Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  constrext2chn Structured version   Visualization version   GIF version

Theorem constrext2chn 33767
Description: If a constructible number generates some subfield 𝐿 of , then the degree of the extension of 𝐿 over is a power of two. Theorem 7.12 of [Stewart] p. 98. (Contributed by Thierry Arnoux, 26-Oct-2025.)
Hypotheses
Ref Expression
constrext2chn.q 𝑄 = (ℂflds ℚ)
constrext2chn.l 𝐿 = (ℂflds 𝑆)
constrext2chn.s 𝑆 = (ℂfld fldGen (ℚ ∪ {𝐴}))
constrext2chn.a (𝜑𝐴 ∈ Constr)
Assertion
Ref Expression
constrext2chn (𝜑 → ∃𝑛 ∈ ℕ0 (𝐿[:]𝑄) = (2↑𝑛))
Distinct variable groups:   𝐴,𝑛   𝑛,𝐿   𝑄,𝑛   𝑆,𝑛   𝜑,𝑛

Proof of Theorem constrext2chn
Dummy variables 𝑎 𝑏 𝑐 𝑑 𝑒 𝑓 𝑔 𝑖 𝑗 𝑘 𝑙 𝑚 𝑜 𝑝 𝑞 𝑟 𝑠 𝑡 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 constrcbvlem 33763 . 2 rec((𝑧 ∈ V ↦ {𝑦 ∈ ℂ ∣ (∃𝑖𝑧𝑗𝑧𝑘𝑧𝑙𝑧𝑜 ∈ ℝ ∃𝑝 ∈ ℝ (𝑦 = (𝑖 + (𝑜 · (𝑗𝑖))) ∧ 𝑦 = (𝑘 + (𝑝 · (𝑙𝑘))) ∧ (ℑ‘((∗‘(𝑗𝑖)) · (𝑙𝑘))) ≠ 0) ∨ ∃𝑖𝑧𝑗𝑧𝑘𝑧𝑚𝑧𝑞𝑧𝑜 ∈ ℝ (𝑦 = (𝑖 + (𝑜 · (𝑗𝑖))) ∧ (abs‘(𝑦𝑘)) = (abs‘(𝑚𝑞))) ∨ ∃𝑖𝑧𝑗𝑧𝑘𝑧𝑙𝑧𝑚𝑧𝑞𝑧 (𝑖𝑙 ∧ (abs‘(𝑦𝑖)) = (abs‘(𝑗𝑘)) ∧ (abs‘(𝑦𝑙)) = (abs‘(𝑚𝑞))))}), {0, 1}) = rec((𝑠 ∈ V ↦ {𝑥 ∈ ℂ ∣ (∃𝑎𝑠𝑏𝑠𝑐𝑠𝑑𝑠𝑡 ∈ ℝ ∃𝑟 ∈ ℝ (𝑥 = (𝑎 + (𝑡 · (𝑏𝑎))) ∧ 𝑥 = (𝑐 + (𝑟 · (𝑑𝑐))) ∧ (ℑ‘((∗‘(𝑏𝑎)) · (𝑑𝑐))) ≠ 0) ∨ ∃𝑎𝑠𝑏𝑠𝑐𝑠𝑒𝑠𝑓𝑠𝑡 ∈ ℝ (𝑥 = (𝑎 + (𝑡 · (𝑏𝑎))) ∧ (abs‘(𝑥𝑐)) = (abs‘(𝑒𝑓))) ∨ ∃𝑎𝑠𝑏𝑠𝑐𝑠𝑑𝑠𝑒𝑠𝑓𝑠 (𝑎𝑑 ∧ (abs‘(𝑥𝑎)) = (abs‘(𝑏𝑐)) ∧ (abs‘(𝑥𝑑)) = (abs‘(𝑒𝑓))))}), {0, 1})
2 eqid 2731 . 2 (ℂflds 𝑒) = (ℂflds 𝑒)
3 eqid 2731 . 2 (ℂflds 𝑓) = (ℂflds 𝑓)
4 oveq2 7354 . . . . . 6 ( = 𝑒 → (ℂflds ) = (ℂflds 𝑒))
54adantl 481 . . . . 5 ((𝑔 = 𝑓 = 𝑒) → (ℂflds ) = (ℂflds 𝑒))
6 oveq2 7354 . . . . . 6 (𝑔 = 𝑓 → (ℂflds 𝑔) = (ℂflds 𝑓))
76adantr 480 . . . . 5 ((𝑔 = 𝑓 = 𝑒) → (ℂflds 𝑔) = (ℂflds 𝑓))
85, 7breq12d 5104 . . . 4 ((𝑔 = 𝑓 = 𝑒) → ((ℂflds )/FldExt(ℂflds 𝑔) ↔ (ℂflds 𝑒)/FldExt(ℂflds 𝑓)))
95, 7oveq12d 7364 . . . . 5 ((𝑔 = 𝑓 = 𝑒) → ((ℂflds )[:](ℂflds 𝑔)) = ((ℂflds 𝑒)[:](ℂflds 𝑓)))
109eqeq1d 2733 . . . 4 ((𝑔 = 𝑓 = 𝑒) → (((ℂflds )[:](ℂflds 𝑔)) = 2 ↔ ((ℂflds 𝑒)[:](ℂflds 𝑓)) = 2))
118, 10anbi12d 632 . . 3 ((𝑔 = 𝑓 = 𝑒) → (((ℂflds )/FldExt(ℂflds 𝑔) ∧ ((ℂflds )[:](ℂflds 𝑔)) = 2) ↔ ((ℂflds 𝑒)/FldExt(ℂflds 𝑓) ∧ ((ℂflds 𝑒)[:](ℂflds 𝑓)) = 2)))
1211cbvopabv 5164 . 2 {⟨𝑔, ⟩ ∣ ((ℂflds )/FldExt(ℂflds 𝑔) ∧ ((ℂflds )[:](ℂflds 𝑔)) = 2)} = {⟨𝑓, 𝑒⟩ ∣ ((ℂflds 𝑒)/FldExt(ℂflds 𝑓) ∧ ((ℂflds 𝑒)[:](ℂflds 𝑓)) = 2)}
13 peano1 7819 . . 3 ∅ ∈ ω
1413a1i 11 . 2 (𝜑 → ∅ ∈ ω)
15 constrext2chn.q . 2 𝑄 = (ℂflds ℚ)
16 constrext2chn.l . . 3 𝐿 = (ℂflds 𝑆)
17 constrext2chn.s . . . 4 𝑆 = (ℂfld fldGen (ℚ ∪ {𝐴}))
1817oveq2i 7357 . . 3 (ℂflds 𝑆) = (ℂflds (ℂfld fldGen (ℚ ∪ {𝐴})))
1916, 18eqtri 2754 . 2 𝐿 = (ℂflds (ℂfld fldGen (ℚ ∪ {𝐴})))
