Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  nn0constr Structured version   Visualization version   GIF version

Theorem nn0constr 33751
Description: Nonnegative integers are constructible. (Contributed by Thierry Arnoux, 2-Nov-2025.)
Hypothesis
Ref Expression
nn0constr.1 (𝜑𝑁 ∈ ℕ0)
Assertion
Ref Expression
nn0constr (𝜑𝑁 ∈ Constr)

Proof of Theorem nn0constr
Dummy variables 𝑚 𝑎 𝑏 𝑐 𝑑 𝑒 𝑓 𝑟 𝑠 𝑡 𝑥 𝑧 𝑦 𝑖 𝑗 𝑘 𝑙 𝑞 𝑜 𝑢 𝑝 𝑛 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 nn0constr.1 . 2 (𝜑𝑁 ∈ ℕ0)
2 eleq1 2816 . . 3 (𝑚 = 0 → (𝑚 ∈ Constr ↔ 0 ∈ Constr))
3 eleq1 2816 . . 3 (𝑚 = 𝑛 → (𝑚 ∈ Constr ↔ 𝑛 ∈ Constr))
4 eleq1 2816 . . 3 (𝑚 = (𝑛 + 1) → (𝑚 ∈ Constr ↔ (𝑛 + 1) ∈ Constr))
5 eleq1 2816 . . 3 (𝑚 = 𝑁 → (𝑚 ∈ Constr ↔ 𝑁 ∈ Constr))
6 peano1 7865 . . . . . 6 ∅ ∈ ω
76a1i 11 . . . . 5 (𝜑 → ∅ ∈ ω)
8 fveq2 6858 . . . . . . 7 (𝑢 = ∅ → (rec((𝑧 ∈ V ↦ {𝑦 ∈ ℂ ∣ (∃𝑖𝑧𝑗𝑧𝑘𝑧𝑙𝑧𝑜 ∈ ℝ ∃𝑝 ∈ ℝ (𝑦 = (𝑖 + (𝑜 · (𝑗𝑖))) ∧ 𝑦 = (𝑘 + (𝑝 · (𝑙𝑘))) ∧ (ℑ‘((∗‘(𝑗𝑖)) · (𝑙𝑘))) ≠ 0) ∨ ∃𝑖𝑧𝑗𝑧𝑘𝑧𝑚𝑧𝑞𝑧𝑜 ∈ ℝ (𝑦 = (𝑖 + (𝑜 · (𝑗𝑖))) ∧ (abs‘(𝑦𝑘)) = (abs‘(𝑚𝑞))) ∨ ∃𝑖𝑧𝑗𝑧𝑘𝑧𝑙𝑧𝑚𝑧𝑞𝑧 (𝑖𝑙 ∧ (abs‘(𝑦𝑖)) = (abs‘(𝑗𝑘)) ∧ (abs‘(𝑦𝑙)) = (abs‘(𝑚𝑞))))}), {0, 1})‘𝑢) = (rec((𝑧 ∈ V ↦ {𝑦 ∈ ℂ ∣ (∃𝑖𝑧𝑗𝑧𝑘𝑧𝑙𝑧𝑜 ∈ ℝ ∃𝑝 ∈ ℝ (𝑦 = (𝑖 + (𝑜 · (𝑗𝑖))) ∧ 𝑦 = (𝑘 + (𝑝 · (𝑙𝑘))) ∧ (ℑ‘((∗‘(𝑗𝑖)) · (𝑙𝑘))) ≠ 0) ∨ ∃𝑖𝑧𝑗𝑧𝑘𝑧𝑚𝑧𝑞𝑧𝑜 ∈ ℝ (𝑦 = (𝑖 + (𝑜 · (𝑗𝑖))) ∧ (abs‘(𝑦𝑘)) = (abs‘(𝑚𝑞))) ∨ ∃𝑖𝑧𝑗𝑧𝑘𝑧𝑙𝑧𝑚𝑧𝑞𝑧 (𝑖𝑙 ∧ (abs‘(𝑦𝑖)) = (abs‘(𝑗𝑘)) ∧ (abs‘(𝑦𝑙)) = (abs‘(𝑚𝑞))))}), {0, 1})‘∅))
