|   | Metamath Proof Explorer | < Previous  
      Next > Nearby theorems | |
| Mirrors > Home > MPE Home > Th. List > m2cpminvid | Structured version Visualization version GIF version | ||
| Description: The inverse transformation applied to the transformation of a matrix over a ring R results in the matrix itself. (Contributed by AV, 12-Nov-2019.) (Revised by AV, 13-Dec-2019.) | 
| Ref | Expression | 
|---|---|
| m2cpminvid.i | ⊢ 𝐼 = (𝑁 cPolyMatToMat 𝑅) | 
| m2cpminvid.a | ⊢ 𝐴 = (𝑁 Mat 𝑅) | 
| m2cpminvid.k | ⊢ 𝐾 = (Base‘𝐴) | 
| m2cpminvid.t | ⊢ 𝑇 = (𝑁 matToPolyMat 𝑅) | 
| Ref | Expression | 
|---|---|
| m2cpminvid | ⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀 ∈ 𝐾) → (𝐼‘(𝑇‘𝑀)) = 𝑀) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | eqid 2736 | . . . 4 ⊢ (𝑁 ConstPolyMat 𝑅) = (𝑁 ConstPolyMat 𝑅) | |
| 2 | m2cpminvid.t | . . . 4 ⊢ 𝑇 = (𝑁 matToPolyMat 𝑅) | |
| 3 | m2cpminvid.a | . . . 4 ⊢ 𝐴 = (𝑁 Mat 𝑅) | |
| 4 | m2cpminvid.k | . . . 4 ⊢ 𝐾 = (Base‘𝐴) | |
| 5 | 1, 2, 3, 4 | m2cpm 22748 | . . 3 ⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀 ∈ 𝐾) → (𝑇‘𝑀) ∈ (𝑁 ConstPolyMat 𝑅)) | 
| 6 | m2cpminvid.i | . . . 4 ⊢ 𝐼 = (𝑁 cPolyMatToMat 𝑅) | |
| 7 | 6, 1 | cpm2mval 22757 | . . 3 ⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ (𝑇‘𝑀) ∈ (𝑁 ConstPolyMat 𝑅)) → (𝐼‘(𝑇‘𝑀)) = (𝑥 ∈ 𝑁, 𝑦 ∈ 𝑁 ↦ ((coe1‘(𝑥(𝑇‘𝑀)𝑦))‘0))) | 
| 8 | 5, 7 | syld3an3 1410 | . 2 ⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀 ∈ 𝐾) → (𝐼‘(𝑇‘𝑀)) = (𝑥 ∈ 𝑁, 𝑦 ∈ 𝑁 ↦ ((coe1‘(𝑥(𝑇‘𝑀)𝑦))‘0))) | 
| 9 | eqid 2736 | . . . . . . . 8 ⊢ (Poly1‘𝑅) = (Poly1‘𝑅) | |
| 10 | eqid 2736 | . . . . . . . 8 ⊢ (algSc‘(Poly1‘𝑅)) = (algSc‘(Poly1‘𝑅)) | |
| 11 | 2, 3, 4, 9, 10 | mat2pmatvalel 22732 | . . . . . . 7 ⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀 ∈ 𝐾) ∧ (𝑥 ∈ 𝑁 ∧ 𝑦 ∈ 𝑁)) → (𝑥(𝑇‘𝑀)𝑦) = ((algSc‘(Poly1‘𝑅))‘(𝑥𝑀𝑦))) | 
| 12 | 11 | 3impb 1114 | . . . . . 6 ⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀 ∈ 𝐾) ∧ 𝑥 ∈ 𝑁 ∧ 𝑦 ∈ 𝑁) → (𝑥(𝑇‘𝑀)𝑦) = ((algSc‘(Poly1‘𝑅))‘(𝑥𝑀𝑦))) | 
| 13 | 12 | fveq2d 6909 | . . . . 5 ⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀 ∈ 𝐾) ∧ 𝑥 ∈ 𝑁 ∧ 𝑦 ∈ 𝑁) → (coe1‘(𝑥(𝑇‘𝑀)𝑦)) = (coe1‘((algSc‘(Poly1‘𝑅))‘(𝑥𝑀𝑦)))) | 
| 14 | 13 | fveq1d 6907 | . . . 4 ⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀 ∈ 𝐾) ∧ 𝑥 ∈ 𝑁 ∧ 𝑦 ∈ 𝑁) → ((coe1‘(𝑥(𝑇‘𝑀)𝑦))‘0) = ((coe1‘((algSc‘(Poly1‘𝑅))‘(𝑥𝑀𝑦)))‘0)) | 
