Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  constrlccl Structured version   Visualization version   GIF version

Theorem constrlccl 33737
Description: Constructible numbers are closed under line-circle intersections. (Contributed by Thierry Arnoux, 2-Nov-2025.)
Hypotheses
Ref Expression
constrlccl.a (𝜑𝐴 ∈ Constr)
constrlccl.b (𝜑𝐵 ∈ Constr)
constrlccl.c (𝜑𝐺 ∈ Constr)
constrlccl.e (𝜑𝐸 ∈ Constr)
constrlccl.f (𝜑𝐹 ∈ Constr)
constrlccl.t (𝜑𝑇 ∈ ℝ)
constrlccl.x (𝜑𝑋 ∈ ℂ)
constrlccl.1 (𝜑𝑋 = (𝐴 + (𝑇 · (𝐵𝐴))))
constrlccl.2 (𝜑 → (abs‘(𝑋𝐺)) = (abs‘(𝐸𝐹)))
Assertion
Ref Expression
constrlccl (𝜑𝑋 ∈ Constr)

Proof of Theorem constrlccl
Dummy variables 𝑎 𝑏 𝑐 𝑑 𝑒 𝑓 𝑠 𝑡 𝑥 𝑟 𝑖 𝑗 𝑘 𝑙 𝑚 𝑞 𝑦 𝑧 𝑜 𝑝 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 constrcbvlem 33735 . 2 rec((𝑧 ∈ V ↦ {𝑦 ∈ ℂ ∣ (∃𝑖𝑧𝑗𝑧𝑘𝑧𝑙𝑧𝑜 ∈ ℝ ∃𝑝 ∈ ℝ (𝑦 = (𝑖 + (𝑜 · (𝑗𝑖))) ∧ 𝑦 = (𝑘 + (𝑝 · (𝑙𝑘))) ∧ (ℑ‘((∗‘(𝑗𝑖)) · (𝑙𝑘))) ≠ 0) ∨ ∃𝑖𝑧𝑗𝑧𝑘𝑧𝑚𝑧𝑞𝑧𝑜 ∈ ℝ (𝑦 = (𝑖 + (𝑜 · (𝑗𝑖))) ∧ (abs‘(𝑦𝑘)) = (abs‘(𝑚𝑞))) ∨ ∃𝑖𝑧𝑗𝑧𝑘𝑧𝑙𝑧𝑚𝑧𝑞𝑧 (𝑖𝑙 ∧ (abs‘(𝑦𝑖)) = (abs‘(𝑗𝑘)) ∧ (abs‘(𝑦𝑙)) = (abs‘(𝑚𝑞))))}), {0, 1}) = rec((𝑠 ∈ V ↦ {𝑥 ∈ ℂ ∣ (∃𝑎𝑠𝑏𝑠𝑐𝑠𝑑𝑠𝑡 ∈ ℝ ∃𝑟 ∈ ℝ (𝑥 = (𝑎 + (𝑡 · (𝑏𝑎))) ∧ 𝑥 = (𝑐 + (𝑟 · (𝑑𝑐))) ∧ (ℑ‘((∗‘(𝑏𝑎)) · (𝑑𝑐))) ≠ 0) ∨ ∃𝑎𝑠𝑏𝑠𝑐𝑠𝑒𝑠𝑓𝑠𝑡 ∈ ℝ (𝑥 = (𝑎 + (𝑡 · (𝑏𝑎))) ∧ (abs‘(𝑥𝑐)) = (abs‘(𝑒𝑓))) ∨ ∃𝑎𝑠𝑏𝑠𝑐𝑠𝑑𝑠𝑒𝑠𝑓𝑠 (𝑎𝑑 ∧ (abs‘(𝑥𝑎)) = (abs‘(𝑏𝑐)) ∧ (abs‘(𝑥𝑑)) = (abs‘(𝑒𝑓))))}), {0, 1})
2 constrlccl.a . 2 (𝜑𝐴 ∈ Constr)
3 constrlccl.b . 2 (𝜑𝐵 ∈ Constr)
4 constrlccl.c . 2 (𝜑𝐺 ∈ Constr)
5 constrlccl.e . 2 (𝜑𝐸 ∈ Constr)
6 constrlccl.f . 2 (𝜑𝐹 ∈ Constr)
7 constrlccl.t . 2 (𝜑𝑇 ∈ ℝ)
8 constrlccl.x . 2 (𝜑𝑋 ∈ ℂ)
9 constrlccl.1 . 2 (𝜑𝑋 = (𝐴 + (𝑇 · (𝐵𝐴))))
10 constrlccl.2 . 2 (𝜑 → (abs‘(𝑋𝐺)) = (abs‘(𝐸𝐹)))
111, 2, 3, 4, 5, 6, 7, 8, 9, 10constrlccllem 33733 1 (𝜑𝑋 ∈ Constr)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3o 1085  w3a 1086   = wceq 1539  wcel 2107  wne 2931  wrex 3059  {crab 3419  Vcvv 3463  {cpr 4608  cmpt 5205  cfv 6541  (class class class)co 7413  reccrdg 8431  cc 11135  cr 11136  0cc0 11137  1c1 11138   + caddc 11140   · cmul 11142  cmin 11474  ccj 15117  cim 15119  abscabs 15255  Constrcconstr 33709
