![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > m2cpminvid | Structured version Visualization version GIF version |
Description: The inverse transformation applied to the transformation of a matrix over a ring R results in the matrix itself. (Contributed by AV, 12-Nov-2019.) (Revised by AV, 13-Dec-2019.) |
Ref | Expression |
---|---|
m2cpminvid.i | ⊢ 𝐼 = (𝑁 cPolyMatToMat 𝑅) |
m2cpminvid.a | ⊢ 𝐴 = (𝑁 Mat 𝑅) |
m2cpminvid.k | ⊢ 𝐾 = (Base‘𝐴) |
m2cpminvid.t | ⊢ 𝑇 = (𝑁 matToPolyMat 𝑅) |
Ref | Expression |
---|---|
m2cpminvid | ⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀 ∈ 𝐾) → (𝐼‘(𝑇‘𝑀)) = 𝑀) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2736 | . . . 4 ⊢ (𝑁 ConstPolyMat 𝑅) = (𝑁 ConstPolyMat 𝑅) | |
2 | m2cpminvid.t | . . . 4 ⊢ 𝑇 = (𝑁 matToPolyMat 𝑅) | |
3 | m2cpminvid.a | . . . 4 ⊢ 𝐴 = (𝑁 Mat 𝑅) | |
4 | m2cpminvid.k | . . . 4 ⊢ 𝐾 = (Base‘𝐴) | |
5 | 1, 2, 3, 4 | m2cpm 22090 | . . 3 ⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀 ∈ 𝐾) → (𝑇‘𝑀) ∈ (𝑁 ConstPolyMat 𝑅)) |
6 | m2cpminvid.i | . . . 4 ⊢ 𝐼 = (𝑁 cPolyMatToMat 𝑅) | |
7 | 6, 1 | cpm2mval 22099 | . . 3 ⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ (𝑇‘𝑀) ∈ (𝑁 ConstPolyMat 𝑅)) → (𝐼‘(𝑇‘𝑀)) = (𝑥 ∈ 𝑁, 𝑦 ∈ 𝑁 ↦ ((coe1‘(𝑥(𝑇‘𝑀)𝑦))‘0))) |
8 | 5, 7 | syld3an3 1409 | . 2 ⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀 ∈ 𝐾) → (𝐼‘(𝑇‘𝑀)) = (𝑥 ∈ 𝑁, 𝑦 ∈ 𝑁 ↦ ((coe1‘(𝑥(𝑇‘𝑀)𝑦))‘0))) |
9 | eqid 2736 | . . . . . . . 8 ⊢ (Poly1‘𝑅) = (Poly1‘𝑅) | |
10 | eqid 2736 | . . . . . . . 8 ⊢ (algSc‘(Poly1‘𝑅)) = (algSc‘(Poly1‘𝑅)) | |
11 | 2, 3, 4, 9, 10 | mat2pmatvalel 22074 | . . . . . . 7 ⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀 ∈ 𝐾) ∧ (𝑥 ∈ 𝑁 ∧ 𝑦 ∈ 𝑁)) → (𝑥(𝑇‘𝑀)𝑦) = ((algSc‘(Poly1‘𝑅))‘(𝑥𝑀𝑦))) |
12 | 11 | 3impb 1115 | . . . . . 6 ⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀 ∈ 𝐾) ∧ 𝑥 ∈ 𝑁 ∧ 𝑦 ∈ 𝑁) → (𝑥(𝑇‘𝑀)𝑦) = ((algSc‘(Poly1‘𝑅))‘(𝑥𝑀𝑦))) |
13 | 12 | fveq2d 6846 | . . . . 5 ⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀 ∈ 𝐾) ∧ 𝑥 ∈ 𝑁 ∧ 𝑦 ∈ 𝑁) → (coe1‘(𝑥(𝑇‘𝑀)𝑦)) = (coe1‘((algSc‘(Poly1‘𝑅))‘(𝑥𝑀𝑦)))) |
14 | 13 | fveq1d 6844 | . . . 4 ⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀 ∈ 𝐾) ∧ 𝑥 ∈ 𝑁 ∧ 𝑦 ∈ 𝑁) → ((coe1‘(𝑥(𝑇‘𝑀)𝑦))‘0) = ((coe1‘((algSc‘(Poly1‘𝑅))‘(𝑥𝑀𝑦)))‘0)) |
15 | simp12 1204 | . . . . 5 ⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀 ∈ 𝐾) ∧ 𝑥 ∈ 𝑁 ∧ 𝑦 ∈ 𝑁) → 𝑅 ∈ Ring) | |
