 ax-ac2 10434 ax-cnex 11142 ax-resscn 11143 ax-1cn 11144 ax-icn 11145 ax-addcl 11146 ax-addrcl 11147 ax-mulcl 11148 ax-mulrcl 11149 ax-mulcom 11150 ax-addass 11151 ax-mulass 11152 ax-distr 11153 ax-i2m1 11154 ax-1ne0 11155 ax-1rid 11156 ax-rnegex 11157 ax-rrecex 11158 ax-cnre 11159 ax-pre-lttri 11160 ax-pre-lttrn 11161 ax-pre-ltadd 11162 ax-pre-mulgt0 11163 ax-pre-sup 11164 ax-addf 11165 ax-mulf 11166 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2880 df-ne 2928 df-nel 3032 df-ral 3047 df-rex 3056 df-rmo 3357 df-reu 3358 df-rab 3412 df-v 3457 df-sbc 3762 df-csb 3871 df-dif 3925 df-un 3927 df-in 3929 df-ss 3939 df-pss 3942 df-nul 4305 df-if 4497 df-pw 4573 df-sn 4598 df-pr 4600 df-tp 4602 df-op 4604 df-uni 4880 df-int 4919 df-iun 4965 df-iin 4966 df-br 5116 df-opab 5178 df-mpt 5197 df-tr 5223 df-id 5541 df-eprel 5546 df-po 5554 df-so 5555 df-fr 5599 df-se 5600 df-we 5601 df-xp 5652 df-rel 5653 df-cnv 5654 df-co 5655 df-dm 5656 df-rn 5657 df-res 5658 df-ima 5659 df-pred 6282 df-ord 6343 df-on 6344 df-lim 6345 df-suc 6346 df-iota 6472 df-fun 6521 df-fn 6522 df-f 6523 df-f1 6524 df-fo 6525 df-f1o 6526 df-fv 6527 df-isom 6528 df-riota 7351 df-ov 7397 df-oprab 7398 df-mpo 7399 df-of 7660 df-ofr 7661 df-rpss 7706 df-om 7851 df-1st 7977 df-2nd 7978 df-supp 8149 df-tpos 8214 df-frecs 8269 df-wrecs 8300 df-recs 8349 df-rdg 8387 df-1o 8443 df-2o 8444 df-oadd 8447 df-er 8682 df-ec 8684 df-qs 8688 df-map 8805 df-pm 8806 df-ixp 8875 df-en 8923 df-dom 8924 df-sdom 8925 df-fin 8926 df-fsupp 9331 df-sup 9411 df-inf 9412 df-oi 9481 df-r1 9735 df-rank 9736 df-dju 9872 df-card 9910 df-acn 9913 df-ac 10087 df-pnf 11228 df-mnf 11229 df-xr 11230 df-ltxr 11231 df-le 11232 df-sub 11425 df-neg 11426 df-div 11852 df-nn 12198 df-2 12260 df-3 12261 df-4 12262 df-5 12263 df-6 12264 df-7 12265 df-8 12266 df-9 12267 df-n0 12459 df-xnn0 12532 df-z 12546 df-dec 12666 df-uz 12810 df-q 12922 df-rp 12966 df-xneg 13085 df-xmul 13087 df-ico 13325 df-fz 13482 df-fzo 13629 df-fl 13766 df-mod 13844 df-seq 13977 df-exp 14037 df-hash 14306 df-word 14489 df-lsw 14538 df-concat 14546 df-s1 14571 df-substr 14616 df-pfx 14646 df-cj 15075 df-re 15076 df-im 15077 df-sqrt 15211 df-abs 15212 df-dvds 16230 df-gcd 16471 df-prm 16648 df-pc 16814 df-struct 17123 df-sets 17140 df-slot 17158 df-ndx 17170 df-base 17186 df-ress 17207 df-plusg 17239 df-mulr 17240 df-starv 17241 df-sca 17242 df-vsca 17243 df-ip 17244 df-tset 17245 df-ple 17246 df-ocomp 17247 df-ds 17248 df-unif 17249 df-hom 17250 df-cco 17251 df-0g 17410 df-gsum 17411 df-prds 17416 df-pws 17418 df-imas 17477 df-qus 17478 df-mre 17553 df-mrc 17554 df-mri 17555 df-acs 17556 df-proset 18261 df-drs 18262 df-poset 18280 df-ipo 18493 df-mgm 18573 df-sgrp 18652 df-mnd 18668 df-mhm 18716 df-submnd 18717 df-grp 18874 df-minusg 18875 df-sbg 18876 df-mulg 19006 df-subg 19061 df-nsg 19062 df-eqg 19063 df-ghm 19151 df-gim 19197 df-cntz 19255 df-oppg 19284 df-lsm 19572 df-cmn 19718 df-abl 19719 df-mgp 20056 df-rng 20068 df-ur 20097 df-srg 20102 df-ring 20150 df-cring 20151 df-oppr 20252 df-dvdsr 20272 df-unit 20273 df-irred 20274 df-invr 20303 df-dvr 20316 df-rhm 20387 df-nzr 20428 df-subrng 20461 df-subrg 20485 df-rlreg 20609 df-domn 20610 df-idom 20611 df-drng 20646 df-field 20647 df-sdrg 20702 df-lmod 20774 df-lss 20844 df-lsp 20884 df-lmhm 20935 df-lmim 20936 df-lmic 20937 df-lbs 20988 df-lvec 21016 df-sra 21086 df-rgmod 21087 df-lidl 21124 df-rsp 21125 df-2idl 21166 df-lpidl 21238 df-lpir 21239 df-pid 21253 df-cnfld 21271 df-dsmm 21647 df-frlm 21662 df-uvc 21698 df-lindf 21721 df-linds 21722 df-assa 21768 df-asp 21769 df-ascl 21770 df-psr 21824 df-mvr 21825 df-mpl 21826 df-opsr 21828 df-evls 21987 df-evl 21988 df-psr1 22070 df-vr1 22071 df-ply1 22072 df-coe1 22073 df-evls1 22208 df-evl1 22209 df-mdeg 25967 df-deg1 25968 df-mon1 26043 df-uc1p 26044 df-q1p 26045 df-r1p 26046 df-ig1p 26047 df-chn 32939 df-fldgen 33269 df-mxidl 33439 df-dim 33603 df-fldext 33645 df-extdg 33646 df-irng 33687 df-minply 33698 df-constr 33728 |
| This theorem is referenced by: constrcon 33772 |
| Copyright terms: Public domain | W3C validator |