98eleq2d 2814 . . . . . 6 (𝑢 = ∅ → (0 ∈ (rec((𝑧 ∈ V ↦ {𝑦 ∈ ℂ ∣ (∃𝑖𝑧𝑗𝑧𝑘𝑧𝑙𝑧𝑜 ∈ ℝ ∃𝑝 ∈ ℝ (𝑦 = (𝑖 + (𝑜 · (𝑗𝑖))) ∧ 𝑦 = (𝑘 + (𝑝 · (𝑙𝑘))) ∧ (ℑ‘((∗‘(𝑗𝑖)) · (𝑙𝑘))) ≠ 0) ∨ ∃𝑖𝑧𝑗𝑧𝑘𝑧𝑚𝑧𝑞𝑧𝑜 ∈ ℝ (𝑦 = (𝑖 + (𝑜 · (𝑗𝑖))) ∧ (abs‘(𝑦𝑘)) = (abs‘(𝑚𝑞))) ∨ ∃𝑖𝑧𝑗𝑧𝑘𝑧𝑙𝑧𝑚𝑧𝑞𝑧 (𝑖𝑙 ∧ (abs‘(𝑦𝑖)) = (abs‘(𝑗𝑘)) ∧ (abs‘(𝑦𝑙)) = (abs‘(𝑚𝑞))))}), {0, 1})‘𝑢) ↔ 0 ∈ (rec((𝑧 ∈ V ↦ {𝑦 ∈ ℂ ∣ (∃𝑖𝑧𝑗𝑧𝑘𝑧𝑙𝑧𝑜 ∈ ℝ ∃𝑝 ∈ ℝ (𝑦 = (𝑖 + (𝑜 · (𝑗𝑖))) ∧ 𝑦 = (𝑘 + (𝑝 · (𝑙𝑘))) ∧ (ℑ‘((∗‘(𝑗𝑖)) · (𝑙𝑘))) ≠ 0) ∨ ∃𝑖𝑧𝑗𝑧𝑘𝑧𝑚𝑧𝑞𝑧𝑜 ∈ ℝ (𝑦 = (𝑖 + (𝑜 · (𝑗𝑖))) ∧ (abs‘(𝑦𝑘)) = (abs‘(𝑚𝑞))) ∨ ∃𝑖𝑧𝑗𝑧𝑘𝑧𝑙𝑧𝑚𝑧𝑞𝑧 (𝑖𝑙 ∧ (abs‘(𝑦𝑖)) = (abs‘(𝑗𝑘)) ∧ (abs‘(𝑦𝑙)) = (abs‘(𝑚𝑞))))}), {0, 1})‘∅)))
109adantl 481 . . . . 5 ((𝜑𝑢 = ∅) → (0 ∈ (rec((𝑧 ∈ V ↦ {𝑦 ∈ ℂ ∣ (∃𝑖𝑧𝑗𝑧𝑘𝑧𝑙𝑧𝑜 ∈ ℝ ∃𝑝 ∈ ℝ (𝑦 = (𝑖 + (𝑜 · (𝑗𝑖))) ∧ 𝑦 = (𝑘 + (𝑝 · (𝑙𝑘))) ∧ (ℑ‘((∗‘(𝑗𝑖)) · (𝑙𝑘))) ≠ 0) ∨ ∃𝑖𝑧𝑗𝑧𝑘𝑧𝑚𝑧𝑞𝑧𝑜 ∈ ℝ (𝑦 = (𝑖 + (𝑜 · (𝑗𝑖))) ∧ (abs‘(𝑦𝑘)) = (abs‘(𝑚𝑞))) ∨ ∃𝑖𝑧𝑗𝑧𝑘𝑧𝑙𝑧𝑚𝑧𝑞𝑧 (𝑖𝑙 ∧ (abs‘(𝑦𝑖)) = (abs‘(𝑗𝑘)) ∧ (abs‘(𝑦𝑙)) = (abs‘(𝑚𝑞))))}), {0, 1})‘𝑢) ↔ 0 ∈ (rec((𝑧 ∈ V ↦ {𝑦 ∈ ℂ ∣ (∃𝑖𝑧𝑗𝑧𝑘𝑧𝑙𝑧𝑜 ∈ ℝ ∃𝑝 ∈ ℝ (𝑦 = (𝑖 + (𝑜 · (𝑗𝑖))) ∧ 𝑦 = (𝑘 + (𝑝 · (𝑙𝑘))) ∧ (ℑ‘((∗‘(𝑗𝑖)) · (𝑙𝑘))) ≠ 0) ∨ ∃𝑖𝑧𝑗𝑧𝑘𝑧𝑚𝑧𝑞𝑧𝑜 ∈ ℝ (𝑦 = (𝑖 + (𝑜 · (𝑗𝑖))) ∧ (abs‘(𝑦𝑘)) = (abs‘(𝑚𝑞))) ∨ ∃𝑖𝑧𝑗𝑧𝑘𝑧𝑙𝑧𝑚𝑧𝑞𝑧 (𝑖𝑙 ∧ (abs‘(𝑦𝑖)) = (abs‘(𝑗𝑘)) ∧ (abs‘(𝑦𝑙)) = (abs‘(𝑚𝑞))))}), {0, 1})‘∅)))
11 c0ex 11168 . . . . . . . 8 0 ∈ V
1211prid1 4726 . . . . . . 7 0 ∈ {0, 1}
