| Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > constrext2chn | Structured version Visualization version GIF version | ||
| Description: If a constructible number generates some subfield 𝐿 of ℂ, then the degree of the extension of 𝐿 over ℚ is a power of two. Theorem 7.12 of [Stewart] p. 98. (Contributed by Thierry Arnoux, 26-Oct-2025.) |
| Ref | Expression |
|---|---|
| constrext2chn.q | ⊢ 𝑄 = (ℂfld ↾s ℚ) |
| constrext2chn.l | ⊢ 𝐿 = (ℂfld ↾s 𝑆) |
| constrext2chn.s | ⊢ 𝑆 = (ℂfld fldGen (ℚ ∪ {𝐴})) |
| constrext2chn.a | ⊢ (𝜑 → 𝐴 ∈ Constr) |
| Ref | Expression |
|---|---|
| constrext2chn | ⊢ (𝜑 → ∃𝑛 ∈ ℕ0 (𝐿[:]𝑄) = (2↑𝑛)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | constrcbvlem 33721 | . 2 ⊢ rec((𝑧 ∈ V ↦ {𝑦 ∈ ℂ ∣ (∃𝑖 ∈ 𝑧 ∃𝑗 ∈ 𝑧 ∃𝑘 ∈ 𝑧 ∃𝑙 ∈ 𝑧 ∃𝑜 ∈ ℝ ∃𝑝 ∈ ℝ (𝑦 = (𝑖 + (𝑜 · (𝑗 − 𝑖))) ∧ 𝑦 = (𝑘 + (𝑝 · (𝑙 − 𝑘))) ∧ (ℑ‘((∗‘(𝑗 − 𝑖)) · (𝑙 − 𝑘))) ≠ 0) ∨ ∃𝑖 ∈ 𝑧 ∃𝑗 ∈ 𝑧 ∃𝑘 ∈ 𝑧 ∃𝑚 ∈ 𝑧 ∃𝑞 ∈ 𝑧 ∃𝑜 ∈ ℝ (𝑦 = (𝑖 + (𝑜 · (𝑗 − 𝑖))) ∧ (abs‘(𝑦 − 𝑘)) = (abs‘(𝑚 − 𝑞))) ∨ ∃𝑖 ∈ 𝑧 ∃𝑗 ∈ 𝑧 ∃𝑘 ∈ 𝑧 ∃𝑙 ∈ 𝑧 ∃𝑚 ∈ 𝑧 ∃𝑞 ∈ 𝑧 (𝑖 ≠ 𝑙 ∧ (abs‘(𝑦 − 𝑖)) = (abs‘(𝑗 − 𝑘)) ∧ (abs‘(𝑦 − 𝑙)) = (abs‘(𝑚 − 𝑞))))}), {0, 1}) = rec((𝑠 ∈ V ↦ {𝑥 ∈ ℂ ∣ (∃𝑎 ∈ 𝑠 ∃𝑏 ∈ 𝑠 ∃𝑐 ∈ 𝑠 ∃𝑑 ∈ 𝑠 ∃𝑡 ∈ ℝ ∃𝑟 ∈ ℝ (𝑥 = (𝑎 + (𝑡 · (𝑏 − 𝑎))) ∧ 𝑥 = (𝑐 + (𝑟 · (𝑑 − 𝑐))) ∧ (ℑ‘((∗‘(𝑏 − 𝑎)) · (𝑑 − 𝑐))) ≠ 0) ∨ ∃𝑎 ∈ 𝑠 ∃𝑏 ∈ 𝑠 ∃𝑐 ∈ 𝑠 ∃𝑒 ∈ 𝑠 ∃𝑓 ∈ 𝑠 ∃𝑡 ∈ ℝ (𝑥 = (𝑎 + (𝑡 · (𝑏 − 𝑎))) ∧ (abs‘(𝑥 − 𝑐)) = (abs‘(𝑒 − 𝑓))) ∨ ∃𝑎 ∈ 𝑠 ∃𝑏 ∈ 𝑠 ∃𝑐 ∈ 𝑠 ∃𝑑 ∈ 𝑠 ∃𝑒 ∈ 𝑠 ∃𝑓 ∈ 𝑠 (𝑎 ≠ 𝑑 ∧ (abs‘(𝑥 − 𝑎)) = (abs‘(𝑏 − 𝑐)) ∧ (abs‘(𝑥 − 𝑑)) = (abs‘(𝑒 − 𝑓))))}), {0, 1}) | |
| 2 | eqid 2729 | . 2 ⊢ (ℂfld ↾s 𝑒) = (ℂfld ↾s 𝑒) | |
| 3 | eqid 2729 | . 2 ⊢ (ℂfld ↾s 𝑓) = (ℂfld ↾s 𝑓) | |
| 4 | oveq2 7361 | . . . . . 6 ⊢ (ℎ = 𝑒 → (ℂfld ↾s ℎ) = (ℂfld ↾s 𝑒)) | |
| 5 | 4 | adantl 481 | . . . . 5 ⊢ ((𝑔 = 𝑓 ∧ ℎ = 𝑒) → (ℂfld ↾s ℎ) = (ℂfld ↾s 𝑒)) |
| 6 | oveq2 7361 | . . . . . 6 ⊢ (𝑔 = 𝑓 → (ℂfld ↾s 𝑔) = (ℂfld ↾s 𝑓)) | |
| 7 | 6 | adantr 480 | . . . . 5 ⊢ ((𝑔 = 𝑓 ∧ ℎ = 𝑒) → (ℂfld ↾s 𝑔) = (ℂfld ↾s 𝑓)) |
| 8 | 5, 7 | breq12d 5108 | . . . 4 ⊢ ((𝑔 = 𝑓 ∧ ℎ = 𝑒) → ((ℂfld ↾s ℎ)/FldExt(ℂfld ↾s 𝑔) ↔ (ℂfld ↾s 𝑒)/FldExt(ℂfld ↾s 𝑓))) |