| 15 | simp12 1204 | . . . . 5 ⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀 ∈ 𝐾) ∧ 𝑥 ∈ 𝑁 ∧ 𝑦 ∈ 𝑁) → 𝑅 ∈ Ring) | |
| 16 | eqid 2736 | . . . . . 6 ⊢ (Base‘𝑅) = (Base‘𝑅) | |
| 17 | simp2 1137 | . . . . . 6 ⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀 ∈ 𝐾) ∧ 𝑥 ∈ 𝑁 ∧ 𝑦 ∈ 𝑁) → 𝑥 ∈ 𝑁) | |
| 18 | simp3 1138 | . . . . . 6 ⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀 ∈ 𝐾) ∧ 𝑥 ∈ 𝑁 ∧ 𝑦 ∈ 𝑁) → 𝑦 ∈ 𝑁) | |
| 19 | simp13 1205 | . . . . . 6 ⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀 ∈ 𝐾) ∧ 𝑥 ∈ 𝑁 ∧ 𝑦 ∈ 𝑁) → 𝑀 ∈ 𝐾) | |
| 20 | 3, 16, 4, 17, 18, 19 | matecld 22433 | . . . . 5 ⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀 ∈ 𝐾) ∧ 𝑥 ∈ 𝑁 ∧ 𝑦 ∈ 𝑁) → (𝑥𝑀𝑦) ∈ (Base‘𝑅)) | 
| 21 | 9, 10, 16 | ply1sclid 22292 | . . . . 5 ⊢ ((𝑅 ∈ Ring ∧ (𝑥𝑀𝑦) ∈ (Base‘𝑅)) → (𝑥𝑀𝑦) = ((coe1‘((algSc‘(Poly1‘𝑅))‘(𝑥𝑀𝑦)))‘0)) | 
| 22 | 15, 20, 21 | syl2anc 584 | . . . 4 ⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀 ∈ 𝐾) ∧ 𝑥 ∈ 𝑁 ∧ 𝑦 ∈ 𝑁) → (𝑥𝑀𝑦) = ((coe1‘((algSc‘(Poly1‘𝑅))‘(𝑥𝑀𝑦)))‘0)) | 
| 23 | 14, 22 | eqtr4d 2779 | . . 3 ⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀 ∈ 𝐾) ∧ 𝑥 ∈ 𝑁 ∧ 𝑦 ∈ 𝑁) → ((coe1‘(𝑥(𝑇‘𝑀)𝑦))‘0) = (𝑥𝑀𝑦)) | 
| 24 | 23 | mpoeq3dva 7511 | . 2 ⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀 ∈ 𝐾) → (𝑥 ∈ 𝑁, 𝑦 ∈ 𝑁 ↦ ((coe1‘(𝑥(𝑇‘𝑀)𝑦))‘0)) = (𝑥 ∈ 𝑁, 𝑦 ∈ 𝑁 ↦ (𝑥𝑀𝑦))) | 
| 25 | eqidd 2737 | . . . . 5 ⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀 ∈ 𝐾) ∧ (𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁)) → (𝑥 ∈ 𝑁, 𝑦 ∈ 𝑁 ↦ (𝑥𝑀𝑦)) = (𝑥 ∈ 𝑁, 𝑦 ∈ 𝑁 ↦ (𝑥𝑀𝑦))) | |
| 26 | oveq12 7441 | . . . . . 6 ⊢ ((𝑥 = 𝑖 ∧ 𝑦 = 𝑗) → (𝑥𝑀𝑦) = (𝑖𝑀𝑗)) | |
| 27 | 26 | adantl 481 | . . . . 5 ⊢ ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀 ∈ 𝐾) ∧ (𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁)) ∧ (𝑥 = 𝑖 ∧ 𝑦 = 𝑗)) → (𝑥𝑀𝑦) = (𝑖𝑀𝑗)) | 
| 28 | simprl 770 | . . . . 5 ⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀 ∈ 𝐾) ∧ (𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁)) → 𝑖 ∈ 𝑁) | |
| 29 | simprr 772 | . . . . 5 ⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀 ∈ 𝐾) ∧ (𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁)) → 𝑗 ∈ 𝑁) | |
| 30 | ovexd 7467 | . . . . 5 ⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀 ∈ 𝐾) ∧ (𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁)) → (𝑖𝑀𝑗) ∈ V) | |