1312a1i 11 . . . . . 6 (𝜑 → 0 ∈ {0, 1})
14 constrcbvlem 33745 . . . . . . 7 rec((𝑧 ∈ V ↦ {𝑦 ∈ ℂ ∣ (∃𝑖𝑧𝑗𝑧𝑘𝑧𝑙𝑧𝑜 ∈ ℝ ∃𝑝 ∈ ℝ (𝑦 = (𝑖 + (𝑜 · (𝑗𝑖))) ∧ 𝑦 = (𝑘 + (𝑝 · (𝑙𝑘))) ∧ (ℑ‘((∗‘(𝑗𝑖)) · (𝑙𝑘))) ≠ 0) ∨ ∃𝑖𝑧𝑗𝑧𝑘𝑧𝑚𝑧𝑞𝑧𝑜 ∈ ℝ (𝑦 = (𝑖 + (𝑜 · (𝑗𝑖))) ∧ (abs‘(𝑦𝑘)) = (abs‘(𝑚𝑞))) ∨ ∃𝑖𝑧𝑗𝑧𝑘𝑧𝑙𝑧𝑚𝑧𝑞𝑧 (𝑖𝑙 ∧ (abs‘(𝑦𝑖)) = (abs‘(𝑗𝑘)) ∧ (abs‘(𝑦𝑙)) = (abs‘(𝑚𝑞))))}), {0, 1}) = rec((𝑠 ∈ V ↦ {𝑥 ∈ ℂ ∣ (∃𝑎𝑠𝑏𝑠𝑐𝑠𝑑𝑠𝑡 ∈ ℝ ∃𝑟 ∈ ℝ (𝑥 = (𝑎 + (𝑡 · (𝑏𝑎))) ∧ 𝑥 = (𝑐 + (𝑟 · (𝑑𝑐))) ∧ (ℑ‘((∗‘(𝑏𝑎)) · (𝑑𝑐))) ≠ 0) ∨ ∃𝑎𝑠𝑏𝑠𝑐𝑠𝑒𝑠𝑓𝑠𝑡 ∈ ℝ (𝑥 = (𝑎 + (𝑡 · (𝑏𝑎))) ∧ (abs‘(𝑥𝑐)) = (abs‘(𝑒𝑓))) ∨ ∃𝑎𝑠𝑏𝑠𝑐𝑠𝑑𝑠𝑒𝑠𝑓𝑠 (𝑎𝑑 ∧ (abs‘(𝑥𝑎)) = (abs‘(𝑏𝑐)) ∧ (abs‘(𝑥𝑑)) = (abs‘(𝑒𝑓))))}), {0, 1})
1514constr0 33727 . . . . . 6 (rec((𝑧 ∈ V ↦ {𝑦 ∈ ℂ ∣ (∃𝑖𝑧𝑗𝑧𝑘𝑧𝑙𝑧𝑜 ∈ ℝ ∃𝑝 ∈ ℝ (𝑦 = (𝑖 + (𝑜 · (𝑗𝑖))) ∧ 𝑦 = (𝑘 + (𝑝 · (𝑙𝑘))) ∧ (ℑ‘((∗‘(𝑗𝑖)) · (𝑙𝑘))) ≠ 0) ∨ ∃𝑖𝑧𝑗𝑧𝑘𝑧𝑚𝑧𝑞𝑧𝑜 ∈ ℝ (𝑦 = (𝑖 + (𝑜 · (𝑗𝑖))) ∧ (abs‘(𝑦𝑘)) = (abs‘(𝑚𝑞))) ∨ ∃𝑖𝑧𝑗𝑧𝑘𝑧𝑙𝑧𝑚𝑧𝑞𝑧 (𝑖𝑙 ∧ (abs‘(𝑦𝑖)) = (abs‘(𝑗𝑘)) ∧ (abs‘(𝑦𝑙)) = (abs‘(𝑚𝑞))))}), {0, 1})‘∅) = {0, 1}
1613, 15eleqtrrdi 2839 . . . . 5 (𝜑 → 0 ∈ (rec((𝑧 ∈ V ↦ {𝑦 ∈ ℂ ∣ (∃𝑖𝑧𝑗𝑧𝑘𝑧𝑙𝑧𝑜 ∈ ℝ ∃𝑝 ∈ ℝ (𝑦 = (𝑖 + (𝑜 · (𝑗𝑖))) ∧ 𝑦 = (𝑘 + (𝑝 · (𝑙𝑘))) ∧ (ℑ‘((∗‘(𝑗𝑖)) · (𝑙𝑘))) ≠ 0) ∨ ∃𝑖𝑧𝑗𝑧𝑘𝑧𝑚𝑧𝑞𝑧𝑜 ∈ ℝ (𝑦 = (𝑖 + (𝑜 · (𝑗𝑖))) ∧ (abs‘(𝑦𝑘)) = (abs‘(𝑚𝑞))) ∨ ∃𝑖𝑧𝑗𝑧𝑘𝑧𝑙𝑧𝑚𝑧𝑞𝑧 (𝑖𝑙 ∧ (abs‘(𝑦𝑖)) = (abs‘(𝑗𝑘)) ∧ (abs‘(𝑦𝑙)) = (abs‘(𝑚𝑞))))}), {0, 1})‘∅))
