| Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > constrllcl | Structured version Visualization version GIF version | ||
| Description: Constructible numbers are closed under line-line intersections. (Contributed by Thierry Arnoux, 2-Nov-2025.) |
| Ref | Expression |
|---|---|
| constrllcl.a | ⊢ (𝜑 → 𝐴 ∈ Constr) |
| constrllcl.b | ⊢ (𝜑 → 𝐵 ∈ Constr) |
| constrllcl.c | ⊢ (𝜑 → 𝐺 ∈ Constr) |
| constrllcl.e | ⊢ (𝜑 → 𝐷 ∈ Constr) |
| constrllcl.t | ⊢ (𝜑 → 𝑇 ∈ ℝ) |
| constrllcl.r | ⊢ (𝜑 → 𝑅 ∈ ℝ) |
| constrllcl.x | ⊢ (𝜑 → 𝑋 ∈ ℂ) |
| constrllcl.1 | ⊢ (𝜑 → 𝑋 = (𝐴 + (𝑇 · (𝐵 − 𝐴)))) |
| constrllcl.2 | ⊢ (𝜑 → 𝑋 = (𝐺 + (𝑅 · (𝐷 − 𝐺)))) |
| constrllcl.3 | ⊢ (𝜑 → (ℑ‘((∗‘(𝐵 − 𝐴)) · (𝐷 − 𝐺))) ≠ 0) |
| Ref | Expression |
|---|---|
| constrllcl | ⊢ (𝜑 → 𝑋 ∈ Constr) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | constrcbvlem 33735 | . 2 ⊢ rec((𝑧 ∈ V ↦ {𝑦 ∈ ℂ ∣ (∃𝑖 ∈ 𝑧 ∃𝑗 ∈ 𝑧 ∃𝑘 ∈ 𝑧 ∃𝑙 ∈ 𝑧 ∃𝑜 ∈ ℝ ∃𝑝 ∈ ℝ (𝑦 = (𝑖 + (𝑜 · (𝑗 − 𝑖))) ∧ 𝑦 = (𝑘 + (𝑝 · (𝑙 − 𝑘))) ∧ (ℑ‘((∗‘(𝑗 − 𝑖)) · (𝑙 − 𝑘))) ≠ 0) ∨ ∃𝑖 ∈ 𝑧 ∃𝑗 ∈ 𝑧 ∃𝑘 ∈ 𝑧 ∃𝑚 ∈ 𝑧 ∃𝑞 ∈ 𝑧 ∃𝑜 ∈ ℝ (𝑦 = (𝑖 + (𝑜 · (𝑗 − 𝑖))) ∧ (abs‘(𝑦 − 𝑘)) = (abs‘(𝑚 − 𝑞))) ∨ ∃𝑖 ∈ 𝑧 ∃𝑗 ∈ 𝑧 ∃𝑘 ∈ 𝑧 ∃𝑙 ∈ 𝑧 ∃𝑚 ∈ 𝑧 ∃𝑞 ∈ 𝑧 (𝑖 ≠ 𝑙 ∧ (abs‘(𝑦 − 𝑖)) = (abs‘(𝑗 − 𝑘)) ∧ (abs‘(𝑦 − 𝑙)) = (abs‘(𝑚 − 𝑞))))}), {0, 1}) = rec((𝑠 ∈ V ↦ {𝑥 ∈ ℂ ∣ (∃𝑎 ∈ 𝑠 ∃𝑏 ∈ 𝑠 ∃𝑐 ∈ 𝑠 ∃𝑑 ∈ 𝑠 ∃𝑡 ∈ ℝ ∃𝑟 ∈ ℝ (𝑥 = (𝑎 + (𝑡 · (𝑏 − 𝑎))) ∧ 𝑥 = (𝑐 + (𝑟 · (𝑑 − 𝑐))) ∧ (ℑ‘((∗‘(𝑏 − 𝑎)) · (𝑑 − 𝑐))) ≠ 0) ∨ ∃𝑎 ∈ 𝑠 ∃𝑏 ∈ 𝑠 ∃𝑐 ∈ 𝑠 ∃𝑒 ∈ 𝑠 ∃𝑓 ∈ 𝑠 ∃𝑡 ∈ ℝ (𝑥 = (𝑎 + (𝑡 · (𝑏 − 𝑎))) ∧ (abs‘(𝑥 − 𝑐)) = (abs‘(𝑒 − 𝑓))) ∨ ∃𝑎 ∈ 𝑠 ∃𝑏 ∈ 𝑠 ∃𝑐 ∈ 𝑠 ∃𝑑 ∈ 𝑠 ∃𝑒 ∈ 𝑠 ∃𝑓 ∈ 𝑠 (𝑎 ≠ 𝑑 ∧ (abs‘(𝑥 − 𝑎)) = (abs‘(𝑏 − 𝑐)) ∧ (abs‘(𝑥 − 𝑑)) = (abs‘(𝑒 − 𝑓))))}), {0, 1}) | |
| 2 | constrllcl.a | . 2 ⊢ (𝜑 → 𝐴 ∈ Constr) | |
| 3 | constrllcl.b | . 2 ⊢ (𝜑 → 𝐵 ∈ Constr) | |
| 4 | constrllcl.c | . 2 ⊢ (𝜑 → 𝐺 ∈ Constr) | |
| 5 | constrllcl.e | . 2 ⊢ (𝜑 → 𝐷 ∈ Constr) | |
| 6 | constrllcl.t | . 2 ⊢ (𝜑 → 𝑇 ∈ ℝ) | |
| 7 | constrllcl.r | . 2 ⊢ (𝜑 → 𝑅 ∈ ℝ) | |
| 8 | constrllcl.x | . 2 ⊢ (𝜑 → 𝑋 ∈ ℂ) | |
| 9 | constrllcl.1 | . 2 ⊢ (𝜑 → 𝑋 = (𝐴 + (𝑇 · (𝐵 − 𝐴)))) | |
| 10 | constrllcl.2 | . 2 ⊢ (𝜑 → 𝑋 = (𝐺 + (𝑅 · (𝐷 − 𝐺)))) | |
| 11 | constrllcl.3 | . 2 ⊢ (𝜑 → (ℑ‘((∗‘(𝐵 − 𝐴)) · (𝐷 − 𝐺))) ≠ 0) | |
