| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > m2cpminvid | Structured version Visualization version GIF version | ||
| Description: The inverse transformation applied to the transformation of a matrix over a ring R results in the matrix itself. (Contributed by AV, 12-Nov-2019.) (Revised by AV, 13-Dec-2019.) |
| Ref | Expression |
|---|---|
| m2cpminvid.i | ⊢ 𝐼 = (𝑁 cPolyMatToMat 𝑅) |
| m2cpminvid.a | ⊢ 𝐴 = (𝑁 Mat 𝑅) |
| m2cpminvid.k | ⊢ 𝐾 = (Base‘𝐴) |
| m2cpminvid.t | ⊢ 𝑇 = (𝑁 matToPolyMat 𝑅) |
| Ref | Expression |
|---|---|
| m2cpminvid | ⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀 ∈ 𝐾) → (𝐼‘(𝑇‘𝑀)) = 𝑀) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid 2729 | . . . 4 ⊢ (𝑁 ConstPolyMat 𝑅) = (𝑁 ConstPolyMat 𝑅) | |
| 2 | m2cpminvid.t | . . . 4 ⊢ 𝑇 = (𝑁 matToPolyMat 𝑅) | |
| 3 | m2cpminvid.a | . . . 4 ⊢ 𝐴 = (𝑁 Mat 𝑅) | |
| 4 | m2cpminvid.k | . . . 4 ⊢ 𝐾 = (Base‘𝐴) | |
| 5 | 1, 2, 3, 4 | m2cpm 22626 | . . 3 ⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀 ∈ 𝐾) → (𝑇‘𝑀) ∈ (𝑁 ConstPolyMat 𝑅)) |
| 6 | m2cpminvid.i | . . . 4 ⊢ 𝐼 = (𝑁 cPolyMatToMat 𝑅) | |
| 7 | 6, 1 | cpm2mval 22635 | . . 3 ⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ (𝑇‘𝑀) ∈ (𝑁 ConstPolyMat 𝑅)) → (𝐼‘(𝑇‘𝑀)) = (𝑥 ∈ 𝑁, 𝑦 ∈ 𝑁 ↦ ((coe1‘(𝑥(𝑇‘𝑀)𝑦))‘0))) |
| 8 | 5, 7 | syld3an3 1411 | . 2 ⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀 ∈ 𝐾) → (𝐼‘(𝑇‘𝑀)) = (𝑥 ∈ 𝑁, 𝑦 ∈ 𝑁 ↦ ((coe1‘(𝑥(𝑇‘𝑀)𝑦))‘0))) |
| 9 | eqid 2729 | . . . . . . . 8 ⊢ (Poly1‘𝑅) = (Poly1‘𝑅) | |
| 10 | eqid 2729 | . . . . . . . 8 ⊢ (algSc‘(Poly1‘𝑅)) = (algSc‘(Poly1‘𝑅)) | |
| 11 | 2, 3, 4, 9, 10 | mat2pmatvalel 22610 | . . . . . . 7 ⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀 ∈ 𝐾) ∧ (𝑥 ∈ 𝑁 ∧ 𝑦 ∈ 𝑁)) → (𝑥(𝑇‘𝑀)𝑦) = ((algSc‘(Poly1‘𝑅))‘(𝑥𝑀𝑦))) |
| 12 | 11 | 3impb 1114 | . . . . . 6 ⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀 ∈ 𝐾) ∧ 𝑥 ∈ 𝑁 ∧ 𝑦 ∈ 𝑁) → (𝑥(𝑇‘𝑀)𝑦) = ((algSc‘(Poly1‘𝑅))‘(𝑥𝑀𝑦))) |
| 13 | 12 | fveq2d 6826 | . . . . 5 ⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀 ∈ 𝐾) ∧ 𝑥 ∈ 𝑁 ∧ 𝑦 ∈ 𝑁) → (coe1‘(𝑥(𝑇‘𝑀)𝑦)) = (coe1‘((algSc‘(Poly1‘𝑅))‘(𝑥𝑀𝑦)))) |
| 14 | 13 | fveq1d 6824 | . . . 4 ⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀 ∈ 𝐾) ∧ 𝑥 ∈ 𝑁 ∧ 𝑦 ∈ 𝑁) → ((coe1‘(𝑥(𝑇‘𝑀)𝑦))‘0) = ((coe1‘((algSc‘(Poly1‘𝑅))‘(𝑥𝑀𝑦)))‘0)) |
| 15 | simp12 1205 | . . . . 5 ⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀 ∈ 𝐾) ∧ 𝑥 ∈ 𝑁 ∧ 𝑦 ∈ 𝑁) → 𝑅 ∈ Ring) | |
| 16 | eqid 2729 | . . . . . 6 ⊢ (Base‘𝑅) = (Base‘𝑅) | |
| 17 | simp2 1137 | . . . . . 6 ⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀 ∈ 𝐾) ∧ 𝑥 ∈ 𝑁 ∧ 𝑦 ∈ 𝑁) → 𝑥 ∈ 𝑁) | |