177, 10, 16rspcedvd 3590 . . . 4 (𝜑 → ∃𝑢 ∈ ω 0 ∈ (rec((𝑧 ∈ V ↦ {𝑦 ∈ ℂ ∣ (∃𝑖𝑧𝑗𝑧𝑘𝑧𝑙𝑧𝑜 ∈ ℝ ∃𝑝 ∈ ℝ (𝑦 = (𝑖 + (𝑜 · (𝑗𝑖))) ∧ 𝑦 = (𝑘 + (𝑝 · (𝑙𝑘))) ∧ (ℑ‘((∗‘(𝑗𝑖)) · (𝑙𝑘))) ≠ 0) ∨ ∃𝑖𝑧𝑗𝑧𝑘𝑧𝑚𝑧𝑞𝑧𝑜 ∈ ℝ (𝑦 = (𝑖 + (𝑜 · (𝑗𝑖))) ∧ (abs‘(𝑦𝑘)) = (abs‘(𝑚𝑞))) ∨ ∃𝑖𝑧𝑗𝑧𝑘𝑧𝑙𝑧𝑚𝑧𝑞𝑧 (𝑖𝑙 ∧ (abs‘(𝑦𝑖)) = (abs‘(𝑗𝑘)) ∧ (abs‘(𝑦𝑙)) = (abs‘(𝑚𝑞))))}), {0, 1})‘𝑢))
1814isconstr 33726 . . . 4 (0 ∈ Constr ↔ ∃𝑢 ∈ ω 0 ∈ (rec((𝑧 ∈ V ↦ {𝑦 ∈ ℂ ∣ (∃𝑖𝑧𝑗𝑧𝑘𝑧𝑙𝑧𝑜 ∈ ℝ ∃𝑝 ∈ ℝ (𝑦 = (𝑖 + (𝑜 · (𝑗𝑖))) ∧ 𝑦 = (𝑘 + (𝑝 · (𝑙𝑘))) ∧ (ℑ‘((∗‘(𝑗𝑖)) · (𝑙𝑘))) ≠ 0) ∨ ∃𝑖𝑧𝑗𝑧𝑘𝑧𝑚𝑧𝑞𝑧𝑜 ∈ ℝ (𝑦 = (𝑖 + (𝑜 · (𝑗𝑖))) ∧ (abs‘(𝑦𝑘)) = (abs‘(𝑚𝑞))) ∨ ∃𝑖𝑧𝑗𝑧𝑘𝑧𝑙𝑧𝑚𝑧𝑞𝑧 (𝑖𝑙 ∧ (abs‘(𝑦𝑖)) = (abs‘(𝑗𝑘)) ∧ (abs‘(𝑦𝑙)) = (abs‘(𝑚𝑞))))}), {0, 1})‘𝑢))
1917, 18sylibr 234 . . 3 (𝜑 → 0 ∈ Constr)
2019ad2antrr 726 . . . 4 (((𝜑𝑛 ∈ ℕ0) ∧ 𝑛 ∈ Constr) → 0 ∈ Constr)
218eleq2d 2814 . . . . . . . 8 (𝑢 = ∅ → (1 ∈ (rec((𝑧 ∈ V ↦ {𝑦 ∈ ℂ ∣ (∃𝑖𝑧𝑗𝑧𝑘𝑧𝑙𝑧𝑜 ∈ ℝ ∃𝑝 ∈ ℝ (𝑦 = (𝑖 + (𝑜 · (𝑗𝑖))) ∧ 𝑦 = (𝑘 + (𝑝 · (𝑙𝑘))) ∧ (ℑ‘((∗‘(𝑗𝑖)) · (𝑙𝑘))) ≠ 0) ∨ ∃𝑖𝑧𝑗𝑧𝑘𝑧𝑚𝑧𝑞𝑧𝑜 ∈ ℝ (𝑦 = (𝑖 + (𝑜 · (𝑗𝑖))) ∧ (abs‘(𝑦𝑘)) = (abs‘(𝑚𝑞))) ∨ ∃𝑖𝑧𝑗𝑧𝑘𝑧𝑙𝑧𝑚𝑧𝑞𝑧 (𝑖𝑙 ∧ (abs‘(𝑦𝑖)) = (abs‘(𝑗𝑘)) ∧ (abs‘(𝑦𝑙)) = (abs‘(𝑚𝑞))))}), {0, 1})‘𝑢) ↔ 1 ∈ (rec((𝑧 ∈ V ↦ {𝑦 ∈ ℂ ∣ (∃𝑖𝑧𝑗𝑧𝑘𝑧𝑙𝑧𝑜 ∈ ℝ ∃𝑝 ∈ ℝ (𝑦 = (𝑖 + (𝑜 · (𝑗𝑖))) ∧ 𝑦 = (𝑘 + (𝑝 · (𝑙𝑘))) ∧ (ℑ‘((∗‘(𝑗𝑖)) · (𝑙𝑘))) ≠ 0) ∨ ∃𝑖𝑧𝑗𝑧𝑘𝑧𝑚𝑧𝑞𝑧𝑜 ∈ ℝ (𝑦 = (𝑖 + (𝑜 · (𝑗𝑖))) ∧ (abs‘(𝑦𝑘)) = (abs‘(𝑚𝑞))) ∨ ∃𝑖𝑧𝑗𝑧𝑘𝑧𝑙𝑧𝑚𝑧𝑞𝑧 (𝑖𝑙 ∧ (abs‘(𝑦𝑖)) = (abs‘(𝑗𝑘)) ∧ (abs‘(𝑦𝑙)) = (abs‘(𝑚𝑞))))}), {0, 1})‘∅)))