| 9 | 5, 7 | oveq12d 7371 | . . . . 5 ⊢ ((𝑔 = 𝑓 ∧ ℎ = 𝑒) → ((ℂfld ↾s ℎ)[:](ℂfld ↾s 𝑔)) = ((ℂfld ↾s 𝑒)[:](ℂfld ↾s 𝑓))) |
| 10 | 9 | eqeq1d 2731 | . . . 4 ⊢ ((𝑔 = 𝑓 ∧ ℎ = 𝑒) → (((ℂfld ↾s ℎ)[:](ℂfld ↾s 𝑔)) = 2 ↔ ((ℂfld ↾s 𝑒)[:](ℂfld ↾s 𝑓)) = 2)) |
| 11 | 8, 10 | anbi12d 632 | . . 3 ⊢ ((𝑔 = 𝑓 ∧ ℎ = 𝑒) → (((ℂfld ↾s ℎ)/FldExt(ℂfld ↾s 𝑔) ∧ ((ℂfld ↾s ℎ)[:](ℂfld ↾s 𝑔)) = 2) ↔ ((ℂfld ↾s 𝑒)/FldExt(ℂfld ↾s 𝑓) ∧ ((ℂfld ↾s 𝑒)[:](ℂfld ↾s 𝑓)) = 2))) |
| 12 | 11 | cbvopabv 5168 | . 2 ⊢ {〈𝑔, ℎ〉 ∣ ((ℂfld ↾s ℎ)/FldExt(ℂfld ↾s 𝑔) ∧ ((ℂfld ↾s ℎ)[:](ℂfld ↾s 𝑔)) = 2)} = {〈𝑓, 𝑒〉 ∣ ((ℂfld ↾s 𝑒)/FldExt(ℂfld ↾s 𝑓) ∧ ((ℂfld ↾s 𝑒)[:](ℂfld ↾s 𝑓)) = 2)} |
| 13 | peano1 7829 | . . 3 ⊢ ∅ ∈ ω | |
| 14 | 13 | a1i 11 | . 2 ⊢ (𝜑 → ∅ ∈ ω) |
| 15 | constrext2chn.q | . 2 ⊢ 𝑄 = (ℂfld ↾s ℚ) | |
| 16 | constrext2chn.l | . . 3 ⊢ 𝐿 = (ℂfld ↾s 𝑆) | |
| 17 | constrext2chn.s | . . . 4 ⊢ 𝑆 = (ℂfld fldGen (ℚ ∪ {𝐴})) | |
| 18 | 17 | oveq2i 7364 | . . 3 ⊢ (ℂfld ↾s 𝑆) = (ℂfld ↾s (ℂfld fldGen (ℚ ∪ {𝐴}))) |
| 19 | 16, 18 | eqtri 2752 | . 2 ⊢ 𝐿 = (ℂfld ↾s (ℂfld fldGen (ℚ ∪ {𝐴}))) |
| 20 | constrext2chn.a | . 2 ⊢ (𝜑 → 𝐴 ∈ Constr) | |
| 21 | 1, 2, 3, 12, 14, 15, 19, 20 | constrext2chnlem 33716 | 1 ⊢ (𝜑 → ∃𝑛 ∈ ℕ0 (𝐿[:]𝑄) = (2↑𝑛)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∨ w3o 1085 ∧ w3a 1086 = wceq 1540 ∈ wcel 2109 ≠ wne 2925 ∃wrex 3053 {crab 3396 Vcvv 3438 ∪ cun 3903 ∅c0 4286 {csn 4579 {cpr 4581 class class class wbr 5095 {copab 5157 ↦ cmpt 5176 ‘cfv 6486 (class class class)co 7353 ωcom 7806 reccrdg 8338 ℂcc 11026 ℝcr 11027 0cc0 11028 1c1 11029 + caddc 11031 · cmul 11033 − cmin 11365 2c2 12201 ℕ0cn0 12402 ℚcq 12867 ↑cexp 13986 ∗ccj 15021 ℑcim 15023 abscabs 15159 ↾s cress 17159 ℂfldccnfld 21279 fldGen cfldgen 33259 /FldExtcfldext 33610 [:]cextdg 33612 Constrcconstr 33695 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5221 ax-sep 5238 ax-nul 5248 ax-pow 5307 ax-pr 5374 ax-un 7675 ax-reg 9503 ax-inf2 9556 ax-ac2 10376 ax-cnex 11084 ax-resscn 11085 ax-1cn 11086 ax-icn 