| 18 | simp3 1138 | . . . . . 6 ⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀 ∈ 𝐾) ∧ 𝑥 ∈ 𝑁 ∧ 𝑦 ∈ 𝑁) → 𝑦 ∈ 𝑁) | |
| 19 | simp13 1206 | . . . . . 6 ⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀 ∈ 𝐾) ∧ 𝑥 ∈ 𝑁 ∧ 𝑦 ∈ 𝑁) → 𝑀 ∈ 𝐾) | |
| 20 | 3, 16, 4, 17, 18, 19 | matecld 22311 | . . . . 5 ⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀 ∈ 𝐾) ∧ 𝑥 ∈ 𝑁 ∧ 𝑦 ∈ 𝑁) → (𝑥𝑀𝑦) ∈ (Base‘𝑅)) |
| 21 | 9, 10, 16 | ply1sclid 22172 | . . . . 5 ⊢ ((𝑅 ∈ Ring ∧ (𝑥𝑀𝑦) ∈ (Base‘𝑅)) → (𝑥𝑀𝑦) = ((coe1‘((algSc‘(Poly1‘𝑅))‘(𝑥𝑀𝑦)))‘0)) |
| 22 | 15, 20, 21 | syl2anc 584 | . . . 4 ⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀 ∈ 𝐾) ∧ 𝑥 ∈ 𝑁 ∧ 𝑦 ∈ 𝑁) → (𝑥𝑀𝑦) = ((coe1‘((algSc‘(Poly1‘𝑅))‘(𝑥𝑀𝑦)))‘0)) |
| 23 | 14, 22 | eqtr4d 2767 | . . 3 ⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀 ∈ 𝐾) ∧ 𝑥 ∈ 𝑁 ∧ 𝑦 ∈ 𝑁) → ((coe1‘(𝑥(𝑇‘𝑀)𝑦))‘0) = (𝑥𝑀𝑦)) |
| 24 | 23 | mpoeq3dva 7426 | . 2 ⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀 ∈ 𝐾) → (𝑥 ∈ 𝑁, 𝑦 ∈ 𝑁 ↦ ((coe1‘(𝑥(𝑇‘𝑀)𝑦))‘0)) = (𝑥 ∈ 𝑁, 𝑦 ∈ 𝑁 ↦ (𝑥𝑀𝑦))) |
| 25 | eqidd 2730 | . . . . 5 ⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀 ∈ 𝐾) ∧ (𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁)) → (𝑥 ∈ 𝑁, 𝑦 ∈ 𝑁 ↦ (𝑥𝑀𝑦)) = (𝑥 ∈ 𝑁, 𝑦 ∈ 𝑁 ↦ (𝑥𝑀𝑦))) | |
| 26 | oveq12 7358 | . . . . . 6 ⊢ ((𝑥 = 𝑖 ∧ 𝑦 = 𝑗) → (𝑥𝑀𝑦) = (𝑖𝑀𝑗)) | |
| 27 | 26 | adantl 481 | . . . . 5 ⊢ ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀 ∈ 𝐾) ∧ (𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁)) ∧ (𝑥 = 𝑖 ∧ 𝑦 = 𝑗)) → (𝑥𝑀𝑦) = (𝑖𝑀𝑗)) |
| 28 | simprl 770 | . . . . 5 ⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀 ∈ 𝐾) ∧ (𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁)) → 𝑖 ∈ 𝑁) | |
| 29 | simprr 772 | . . . . 5 ⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀 ∈ 𝐾) ∧ (𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁)) → 𝑗 ∈ 𝑁) | |
| 30 | ovexd 7384 | . . . . 5 ⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀 ∈ 𝐾) ∧ (𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁)) → (𝑖𝑀𝑗) ∈ V) | |
| 31 | 25, 27, 28, 29, 30 | ovmpod 7501 | . . . 4 ⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀 ∈ 𝐾) ∧ (𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁)) → (𝑖(𝑥 ∈ 𝑁, 𝑦 ∈ 𝑁 ↦ (𝑥𝑀𝑦))𝑗) = (𝑖𝑀𝑗)) |
| 32 | 31 | ralrimivva 3172 | . . 3 ⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀 ∈ 𝐾) → ∀𝑖 ∈ 𝑁 ∀𝑗 ∈ 𝑁 (𝑖(𝑥 ∈ 𝑁, 𝑦 ∈ 𝑁 ↦ (𝑥𝑀𝑦))𝑗) = (𝑖𝑀𝑗)) |
| 33 | simp1 1136 | . . . . 5 ⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀 ∈ 𝐾) → 𝑁 ∈ Fin) | |
| 34 | simp2 1137 | . . . . 5 ⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀 ∈ 𝐾) → 𝑅 ∈ Ring) | |