2221adantl 481 . . . . . . 7 ((𝜑𝑢 = ∅) → (1 ∈ (rec((𝑧 ∈ V ↦ {𝑦 ∈ ℂ ∣ (∃𝑖𝑧𝑗𝑧𝑘𝑧𝑙𝑧𝑜 ∈ ℝ ∃𝑝 ∈ ℝ (𝑦 = (𝑖 + (𝑜 · (𝑗𝑖))) ∧ 𝑦 = (𝑘 + (𝑝 · (𝑙𝑘))) ∧ (ℑ‘((∗‘(𝑗𝑖)) · (𝑙𝑘))) ≠ 0) ∨ ∃𝑖𝑧𝑗𝑧𝑘𝑧𝑚𝑧𝑞𝑧𝑜 ∈ ℝ (𝑦 = (𝑖 + (𝑜 · (𝑗𝑖))) ∧ (abs‘(𝑦𝑘)) = (abs‘(𝑚𝑞))) ∨ ∃𝑖𝑧𝑗𝑧𝑘𝑧𝑙𝑧𝑚𝑧𝑞𝑧 (𝑖𝑙 ∧ (abs‘(𝑦𝑖)) = (abs‘(𝑗𝑘)) ∧ (abs‘(𝑦𝑙)) = (abs‘(𝑚𝑞))))}), {0, 1})‘𝑢) ↔ 1 ∈ (rec((𝑧 ∈ V ↦ {𝑦 ∈ ℂ ∣ (∃𝑖𝑧𝑗𝑧𝑘𝑧𝑙𝑧𝑜 ∈ ℝ ∃𝑝 ∈ ℝ (𝑦 = (𝑖 + (𝑜 · (𝑗𝑖))) ∧ 𝑦 = (𝑘 + (𝑝 · (𝑙𝑘))) ∧ (ℑ‘((∗‘(𝑗𝑖)) · (𝑙𝑘))) ≠ 0) ∨ ∃𝑖𝑧𝑗𝑧𝑘𝑧𝑚𝑧𝑞𝑧𝑜 ∈ ℝ (𝑦 = (𝑖 + (𝑜 · (𝑗𝑖))) ∧ (abs‘(𝑦𝑘)) = (abs‘(𝑚𝑞))) ∨ ∃𝑖𝑧𝑗𝑧𝑘𝑧𝑙𝑧𝑚𝑧𝑞𝑧 (𝑖𝑙 ∧ (abs‘(𝑦𝑖)) = (abs‘(𝑗𝑘)) ∧ (abs‘(𝑦𝑙)) = (abs‘(𝑚𝑞))))}), {0, 1})‘∅)))
23 1ex 11170 . . . . . . . . . 10 1 ∈ V
2423prid2 4727 . . . . . . . . 9 1 ∈ {0, 1}
2524a1i 11 . . . . . . . 8 (𝜑 → 1 ∈ {0, 1})
2625, 15eleqtrrdi 2839 . . . . . . 7 (𝜑 → 1 ∈ (rec((𝑧 ∈ V ↦ {𝑦 ∈ ℂ ∣ (∃𝑖𝑧𝑗𝑧𝑘𝑧𝑙𝑧𝑜 ∈ ℝ ∃𝑝 ∈ ℝ (𝑦 = (𝑖 + (𝑜 · (𝑗𝑖))) ∧ 𝑦 = (𝑘 + (𝑝 · (𝑙𝑘))) ∧ (ℑ‘((∗‘(𝑗𝑖)) · (𝑙𝑘))) ≠ 0) ∨ ∃𝑖𝑧𝑗𝑧𝑘𝑧𝑚𝑧𝑞𝑧𝑜 ∈ ℝ (𝑦 = (𝑖 + (𝑜 · (𝑗𝑖))) ∧ (abs‘(𝑦𝑘)) = (abs‘(𝑚𝑞))) ∨ ∃𝑖𝑧𝑗𝑧𝑘𝑧𝑙𝑧𝑚𝑧𝑞𝑧 (𝑖𝑙 ∧ (abs‘(𝑦𝑖)) = (abs‘(𝑗𝑘)) ∧ (abs‘(𝑦𝑙)) = (abs‘(𝑚𝑞))))}), {0, 1})‘∅))
277, 22, 26rspcedvd 3590 . . . . . 6 (𝜑 → ∃𝑢 ∈ ω 1 ∈ (rec((𝑧 ∈ V ↦ {𝑦 ∈ ℂ ∣ (∃𝑖𝑧𝑗𝑧𝑘𝑧𝑙𝑧𝑜 ∈ ℝ ∃𝑝 ∈ ℝ (𝑦 = (𝑖 + (𝑜 · (𝑗𝑖))) ∧ 𝑦 = (𝑘 + (𝑝 · (𝑙𝑘))) ∧ (ℑ‘((∗‘(𝑗𝑖)) · (𝑙𝑘))) ≠ 0) ∨ ∃𝑖𝑧𝑗𝑧𝑘𝑧𝑚𝑧𝑞𝑧𝑜 ∈ ℝ (𝑦 = (𝑖 + (𝑜 · (𝑗𝑖))) ∧ (abs‘(𝑦𝑘)) = (abs‘(𝑚𝑞))) ∨ ∃𝑖𝑧𝑗𝑧𝑘𝑧𝑙𝑧𝑚𝑧𝑞𝑧 (𝑖𝑙 ∧ (abs‘(𝑦𝑖)) = (abs‘(𝑗𝑘)) ∧ (abs‘(𝑦𝑙)) = (abs‘(𝑚𝑞))))}), {0, 1})‘𝑢))