11087 ax-addcl 11088 ax-addrcl 11089 ax-mulcl 11090 ax-mulrcl 11091 ax-mulcom 11092 ax-addass 11093 ax-mulass 11094 ax-distr 11095 ax-i2m1 11096 ax-1ne0 11097 ax-1rid 11098 ax-rnegex 11099 ax-rrecex 11100 ax-cnre 11101 ax-pre-lttri 11102 ax-pre-lttrn 11103 ax-pre-ltadd 11104 ax-pre-mulgt0 11105 ax-pre-sup 11106 ax-addf 11107 ax-mulf 11108 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rmo 3345 df-reu 3346 df-rab 3397 df-v 3440 df-sbc 3745 df-csb 3854 df-dif 3908 df-un 3910 df-in 3912 df-ss 3922 df-pss 3925 df-nul 4287 df-if 4479 df-pw 4555 df-sn 4580 df-pr 4582 df-tp 4584 df-op 4586 df-uni 4862 df-int 4900 df-iun 4946 df-iin 4947 df-br 5096 df-opab 5158 df-mpt 5177 df-tr 5203 df-id 5518 df-eprel 5523 df-po 5531 df-so 5532 df-fr 5576 df-se 5577 df-we 5578 df-xp 5629 df-rel 5630 df-cnv 5631 df-co 5632 df-dm 5633 df-rn 5634 df-res 5635 df-ima 5636 df-pred 6253 df-ord 6314 df-on 6315 df-lim 6316 df-suc 6317 df-iota 6442 df-fun 6488 df-fn 6489 df-f 6490 df-f1 6491 df-fo 6492 df-f1o 6493 df-fv 6494 df-isom 6495 df-riota 7310 df-ov 7356 df-oprab 7357 df-mpo 7358 df-of 7617 df-ofr 7618 df-rpss 7663 df-om 7807 df-1st 7931 df-2nd 7932 df-supp 8101 df-tpos 8166 df-frecs 8221 df-wrecs 8252 df-recs 8301 df-rdg 8339 df-1o 8395 df-2o 8396 df-oadd 8399 df-er 8632 df-ec 8634 df-qs 8638 df-map 8762 df-pm 8763 df-ixp 8832 df-en 8880 df-dom 8881 df-sdom 8882 df-fin 8883 df-fsupp 9271 df-sup 9351 df-inf 9352 df-oi 9421 df-r1 9679 df-rank 9680 df-dju 9816 df-card 9854 df-acn 9857 df-ac 10029 df-pnf 11170 df-mnf 11171 df-xr 11172 df-ltxr 11173 df-le 11174 df-sub 11367 df-neg 11368 df-div 11796 df-nn 12147 df-2 12209 df-3 12210 df-4 12211 df-5 12212 df-6 12213 df-7 12214 df-8 12215 df-9 12216 df-n0 12403 df-xnn0 12476 df-z 12490 df-dec 12610 df-uz 12754 df-q 12868 df-rp 12912 df-xneg 13032 df-xmul 13034 df-ico 13272 df-fz 13429 df-fzo 13576 df-fl 13714 df-mod 13792 df-seq 13927 df-exp 13987 df-hash 14256 df-word 14439 df-lsw 14488 df-concat 14496 df-s1 14521 df-substr 14566 