20 constrext2chn.a . 2 (𝜑𝐴 ∈ Constr)
211, 2, 3, 12, 14, 15, 19, 20constrext2chnlem 33758 1 (𝜑 → ∃𝑛 ∈ ℕ0 (𝐿[:]𝑄) = (2↑𝑛))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3o 1085  w3a 1086   = wceq 1541  wcel 2111  wne 2928  wrex 3056  {crab 3395  Vcvv 3436  cun 3900  c0 4283  {csn 4576  {cpr 4578   class class class wbr 5091  {copab 5153  cmpt 5172  cfv 6481  (class class class)co 7346  ωcom 7796  reccrdg 8328  cc 11001  cr 11002  0cc0 11003  1c1 11004   + caddc 11006   · cmul 11008  cmin 11341  2c2 12177  0cn0 12378  cq 12843  cexp 13965  ccj 15000  cim 15002  abscabs 15138  s cress 17138  fldccnfld 21289   fldGen cfldgen 33271  /FldExtcfldext 33646  [:]cextdg 33648  Constrcconstr 33737
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-rep 5217  ax-sep 5234  ax-nul 5244  ax-pow 5303  ax-pr 5370  ax-un 7668  ax-reg 9478  ax-inf2 9531  ax-ac2 10351  ax-cnex 11059  ax-resscn 11060  ax-1cn 11061  ax-icn 11062  ax-addcl 11063  ax-addrcl 11064  ax-mulcl 11065  ax-mulrcl 11066  ax-mulcom 11067  ax-addass 11068  ax-mulass 11069  ax-distr 11070  ax-i2m1 11071  ax-1ne0 11072  ax-1rid 11073  ax-rnegex 11074  ax-rrecex 11075  ax-cnre 11076  ax-pre-lttri 11077  ax-pre-lttrn 11078  ax-pre-ltadd 11079  ax-pre-mulgt0 11080  ax-pre-sup 11081  ax-addf 11082  ax-mulf 11083
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-nel 3033  df-ral 3048  df-rex 3057  df-rmo 3346  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3742  df-csb 3851  df-dif 3905  df-un 3907  df-in 3909  df-ss 3919  df-pss 3922  df-nul 4284  df-if 4476  df-pw 4552  df-sn 4577  df-pr 4579  df-tp 4581  df-op 4583  df-uni 4860  df-int 4898  df-iun 4943  df-iin 4944  df-br 5092  df-opab 5154  df-mpt 5173  df-tr 5199  df-id 5511  df-eprel 5516  df-po 5524  df-so 5525  df-fr 5569  df-se 5570  df-we 5571  df-xp 5622  df-rel 5623  df-cnv 5624  df-co 5625  df-dm 5626  df-rn 5627  df-res 5628  df-ima 5629  df-pred 6248  df-ord 6309  df-on 6310  df-lim 6311  df-suc 6312  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489  df-isom 6490  df-riota 7303  df-ov 7349  df-oprab 7350  df-mpo 7351  df-of 7610  df-ofr 7611  df-rpss 7656  df-om 7797  df-1st 7921  df-2nd 7922  df-supp 8091  df-tpos 8156  df-frecs 8211  df-wrecs 8242  df-recs 8291  df-rdg 8329  df-1o 8385  df-2o 8386  df-oadd 8389  df-er 8622  df-ec 8624  df-qs 8628  df-map 8752  df-pm 8753  df-ixp 8822  df-en 8870  df-dom 8871  df-sdom 8872  df-fin 8873  df-fsupp 9246  df-sup 9326  df-inf 9327  df-oi 9396  df-r1 9654  df-rank 9655  df-dju 9791  df-card 9829  df-acn 9832  df-ac 10004  df-pnf 11145  df-mnf 11146  df-xr 11147  df-ltxr 11148  