2814isconstr 33726 . . . . . 6 (1 ∈ Constr ↔ ∃𝑢 ∈ ω 1 ∈ (rec((𝑧 ∈ V ↦ {𝑦 ∈ ℂ ∣ (∃𝑖𝑧𝑗𝑧𝑘𝑧𝑙𝑧𝑜 ∈ ℝ ∃𝑝 ∈ ℝ (𝑦 = (𝑖 + (𝑜 · (𝑗𝑖))) ∧ 𝑦 = (𝑘 + (𝑝 · (𝑙𝑘))) ∧ (ℑ‘((∗‘(𝑗𝑖)) · (𝑙𝑘))) ≠ 0) ∨ ∃𝑖𝑧𝑗𝑧𝑘𝑧𝑚𝑧𝑞𝑧𝑜 ∈ ℝ (𝑦 = (𝑖 + (𝑜 · (𝑗𝑖))) ∧ (abs‘(𝑦𝑘)) = (abs‘(𝑚𝑞))) ∨ ∃𝑖𝑧𝑗𝑧𝑘𝑧𝑙𝑧𝑚𝑧𝑞𝑧 (𝑖𝑙 ∧ (abs‘(𝑦𝑖)) = (abs‘(𝑗𝑘)) ∧ (abs‘(𝑦𝑙)) = (abs‘(𝑚𝑞))))}), {0, 1})‘𝑢))
2927, 28sylibr 234 . . . . 5 (𝜑 → 1 ∈ Constr)
3029ad2antrr 726 . . . 4 (((𝜑𝑛 ∈ ℕ0) ∧ 𝑛 ∈ Constr) → 1 ∈ Constr)
31 simpr 484 . . . 4 (((𝜑𝑛 ∈ ℕ0) ∧ 𝑛 ∈ Constr) → 𝑛 ∈ Constr)
32 peano2nn0 12482 . . . . . 6 (𝑛 ∈ ℕ0 → (𝑛 + 1) ∈ ℕ0)
3332ad2antlr 727 . . . . 5 (((𝜑𝑛 ∈ ℕ0) ∧ 𝑛 ∈ Constr) → (𝑛 + 1) ∈ ℕ0)
3433nn0red 12504 . . . 4 (((𝜑𝑛 ∈ ℕ0) ∧ 𝑛 ∈ Constr) → (𝑛 + 1) ∈ ℝ)
3534recnd 11202 . . . 4 (((𝜑𝑛 ∈ ℕ0) ∧ 𝑛 ∈ Constr) → (𝑛 + 1) ∈ ℂ)
36 nn0cn 12452 . . . . . . . . 9 (𝑛 ∈ ℕ0𝑛 ∈ ℂ)
37 1cnd 11169 . . . . . . . . 9 (𝑛 ∈ ℕ0 → 1 ∈ ℂ)
3836, 37addcld 11193 . . . . . . . 8 (𝑛 ∈ ℕ0 → (𝑛 + 1) ∈ ℂ)
3937subid1d 11522 . . . . . . . . 9 (𝑛 ∈ ℕ0 → (1 − 0) = 1)
4039, 37eqeltrd 2828 . . . . . . . 8 (𝑛 ∈ ℕ0 → (1 − 0) ∈ ℂ)
4138, 40mulcld 11194 . . . . . . 7 (𝑛 ∈ ℕ0 → ((𝑛 + 1) · (1 − 0)) ∈ ℂ)
4241addlidd 11375 . . . . . 6 (𝑛 ∈ ℕ0 → (0 + ((𝑛 + 1) · (1 − 0))) = ((𝑛 + 1) · (1 − 0)))
4339oveq2d 7403 . . . . . 6 (𝑛 ∈ ℕ0 → ((𝑛 + 1) · (1 − 0)) = ((𝑛 + 1) · 1))
4438mulridd 11191 . . . . . 6 (𝑛 ∈ ℕ0 → ((𝑛 + 1) · 1) = (𝑛 + 1))