| 31 | 25, 27, 28, 29, 30 | ovmpod 7586 | . . . 4 ⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀 ∈ 𝐾) ∧ (𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁)) → (𝑖(𝑥 ∈ 𝑁, 𝑦 ∈ 𝑁 ↦ (𝑥𝑀𝑦))𝑗) = (𝑖𝑀𝑗)) | 
| 32 | 31 | ralrimivva 3201 | . . 3 ⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀 ∈ 𝐾) → ∀𝑖 ∈ 𝑁 ∀𝑗 ∈ 𝑁 (𝑖(𝑥 ∈ 𝑁, 𝑦 ∈ 𝑁 ↦ (𝑥𝑀𝑦))𝑗) = (𝑖𝑀𝑗)) | 
| 33 | simp1 1136 | . . . . 5 ⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀 ∈ 𝐾) → 𝑁 ∈ Fin) | |
| 34 | simp2 1137 | . . . . 5 ⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀 ∈ 𝐾) → 𝑅 ∈ Ring) | |
| 35 | 3, 16, 4, 33, 34, 20 | matbas2d 22430 | . . . 4 ⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀 ∈ 𝐾) → (𝑥 ∈ 𝑁, 𝑦 ∈ 𝑁 ↦ (𝑥𝑀𝑦)) ∈ 𝐾) | 
| 36 | simp3 1138 | . . . 4 ⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀 ∈ 𝐾) → 𝑀 ∈ 𝐾) | |
| 37 | 3, 4 | eqmat 22431 | . . . 4 ⊢ (((𝑥 ∈ 𝑁, 𝑦 ∈ 𝑁 ↦ (𝑥𝑀𝑦)) ∈ 𝐾 ∧ 𝑀 ∈ 𝐾) → ((𝑥 ∈ 𝑁, 𝑦 ∈ 𝑁 ↦ (𝑥𝑀𝑦)) = 𝑀 ↔ ∀𝑖 ∈ 𝑁 ∀𝑗 ∈ 𝑁 (𝑖(𝑥 ∈ 𝑁, 𝑦 ∈ 𝑁 ↦ (𝑥𝑀𝑦))𝑗) = (𝑖𝑀𝑗))) | 
| 38 | 35, 36, 37 | syl2anc 584 | . . 3 ⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀 ∈ 𝐾) → ((𝑥 ∈ 𝑁, 𝑦 ∈ 𝑁 ↦ (𝑥𝑀𝑦)) = 𝑀 ↔ ∀𝑖 ∈ 𝑁 ∀𝑗 ∈ 𝑁 (𝑖(𝑥 ∈ 𝑁, 𝑦 ∈ 𝑁 ↦ (𝑥𝑀𝑦))𝑗) = (𝑖𝑀𝑗))) | 
| 39 | 32, 38 | mpbird 257 | . 2 ⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀 ∈ 𝐾) → (𝑥 ∈ 𝑁, 𝑦 ∈ 𝑁 ↦ (𝑥𝑀𝑦)) = 𝑀) | 
| 40 | 8, 24, 39 | 3eqtrd 2780 | 1 ⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀 ∈ 𝐾) → (𝐼‘(𝑇‘𝑀)) = 𝑀) | 
| Colors of variables: wff setvar class | 
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∧ w3a 1086 = wceq 1539 ∈ wcel 2107 ∀wral 3060 Vcvv 3479 ‘cfv 6560 (class class class)co 7432 ∈ cmpo 7434 Fincfn 8986 0cc0 11156 Basecbs 17248 Ringcrg 20231 algSccascl 21873 Poly1cpl1 22179 coe1cco1 22180 Mat cmat 22412 ConstPolyMat ccpmat 22710 matToPolyMat cmat2pmat 22711 cPolyMatToMat ccpmat2mat 22712 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-11 2156 ax-12 2176 ax-ext 2707 ax-rep 5278 ax-sep 5295 ax-nul 5305 ax-pow 5364 ax-pr 5431 ax-un 7756 ax-cnex 11212 ax-resscn 11213 ax-1cn 11214 ax-icn 11215 ax-addcl 11216 ax-addrcl 11217 ax-mulcl 11218 ax-mulrcl 11219 ax-mulcom 11220 ax-addass 11221 ax-mulass 11222 ax-distr 11223 ax-i2m1 11224 ax-1ne0 11225 ax-1rid 11226 ax-rnegex 11227 ax-rrecex 11228 ax-cnre 11229 ax-pre-lttri 11230 ax-pre-lttrn 11231 ax-pre-ltadd 11232 ax-pre-mulgt0 11233 | 