16 | eqid 2736 | . . . . . 6 ⊢ (Base‘𝑅) = (Base‘𝑅) | |
17 | simp2 1137 | . . . . . 6 ⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀 ∈ 𝐾) ∧ 𝑥 ∈ 𝑁 ∧ 𝑦 ∈ 𝑁) → 𝑥 ∈ 𝑁) | |
18 | simp3 1138 | . . . . . 6 ⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀 ∈ 𝐾) ∧ 𝑥 ∈ 𝑁 ∧ 𝑦 ∈ 𝑁) → 𝑦 ∈ 𝑁) | |
19 | simp13 1205 | . . . . . 6 ⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀 ∈ 𝐾) ∧ 𝑥 ∈ 𝑁 ∧ 𝑦 ∈ 𝑁) → 𝑀 ∈ 𝐾) | |
20 | 3, 16, 4, 17, 18, 19 | matecld 21775 | . . . . 5 ⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀 ∈ 𝐾) ∧ 𝑥 ∈ 𝑁 ∧ 𝑦 ∈ 𝑁) → (𝑥𝑀𝑦) ∈ (Base‘𝑅)) |
21 | 9, 10, 16 | ply1sclid 21659 | . . . . 5 ⊢ ((𝑅 ∈ Ring ∧ (𝑥𝑀𝑦) ∈ (Base‘𝑅)) → (𝑥𝑀𝑦) = ((coe1‘((algSc‘(Poly1‘𝑅))‘(𝑥𝑀𝑦)))‘0)) |
22 | 15, 20, 21 | syl2anc 584 | . . . 4 ⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀 ∈ 𝐾) ∧ 𝑥 ∈ 𝑁 ∧ 𝑦 ∈ 𝑁) → (𝑥𝑀𝑦) = ((coe1‘((algSc‘(Poly1‘𝑅))‘(𝑥𝑀𝑦)))‘0)) |
23 | 14, 22 | eqtr4d 2779 | . . 3 ⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀 ∈ 𝐾) ∧ 𝑥 ∈ 𝑁 ∧ 𝑦 ∈ 𝑁) → ((coe1‘(𝑥(𝑇‘𝑀)𝑦))‘0) = (𝑥𝑀𝑦)) |
24 | 23 | mpoeq3dva 7434 | . 2 ⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀 ∈ 𝐾) → (𝑥 ∈ 𝑁, 𝑦 ∈ 𝑁 ↦ ((coe1‘(𝑥(𝑇‘𝑀)𝑦))‘0)) = (𝑥 ∈ 𝑁, 𝑦 ∈ 𝑁 ↦ (𝑥𝑀𝑦))) |
25 | eqidd 2737 | . . . . 5 ⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀 ∈ 𝐾) ∧ (𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁)) → (𝑥 ∈ 𝑁, 𝑦 ∈ 𝑁 ↦ (𝑥𝑀𝑦)) = (𝑥 ∈ 𝑁, 𝑦 ∈ 𝑁 ↦ (𝑥𝑀𝑦))) | |
26 | oveq12 7366 | . . . . . 6 ⊢ ((𝑥 = 𝑖 ∧ 𝑦 = 𝑗) → (𝑥𝑀𝑦) = (𝑖𝑀𝑗)) | |
27 | 26 | adantl 482 | . . . . 5 ⊢ ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀 ∈ 𝐾) ∧ (𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁)) ∧ (𝑥 = 𝑖 ∧ 𝑦 = 𝑗)) → (𝑥𝑀𝑦) = (𝑖𝑀𝑗)) |
28 | simprl 769 | . . . . 5 ⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀 ∈ 𝐾) ∧ (𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁)) → 𝑖 ∈ 𝑁) | |
29 | simprr 771 | . . . . 5 ⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀 ∈ 𝐾) ∧ (𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁)) → 𝑗 ∈ 𝑁) | |
30 | ovexd 7392 | . . . . 5 ⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀 ∈ 𝐾) ∧ (𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁)) → (𝑖𝑀𝑗) ∈ V) | |
31 | 25, 27, 28, 29, 30 | ovmpod 7507 | . . . 4 ⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀 ∈ 𝐾) ∧ (𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁)) → (𝑖(𝑥 ∈ 𝑁, 𝑦 ∈ 𝑁 ↦ (𝑥𝑀𝑦))𝑗) = (𝑖𝑀𝑗)) |