4542, 43, 443eqtrrd 2769 . . . . 5 (𝑛 ∈ ℕ0 → (𝑛 + 1) = (0 + ((𝑛 + 1) · (1 − 0))))
4645ad2antlr 727 . . . 4 (((𝜑𝑛 ∈ ℕ0) ∧ 𝑛 ∈ Constr) → (𝑛 + 1) = (0 + ((𝑛 + 1) · (1 − 0))))
4736, 37pncan2d 11535 . . . . . . 7 (𝑛 ∈ ℕ0 → ((𝑛 + 1) − 𝑛) = 1)
4847, 39eqtr4d 2767 . . . . . 6 (𝑛 ∈ ℕ0 → ((𝑛 + 1) − 𝑛) = (1 − 0))
4948fveq2d 6862 . . . . 5 (𝑛 ∈ ℕ0 → (abs‘((𝑛 + 1) − 𝑛)) = (abs‘(1 − 0)))
5049ad2antlr 727 . . . 4 (((𝜑𝑛 ∈ ℕ0) ∧ 𝑛 ∈ Constr) → (abs‘((𝑛 + 1) − 𝑛)) = (abs‘(1 − 0)))
5120, 30, 31, 30, 20, 34, 35, 46, 50constrlccl 33747 . . 3 (((𝜑𝑛 ∈ ℕ0) ∧ 𝑛 ∈ Constr) → (𝑛 + 1) ∈ Constr)
522, 3, 4, 5, 19, 51nn0indd 12631 . 2 ((𝜑𝑁 ∈ ℕ0) → 𝑁 ∈ Constr)
531, 52mpdan 687 1 (𝜑𝑁 ∈ Constr)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3o 1085  w3a 1086   = wceq 1540  wcel 2109  wne 2925  wrex 3053  {crab 3405  Vcvv 3447  c0 4296  {cpr 4591  cmpt 5188  cfv 6511  (class class class)co 7387  ωcom 7842  reccrdg 8377  cc 11066  cr 11067  0cc0 11068  1c1 11069   + caddc 11071   · cmul 11073  cmin 11405  0cn0 12442  ccj 15062  cim 15064  abscabs 15200  Constrcconstr 33719
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5234  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387  ax-un 7711  ax-cnex 11124  ax-resscn 11125  ax-1cn 11126  ax-icn 11127  ax-addcl 11128  ax-addrcl 11129  ax-mulcl 11130  ax-mulrcl 11131  ax-mulcom 11132  ax-addass 