| Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > constrlccl | Structured version Visualization version GIF version | ||
| Description: Constructible numbers are closed under line-circle intersections. (Contributed by Thierry Arnoux, 2-Nov-2025.) |
| Ref | Expression |
|---|---|
| constrlccl.a | ⊢ (𝜑 → 𝐴 ∈ Constr) |
| constrlccl.b | ⊢ (𝜑 → 𝐵 ∈ Constr) |
| constrlccl.c | ⊢ (𝜑 → 𝐺 ∈ Constr) |
| constrlccl.e | ⊢ (𝜑 → 𝐸 ∈ Constr) |
| constrlccl.f | ⊢ (𝜑 → 𝐹 ∈ Constr) |
| constrlccl.t | ⊢ (𝜑 → 𝑇 ∈ ℝ) |
| constrlccl.x | ⊢ (𝜑 → 𝑋 ∈ ℂ) |
| constrlccl.1 | ⊢ (𝜑 → 𝑋 = (𝐴 + (𝑇 · (𝐵 − 𝐴)))) |
| constrlccl.2 | ⊢ (𝜑 → (abs‘(𝑋 − 𝐺)) = (abs‘(𝐸 − 𝐹))) |
| Ref | Expression |
|---|---|
| constrlccl | ⊢ (𝜑 → 𝑋 ∈ Constr) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | constrcbvlem 33721 | . 2 ⊢ rec((𝑧 ∈ V ↦ {𝑦 ∈ ℂ ∣ (∃𝑖 ∈ 𝑧 ∃𝑗 ∈ 𝑧 ∃𝑘 ∈ 𝑧 ∃𝑙 ∈ 𝑧 ∃𝑜 ∈ ℝ ∃𝑝 ∈ ℝ (𝑦 = (𝑖 + (𝑜 · (𝑗 − 𝑖))) ∧ 𝑦 = (𝑘 + (𝑝 · (𝑙 − 𝑘))) ∧ (ℑ‘((∗‘(𝑗 − 𝑖)) · (𝑙 − 𝑘))) ≠ 0) ∨ ∃𝑖 ∈ 𝑧 ∃𝑗 ∈ 𝑧 ∃𝑘 ∈ 𝑧 ∃𝑚 ∈ 𝑧 ∃𝑞 ∈ 𝑧 ∃𝑜 ∈ ℝ (𝑦 = (𝑖 + (𝑜 · (𝑗 − 𝑖))) ∧ (abs‘(𝑦 − 𝑘)) = (abs‘(𝑚 − 𝑞))) ∨ ∃𝑖 ∈ 𝑧 ∃𝑗 ∈ 𝑧 ∃𝑘 ∈ 𝑧 ∃𝑙 ∈ 𝑧 ∃𝑚 ∈ 𝑧 ∃𝑞 ∈ 𝑧 (𝑖 ≠ 𝑙 ∧ (abs‘(𝑦 − 𝑖)) = (abs‘(𝑗 − 𝑘)) ∧ (abs‘(𝑦 − 𝑙)) = (abs‘(𝑚 − 𝑞))))}), {0, 1}) = rec((𝑠 ∈ V ↦ {𝑥 ∈ ℂ ∣ (∃𝑎 ∈ 𝑠 ∃𝑏 ∈ 𝑠 ∃𝑐 ∈ 𝑠 ∃𝑑 ∈ 𝑠 ∃𝑡 ∈ ℝ ∃𝑟 ∈ ℝ (𝑥 = (𝑎 + (𝑡 · (𝑏 − 𝑎))) ∧ 𝑥 = (𝑐 + (𝑟 · (𝑑 − 𝑐))) ∧ (ℑ‘((∗‘(𝑏 − 𝑎)) · (𝑑 − 𝑐))) ≠ 0) ∨ ∃𝑎 ∈ 𝑠 ∃𝑏 ∈ 𝑠 ∃𝑐 ∈ 𝑠 ∃𝑒 ∈ 𝑠 ∃𝑓 ∈ 𝑠 ∃𝑡 ∈ ℝ (𝑥 = (𝑎 + (𝑡 · (𝑏 − 𝑎))) ∧ (abs‘(𝑥 − 𝑐)) = (abs‘(𝑒 − 𝑓))) ∨ ∃𝑎 ∈ 𝑠 ∃𝑏 ∈ 𝑠 ∃𝑐 ∈ 𝑠 ∃𝑑 ∈ 𝑠 ∃𝑒 ∈ 𝑠 ∃𝑓 ∈ 𝑠 (𝑎 ≠ 𝑑 ∧ (abs‘(𝑥 − 𝑎)) = (abs‘(𝑏 − 𝑐)) ∧ (abs‘(𝑥 − 𝑑)) = (abs‘(𝑒 − 𝑓))))}), {0, 1}) | |
| 2 | constrlccl.a | . 2 ⊢ (𝜑 → 𝐴 ∈ Constr) | |
| 3 | constrlccl.b | . 2 ⊢ (𝜑 → 𝐵 ∈ Constr) | |
| 4 | constrlccl.c | . 2 ⊢ (𝜑 → 𝐺 ∈ Constr) | |
| 5 | constrlccl.e | . 2 ⊢ (𝜑 → 𝐸 ∈ Constr) | |
| 6 | constrlccl.f | . 2 ⊢ (𝜑 → 𝐹 ∈ Constr) | |
| 7 | constrlccl.t | . 2 ⊢ (𝜑 → 𝑇 ∈ ℝ) | |
| 8 | constrlccl.x | . 2 ⊢ (𝜑 → 𝑋 ∈ ℂ) | |
| 9 | constrlccl.1 | . 2 ⊢ (𝜑 → 𝑋 = (𝐴 + (𝑇 · (𝐵 − 𝐴)))) | |
| 10 | constrlccl.2 | . 2 ⊢ (𝜑 → (abs‘(𝑋 − 𝐺)) = (abs‘(𝐸 − 𝐹))) | |