32 | 31 | ralrimivva 3197 | . . 3 ⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀 ∈ 𝐾) → ∀𝑖 ∈ 𝑁 ∀𝑗 ∈ 𝑁 (𝑖(𝑥 ∈ 𝑁, 𝑦 ∈ 𝑁 ↦ (𝑥𝑀𝑦))𝑗) = (𝑖𝑀𝑗)) |
33 | simp1 1136 | . . . . 5 ⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀 ∈ 𝐾) → 𝑁 ∈ Fin) | |
34 | simp2 1137 | . . . . 5 ⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀 ∈ 𝐾) → 𝑅 ∈ Ring) | |
35 | 3, 16, 4, 33, 34, 20 | matbas2d 21772 | . . . 4 ⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀 ∈ 𝐾) → (𝑥 ∈ 𝑁, 𝑦 ∈ 𝑁 ↦ (𝑥𝑀𝑦)) ∈ 𝐾) |
36 | simp3 1138 | . . . 4 ⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀 ∈ 𝐾) → 𝑀 ∈ 𝐾) | |
37 | 3, 4 | eqmat 21773 | . . . 4 ⊢ (((𝑥 ∈ 𝑁, 𝑦 ∈ 𝑁 ↦ (𝑥𝑀𝑦)) ∈ 𝐾 ∧ 𝑀 ∈ 𝐾) → ((𝑥 ∈ 𝑁, 𝑦 ∈ 𝑁 ↦ (𝑥𝑀𝑦)) = 𝑀 ↔ ∀𝑖 ∈ 𝑁 ∀𝑗 ∈ 𝑁 (𝑖(𝑥 ∈ 𝑁, 𝑦 ∈ 𝑁 ↦ (𝑥𝑀𝑦))𝑗) = (𝑖𝑀𝑗))) |
38 | 35, 36, 37 | syl2anc 584 | . . 3 ⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀 ∈ 𝐾) → ((𝑥 ∈ 𝑁, 𝑦 ∈ 𝑁 ↦ (𝑥𝑀𝑦)) = 𝑀 ↔ ∀𝑖 ∈ 𝑁 ∀𝑗 ∈ 𝑁 (𝑖(𝑥 ∈ 𝑁, 𝑦 ∈ 𝑁 ↦ (𝑥𝑀𝑦))𝑗) = (𝑖𝑀𝑗))) |
39 | 32, 38 | mpbird 256 | . 2 ⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀 ∈ 𝐾) → (𝑥 ∈ 𝑁, 𝑦 ∈ 𝑁 ↦ (𝑥𝑀𝑦)) = 𝑀) |
40 | 8, 24, 39 | 3eqtrd 2780 | 1 ⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀 ∈ 𝐾) → (𝐼‘(𝑇‘𝑀)) = 𝑀) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 396 ∧ w3a 1087 = wceq 1541 ∈ wcel 2106 ∀wral 3064 Vcvv 3445 ‘cfv 6496 (class class class)co 7357 ∈ cmpo 7359 Fincfn 8883 0cc0 11051 Basecbs 17083 Ringcrg 19964 algSccascl 21258 Poly1cpl1 21548 coe1cco1 21549 Mat cmat 21754 ConstPolyMat ccpmat 22052 matToPolyMat cmat2pmat 22053 cPolyMatToMat ccpmat2mat 22054 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2707 ax-rep 5242 ax-sep 5256 ax-nul 5263 ax-pow 5320 ax-pr 5384 ax-un 7672 ax-cnex 11107 ax-resscn 11108 ax-1cn 11109 ax-icn 11110 ax-addcl 11111 ax-addrcl 11112 ax-mulcl 11113 ax-mulrcl 11114 ax-mulcom 11115 ax-addass 11116 ax-mulass 11117 ax-distr 11118 ax-i2m1 11119 ax-1ne0 11120 ax-1rid 11121 ax-rnegex 11122 ax-rrecex 11123 ax-cnre 11124 ax-pre-lttri 11125 ax-pre-lttrn 11126 ax-pre-ltadd 11127 ax-pre-mulgt0 11128 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3or 1088 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2538 df-eu 2567 df-clab 2714 df-cleq 2728 df-clel 