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2064 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2728 df-clel 2815 df-nfc 2891 df-ne 2940 df-nel 3046 df-ral 3061 df-rex 3070 df-rmo 3379 df-reu 3380 df-rab 3436 df-v 3481 df-sbc 3788 df-csb 3899 df-dif 3953 df-un 3955 df-in 3957 df-ss 3967 df-pss 3970 df-nul 4333 df-if 4525 df-pw 4601 df-sn 4626 df-pr 4628 df-tp 4630 df-op 4632 df-ot 4634 df-uni 4907 df-int 4946 df-iun 4992 df-iin 4993 df-br 5143 df-opab 5205 df-mpt 5225 df-tr 5259 df-id 5577 df-eprel 5583 df-po 5591 df-so 5592 df-fr 5636 df-se 5637 df-we 5638 df-xp 5690 df-rel 5691 df-cnv 5692 df-co 5693 df-dm 5694 df-rn 5695 df-res 5696 df-ima 5697 df-pred 6320 df-ord 6386 df-on 6387 df-lim 6388 df-suc 6389 df-iota 6513 df-fun 6562 df-fn 6563 df-f 6564 df-f1 6565 df-fo 6566 df-f1o 6567 df-fv 6568 df-isom 6569 df-riota 7389 df-ov 7435 df-oprab 7436 df-mpo 7437 df-of 7698 df-ofr 7699 df-om 7889 df-1st 8015 df-2nd 8016 df-supp 8187 df-frecs 8307 df-wrecs 8338 df-recs 8412 df-rdg 8451 df-1o 8507 df-2o 8508 df-er 8746 df-map 8869 df-pm 8870 df-ixp 8939 df-en 8987 df-dom 8988 df-sdom 8989 df-fin 8990 df-fsupp 9403 df-sup 9483 df-oi 9551 df-card 9980 df-pnf 11298 df-mnf 11299 df-xr 11300 df-ltxr 11301 df-le 11302 df-sub 11495 df-neg 11496 df-nn 12268 df-2 12330 df-3 12331 df-4 12332 df-5 12333 df-6 12334 df-7 12335 df-8 12336 df-9 12337 df-n0 12529 df-z 12616 df-dec 12736 df-uz 12880 df-fz 13549 df-fzo 13696 df-seq 14044 df-hash 14371 df-struct 17185 df-sets 17202 df-slot 17220 df-ndx 17232 df-base 17249 df-ress 17276 df-plusg 17311 df-mulr 17312 df-sca 17314 df-vsca 17315 df-ip 17316 df-tset 17317 df-ple 17318 df-ds 17320 df-hom 17322 df-cco 17323 df-0g 17487 df-gsum 17488 df-prds 17493 df-pws 17495 df-mre 17630 df-mrc 17631 df-acs 17633 df-mgm 18654 df-sgrp 18733 df-mnd 18749 df-mhm 18797 df-submnd 18798 df-grp 18955 df-minusg 18956 df-sbg 18957 df-mulg 19087 df-subg 19142 df-ghm 19232 df-cntz 19336 df-cmn 19801 df-abl 19802 df-mgp 20139 df-rng 20151 df-ur 20180 df-ring 20233 df-subrng 20547 df-subrg 20571 df-lmod 20861 df-lss 20931 df-sra 21173 df-rgmod 21174 df-dsmm 21753 df-frlm 21768 df-ascl 21876 df-psr 21930 df-mvr 21931 df-mpl 21932 df-opsr 21934 df-psr1 22182 df-vr1 22183 df-ply1 22184 df-coe1 22185 df-mat 22413 df-cpmat 22713 df-mat2pmat 22714 df-cpmat2mat 22715 | 
| This theorem is referenced by: m2cpminv 22767 m2cpminv0 22768 cayhamlem4 22895 | 
| Copyright terms: Public domain | W3C validator |