| 11 | 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 | constrlccllem 33719 | 1 ⊢ (𝜑 → 𝑋 ∈ Constr) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∨ w3o 1085 ∧ w3a 1086 = wceq 1540 ∈ wcel 2109 ≠ wne 2925 ∃wrex 3053 {crab 3396 Vcvv 3438 {cpr 4581 ↦ cmpt 5176 ‘cfv 6486 (class class class)co 7353 reccrdg 8338 ℂcc 11026 ℝcr 11027 0cc0 11028 1c1 11029 + caddc 11031 · cmul 11033 − cmin 11365 ∗ccj 15021 ℑcim 15023 abscabs 15159 Constrcconstr 33695 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5221 ax-sep 5238 ax-nul 5248 ax-pow 5307 ax-pr 5374 ax-un 7675 ax-cnex 11084 ax-resscn 11085 ax-1cn 11086 ax-icn 11087 ax-addcl 11088 ax-addrcl 11089 ax-mulcl 11090 ax-mulrcl 11091 ax-mulcom 11092 ax-addass 11093 ax-mulass 11094 ax-distr 11095 ax-i2m1 11096 ax-1ne0 11097 ax-1rid 11098 ax-rnegex 11099 ax-rrecex 11100 ax-cnre 11101 ax-pre-lttri 11102 ax-pre-lttrn 11103 ax-pre-ltadd 11104 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-reu 3346 df-rab 3397 df-v 3440 df-sbc 3745 df-csb 3854 df-dif 3908 df-un 3910 df-in 3912 df-ss 3922 df-pss 3925 df-nul 4287 df-if 4479 df-pw 4555 df-sn 4580 df-pr 4582 df-tp 4584 df-op 4586 df-uni 4862 df-iun 4946 df-br 5096 df-opab 5158 df-mpt 5177 df-tr 5203 df-id 5518 df-eprel 5523 df-po 5531 df-so 5532 df-fr 5576 df-we 5578 df-xp 5629 df-rel 5630 df-cnv 5631 df-co 5632 df-dm 5633 df-rn 5634 df-res 5635 df-ima 5636 df-pred 6253 df-ord 6314 df-on 6315 df-lim 6316 df-suc 6317 df-iota 6442 df-fun 6488 df-fn 6489 df-f 6490 df-f1 6491 df-fo 6492 df-f1o 6493 df-fv 6494 df-riota 7310 df-ov 7356 df-oprab 7357 df-mpo 7358 df-om 7807 df-2nd 7932 df-frecs 8221 df-wrecs 8252 df-recs 8301 df-rdg 8339 df-1o 8395 df-2o 8396 df-er 8632 df-en 8880 df-dom 8881 df-sdom 8882 df-fin 8883 df-pnf 11170 df-mnf 11171 df-ltxr 11173 df-sub 11367 df-constr 33696 |
| This theorem is referenced by: nn0constr 33727 constraddcl 33728 constrnegcl 33729 constrdircl 33731 constrremulcl 33733 constrimcl 33736 constrmulcl 33737 constrinvcl 33739 constrresqrtcl 33743 constrabscl 33744 |
| Copyright terms: Public domain | W3C validator |