11133  ax-mulass 11134  ax-distr 11135  ax-i2m1 11136  ax-1ne0 11137  ax-1rid 11138  ax-rnegex 11139  ax-rrecex 11140  ax-cnre 11141  ax-pre-lttri 11142  ax-pre-lttrn 11143  ax-pre-ltadd 11144  ax-pre-mulgt0 11145
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-reu 3355  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-pss 3934  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-tp 4594  df-op 4596  df-uni 4872  df-iun 4957  df-br 5108  df-opab 5170  df-mpt 5189  df-tr 5215  df-id 5533  df-eprel 5538  df-po 5546  df-so 5547  df-fr 5591  df-we 5593  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-pred 6274  df-ord 6335  df-on 6336  df-lim 6337  df-suc 6338  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fo 6517  df-f1o 6518  df-fv 6519  df-riota 7344  df-ov 7390  df-oprab 7391  df-mpo 7392  df-om 7843  df-2nd 7969  df-frecs 8260  df-wrecs 8291  df-recs 8340  df-rdg 8378  df-1o 8434  df-2o 8435  df-er 8671  df-en 8919  df-dom 8920  df-sdom 8921  df-fin 8922  df-pnf 11210  df-mnf 11211  df-xr 11212  df-ltxr 11213  df-le 11214  df-sub 11407  df-neg 11408  df-nn 12187  df-n0 12443  df-z 12530  df-constr 33720
This theorem is referenced by:  constraddcl  33752  constrnegcl  33753  zconstr  33754  constrdircl  33755  iconstr  33756  constrremulcl  33757
  Copyright terms: Public domain W3C validator