df-pfx 14596 df-cj 15024 df-re 15025 df-im 15026 df-sqrt 15160 df-abs 15161 df-dvds 16182 df-gcd 16424 df-prm 16601 df-pc 16767 df-struct 17076 df-sets 17093 df-slot 17111 df-ndx 17123 df-base 17139 df-ress 17160 df-plusg 17192 df-mulr 17193 df-starv 17194 df-sca 17195 df-vsca 17196 df-ip 17197 df-tset 17198 df-ple 17199 df-ocomp 17200 df-ds 17201 df-unif 17202 df-hom 17203 df-cco 17204 df-0g 17363 df-gsum 17364 df-prds 17369 df-pws 17371 df-imas 17430 df-qus 17431 df-mre 17506 df-mrc 17507 df-mri 17508 df-acs 17509 df-proset 18218 df-drs 18219 df-poset 18237 df-ipo 18452 df-mgm 18532 df-sgrp 18611 df-mnd 18627 df-mhm 18675 df-submnd 18676 df-grp 18833 df-minusg 18834 df-sbg 18835 df-mulg 18965 df-subg 19020 df-nsg 19021 df-eqg 19022 df-ghm 19110 df-gim 19156 df-cntz 19214 df-oppg 19243 df-lsm 19533 df-cmn 19679 df-abl 19680 df-mgp 20044 df-rng 20056 df-ur 20085 df-srg 20090 df-ring 20138 df-cring 20139 df-oppr 20240 df-dvdsr 20260 df-unit 20261 df-irred 20262 df-invr 20291 df-dvr 20304 df-rhm 20375 df-nzr 20416 df-subrng 20449 df-subrg 20473 df-rlreg 20597 df-domn 20598 df-idom 20599 df-drng 20634 df-field 20635 df-sdrg 20690 df-lmod 20783 df-lss 20853 df-lsp 20893 df-lmhm 20944 df-lmim 20945 df-lmic 20946 df-lbs 20997 df-lvec 21025 df-sra 21095 df-rgmod 21096 df-lidl 21133 df-rsp 21134 df-2idl 21175 df-lpidl 21247 df-lpir 21248 df-pid 21262 df-cnfld 21280 df-dsmm 21657 df-frlm 21672 df-uvc 21708 df-lindf 21731 df-linds 21732 df-assa 21778 df-asp 21779 df-ascl 21780 df-psr 21834 df-mvr 21835 df-mpl 21836 df-opsr 21838 df-evls 21997 df-evl 21998 df-psr1 22080 df-vr1 22081 df-ply1 22082 df-coe1 22083 df-evls1 22218 df-evl1 22219 df-mdeg 25976 df-deg1 25977 df-mon1 26052 df-uc1p 26053 df-q1p 26054 df-r1p 26055 df-ig1p 26056 df-chn 32960 df-fldgen 33260 df-mxidl 33407 df-dim 33571 df-fldext 33613 df-extdg 33614 df-irng 33655 df-minply 33666 df-constr 33696 |
| This theorem is referenced by: constrcon 33740 |
| Copyright terms: Public domain | W3C validator |