df-le 11149  df-sub 11343  df-neg 11344  df-div 11772  df-nn 12123  df-2 12185  df-3 12186  df-4 12187  df-5 12188  df-6 12189  df-7 12190  df-8 12191  df-9 12192  df-n0 12379  df-xnn0 12452  df-z 12466  df-dec 12586  df-uz 12730  df-q 12844  df-rp 12888  df-xneg 13008  df-xmul 13010  df-ico 13248  df-fz 13405  df-fzo 13552  df-fl 13693  df-mod 13771  df-seq 13906  df-exp 13966  df-hash 14235  df-word 14418  df-lsw 14467  df-concat 14475  df-s1 14501  df-substr 14546  df-pfx 14576  df-cj 15003  df-re 15004  df-im 15005  df-sqrt 15139  df-abs 15140  df-dvds 16161  df-gcd 16403  df-prm 16580  df-pc 16746  df-struct 17055  df-sets 17072  df-slot 17090  df-ndx 17102  df-base 17118  df-ress 17139  df-plusg 17171  df-mulr 17172  df-starv 17173  df-sca 17174  df-vsca 17175  df-ip 17176  df-tset 17177  df-ple 17178  df-ocomp 17179  df-ds 17180  df-unif 17181  df-hom 17182  df-cco 17183  df-0g 17342  df-gsum 17343  df-prds 17348  df-pws 17350  df-imas 17409  df-qus 17410  df-mre 17485  df-mrc 17486  df-mri 17487  df-acs 17488  df-proset 18197  df-drs 18198  df-poset 18216  df-ipo 18431  df-chn 18509  df-mgm 18545  df-sgrp 18624  df-mnd 18640  df-mhm 18688  df-submnd 18689  df-grp 18846  df-minusg 18847  df-sbg 18848  df-mulg 18978  df-subg 19033  df-nsg 19034  df-eqg 19035  df-ghm 19123  df-gim 19169  df-cntz 19227  df-oppg 19256  df-lsm 19546  df-cmn 19692  df-abl 19693  df-mgp 20057  df-rng 20069  df-ur 20098  df-srg 20103  df-ring 20151  df-cring 20152  df-oppr 20253  df-dvdsr 20273  df-unit 20274  df-irred 20275  df-invr 20304  df-dvr 20317  df-rhm 20388  df-nzr 20426  df-subrng 20459  df-subrg 20483  df-rlreg 20607  df-domn 20608  df-idom 20609  df-drng 20644  df-field 20645  df-sdrg 20700  df-lmod 20793  df-lss 20863  df-lsp 20903  df-lmhm 20954  df-lmim 20955  df-lmic 20956  df-lbs 21007  df-lvec 21035  df-sra 21105  df-rgmod 21106  df-lidl 21143  df-rsp 21144  df-2idl 21185  df-lpidl 21257  df-lpir 21258  df-pid 21272  df-cnfld 21290  df-dsmm 21667  df-frlm 21682  df-uvc 21718  df-lindf 21741  df-linds 21742  df-assa 21788  df-asp 21789  df-ascl 21790  df-psr 21844  df-mvr 21845  df-mpl 21846  df-opsr 21848  df-evls 22007  df-evl 22008  df-psr1 22090  df-vr1 22091  df-ply1 22092  df-coe1 22093  df-evls1 22228  df-evl1 22229  df-mdeg 25985  df-deg1 25986  df-mon1 26061  df-uc1p 26062  df-q1p 26063  df-r1p 26064  df-ig1p 26065  df-fldgen 33272  df-mxidl 33420  df-dim 33607  df-fldext 33649  df-extdg 33650  df-irng 33692  df-minply 33708  df-constr 33738
This theorem is referenced by:  constrcon  33782
  Copyright terms: Public domain W3C validator