2814 df-nfc 2889 df-ne 2944 df-nel 3050 df-ral 3065 df-rex 3074 df-rmo 3353 df-reu 3354 df-rab 3408 df-v 3447 df-sbc 3740 df-csb 3856 df-dif 3913 df-un 3915 df-in 3917 df-ss 3927 df-pss 3929 df-nul 4283 df-if 4487 df-pw 4562 df-sn 4587 df-pr 4589 df-tp 4591 df-op 4593 df-ot 4595 df-uni 4866 df-int 4908 df-iun 4956 df-iin 4957 df-br 5106 df-opab 5168 df-mpt 5189 df-tr 5223 df-id 5531 df-eprel 5537 df-po 5545 df-so 5546 df-fr 5588 df-se 5589 df-we 5590 df-xp 5639 df-rel 5640 df-cnv 5641 df-co 5642 df-dm 5643 df-rn 5644 df-res 5645 df-ima 5646 df-pred 6253 df-ord 6320 df-on 6321 df-lim 6322 df-suc 6323 df-iota 6448 df-fun 6498 df-fn 6499 df-f 6500 df-f1 6501 df-fo 6502 df-f1o 6503 df-fv 6504 df-isom 6505 df-riota 7313 df-ov 7360 df-oprab 7361 df-mpo 7362 df-of 7617 df-ofr 7618 df-om 7803 df-1st 7921 df-2nd 7922 df-supp 8093 df-frecs 8212 df-wrecs 8243 df-recs 8317 df-rdg 8356 df-1o 8412 df-er 8648 df-map 8767 df-pm 8768 df-ixp 8836 df-en 8884 df-dom 8885 df-sdom 8886 df-fin 8887 df-fsupp 9306 df-sup 9378 df-oi 9446 df-card 9875 df-pnf 11191 df-mnf 11192 df-xr 11193 df-ltxr 11194 df-le 11195 df-sub 11387 df-neg 11388 df-nn 12154 df-2 12216 df-3 12217 df-4 12218 df-5 12219 df-6 12220 df-7 12221 df-8 12222 df-9 12223 df-n0 12414 df-z 12500 df-dec 12619 df-uz 12764 df-fz 13425 df-fzo 13568 df-seq 13907 df-hash 14231 df-struct 17019 df-sets 17036 df-slot 17054 df-ndx 17066 df-base 17084 df-ress 17113 df-plusg 17146 df-mulr 17147 df-sca 17149 df-vsca 17150 df-ip 17151 df-tset 17152 df-ple 17153 df-ds 17155 df-hom 17157 df-cco 17158 df-0g 17323 df-gsum 17324 df-prds 17329 df-pws 17331 df-mre 17466 df-mrc 17467 df-acs 17469 df-mgm 18497 df-sgrp 18546 df-mnd 18557 df-mhm 18601 df-submnd 18602 df-grp 18751 df-minusg 18752 df-sbg 18753 df-mulg 18873 df-subg 18925 df-ghm 19006 df-cntz 19097 df-cmn 19564 df-abl 19565 df-mgp 19897 df-ur 19914 df-ring 19966 df-subrg 20220 df-lmod 20324 df-lss 20393 df-sra 20633 df-rgmod 20634 df-dsmm 21138 df-frlm 21153 df-ascl 21261 df-psr 21311 df-mvr 21312 df-mpl 21313 df-opsr 21315 df-psr1 21551 df-vr1 21552 df-ply1 21553 df-coe1 21554 df-mat 21755 df-cpmat 22055 df-mat2pmat 22056 df-cpmat2mat 22057 |
This theorem is referenced by: m2cpminv 22109 m2cpminv0 22110 cayhamlem4 22237 |
Copyright terms: Public domain | W3C validator |