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-10 2140  ax-11 2156  ax-12 2176  ax-ext 2706  ax-rep 5259  ax-sep 5276  ax-nul 5286  ax-pow 5345  ax-pr 5412  ax-un 7737  ax-cnex 11193  ax-resscn 11194  ax-1cn 11195  ax-icn 11196  ax-addcl 11197  ax-addrcl 11198  ax-mulcl 11199  ax-mulrcl 11200  ax-mulcom 11201  ax-addass 11202  ax-mulass 11203  ax-distr 11204  ax-i2m1 11205  ax-1ne0 11206  ax-1rid 11207  ax-rnegex 11208  ax-rrecex 11209  ax-cnre 11210  ax-pre-lttri 11211  ax-pre-lttrn 11212  ax-pre-ltadd 11213
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1779  df-nf 1783  df-sb 2064  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2726  df-clel 2808  df-nfc 2884  df-ne 2932  df-nel 3036  df-ral 3051  df-rex 3060  df-reu 3364  df-rab 3420  df-v 3465  df-sbc 3771  df-csb 3880  df-dif 3934  df-un 3936  df-in 3938  df-ss 3948  df-pss 3951  df-nul 4314  df-if 4506  df-pw 4582  df-sn 4607  df-pr 4609  df-tp 4611  df-op 4613  df-uni 4888  df-iun 4973  df-br 5124  df-opab 5186  df-mpt 5206  df-tr 5240  df-id 5558  df-eprel 5564  df-po 5572  df-so 5573  df-fr 5617  df-we 5619  df-xp 5671  df-rel 5672  df-cnv 5673  df-co 5674  df-dm 5675  df-rn 5676  df-res 5677  df-ima 5678  df-pred 6301  df-ord 6366  df-on 6367  df-lim 6368  df-suc 6369  df-iota 6494  df-fun 6543  df-fn 6544  df-f 6545  df-f1 6546  df-fo 6547  df-f1o 6548  df-fv 6549  df-riota 7370  df-ov 7416  df-oprab 7417  df-mpo 7418  df-om 7870  df-2nd 7997  df-frecs 8288  df-wrecs 8319  df-recs 8393  df-rdg 8432  df-1o 8488  df-2o 8489  df-er 8727  df-en 8968  df-dom 8969  df-sdom 8970  df-fin 8971  df-pnf 11279  df-mnf 11280  df-ltxr 11282  df-sub 11476  df-constr 33710
This theorem is referenced by:  nn0constr  33741  constraddcl  33742  constrnegcl  33743  constrdircl  33745  constrremulcl  33747
  Copyright terms: Public domain W3C validator