| 12 | 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11 | constrllcllem 33732 | 1 ⊢ (𝜑 → 𝑋 ∈ Constr) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∨ w3o 1085 ∧ w3a 1086 = wceq 1539 ∈ wcel 2107 ≠ wne 2931 ∃wrex 3059 {crab 3419 Vcvv 3463 {cpr 4608 ↦ cmpt 5205 ‘cfv 6541 (class class class)co 7413 reccrdg 8431 ℂcc 11135 ℝcr 11136 0cc0 11137 1c1 11138 + caddc 11140 · cmul 11142 − cmin 11474 ∗ccj 15117 ℑcim 15119 abscabs 15255 Constrcconstr 33709 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-11 2156 ax-12 2176 ax-ext 2706 ax-rep 5259 ax-sep 5276 ax-nul 5286 ax-pow 5345 ax-pr 5412 ax-un 7737 ax-cnex 11193 ax-resscn 11194 ax-1cn 11195 ax-icn 11196 ax-addcl 11197 ax-addrcl 11198 ax-mulcl 11199 ax-mulrcl 11200 ax-mulcom 11201 ax-addass 11202 ax-mulass 11203 ax-distr 11204 ax-i2m1 11205 ax-1ne0 11206 ax-1rid 11207 ax-rnegex 11208 ax-rrecex 11209 ax-cnre 11210 ax-pre-lttri 11211 ax-pre-lttrn 11212 ax-pre-ltadd 11213 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2064 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2726 df-clel 2808 df-nfc 2884 df-ne 2932 df-nel 3036 df-ral 3051 df-rex 3060 df-reu 3364 df-rab 3420 df-v 3465 df-sbc 3771 df-csb 3880 df-dif 3934 df-un 3936 df-in 3938 df-ss 3948 df-pss 3951 df-nul 4314 df-if 4506 df-pw 4582 df-sn 4607 df-pr 4609 df-op 4613 df-uni 4888 df-iun 4973 df-br 5124 df-opab 5186 df-mpt 5206 df-tr 5240 df-id 5558 df-eprel 5564 df-po 5572 df-so 5573 df-fr 5617 df-we 5619 df-xp 5671 df-rel 5672 df-cnv 5673 df-co 5674 df-dm 5675 df-rn 5676 df-res 5677 df-ima 5678 df-pred 6301 df-ord 6366 df-on 6367 df-lim 6368 df-suc 6369 df-iota 6494 df-fun 6543 df-fn 6544 df-f 6545 df-f1 6546 df-fo 6547 df-f1o 6548 df-fv 6549 df-riota 7370 df-ov 7416 df-oprab 7417 df-mpo 7418 df-om 7870 df-2nd 7997 df-frecs 8288 df-wrecs 8319 df-recs 8393 df-rdg 8432 df-1o 8488 df-2o 8489 df-er 8727 df-en 8968 df-dom 8969 df-sdom 8970 df-fin 8971 df-pnf 11279 df-mnf 11280 df-ltxr 11282 df-sub 11476 df-constr 33710 |
| This theorem is referenced by: constrremulcl 33747 |
| Copyright terms: Public domain | W3C validator |