| 35 | 3, 16, 4, 33, 34, 20 | matbas2d 22308 | . . . 4 ⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀 ∈ 𝐾) → (𝑥 ∈ 𝑁, 𝑦 ∈ 𝑁 ↦ (𝑥𝑀𝑦)) ∈ 𝐾) |
| 36 | simp3 1138 | . . . 4 ⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀 ∈ 𝐾) → 𝑀 ∈ 𝐾) | |
| 37 | 3, 4 | eqmat 22309 | . . . 4 ⊢ (((𝑥 ∈ 𝑁, 𝑦 ∈ 𝑁 ↦ (𝑥𝑀𝑦)) ∈ 𝐾 ∧ 𝑀 ∈ 𝐾) → ((𝑥 ∈ 𝑁, 𝑦 ∈ 𝑁 ↦ (𝑥𝑀𝑦)) = 𝑀 ↔ ∀𝑖 ∈ 𝑁 ∀𝑗 ∈ 𝑁 (𝑖(𝑥 ∈ 𝑁, 𝑦 ∈ 𝑁 ↦ (𝑥𝑀𝑦))𝑗) = (𝑖𝑀𝑗))) |
| 38 | 35, 36, 37 | syl2anc 584 | . . 3 ⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀 ∈ 𝐾) → ((𝑥 ∈ 𝑁, 𝑦 ∈ 𝑁 ↦ (𝑥𝑀𝑦)) = 𝑀 ↔ ∀𝑖 ∈ 𝑁 ∀𝑗 ∈ 𝑁 (𝑖(𝑥 ∈ 𝑁, 𝑦 ∈ 𝑁 ↦ (𝑥𝑀𝑦))𝑗) = (𝑖𝑀𝑗))) |
| 39 | 32, 38 | mpbird 257 | . 2 ⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀 ∈ 𝐾) → (𝑥 ∈ 𝑁, 𝑦 ∈ 𝑁 ↦ (𝑥𝑀𝑦)) = 𝑀) |
| 40 | 8, 24, 39 | 3eqtrd 2768 | 1 ⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀 ∈ 𝐾) → (𝐼‘(𝑇‘𝑀)) = 𝑀) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∧ w3a 1086 = wceq 1540 ∈ wcel 2109 ∀wral 3044 Vcvv 3436 ‘cfv 6482 (class class class)co 7349 ∈ cmpo 7351 Fincfn 8872 0cc0 11009 Basecbs 17120 Ringcrg 20118 algSccascl 21759 Poly1cpl1 22059 coe1cco1 22060 Mat cmat 22292 ConstPolyMat ccpmat 22588 matToPolyMat cmat2pmat 22589 cPolyMatToMat ccpmat2mat 22590 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5218 ax-sep 5235 ax-nul 5245 ax-pow 5304 ax-pr 5371 ax-un 7671 ax-cnex 11065 ax-resscn 11066 ax-1cn 11067 ax-icn 11068 ax-addcl 11069 ax-addrcl 11070 ax-mulcl 11071 ax-mulrcl 11072 ax-mulcom 11073 ax-addass 11074 ax-mulass 11075 ax-distr 11076 ax-i2m1 11077 ax-1ne0 11078 ax-1rid 11079 ax-rnegex 11080 ax-rrecex 11081 ax-cnre 11082 ax-pre-lttri 11083 ax-pre-lttrn 11084 ax-pre-ltadd 11085 ax-pre-mulgt0 11086 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rmo 3343 df-reu 3344 df-rab 3395 df-v 3438 df-sbc 3743 df-csb 3852 df-dif 3906 df-un 3908 df-in 3910 df-ss 3920 df-pss 3923 df-nul 4285 df-if 4477 df-pw 4553 df-sn 4578 df-pr 4580 df-tp 4582 df-op 4584 df-ot 4586 df-uni 4859 df-int 4897 df-iun 4943 df-iin 4944 df-br 5093 df-opab 5155 df-mpt 5174 df-tr 5200 df-id 5514 df-eprel 5519 df-po 5527 df-so 5528 df-fr 5572 df-se 5573 df-we 5574 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-rn 5630 df-res 5631 df-ima 5632 df-pred 6249 df-ord 6310 df-on 6311 df-lim 6312 df-suc 6313 df-iota 6438 df-fun 6484 df-fn 6485 df-f 6486 df-f1 6487 df-fo 6488 df-f1o 6489 df-fv 6490 df-isom 6491 df-riota 7306 df-ov 7352 df-oprab 7353 df-mpo 7354 df-of 7613 df-ofr 7614 df-om 7800 df-1st 7924 df-2nd 7925 df-supp 8094 df-frecs 8214 df-wrecs 8245 df-recs 8294 df-rdg 8332 df-1o 8388 df-2o 8389 df-er 8625 df-map 8755 df-pm 8756 df-ixp 8825 df-en 8873 df-dom 8874 df-sdom 8875 df-fin 8876 df-fsupp 9252 df-sup 9332 df-oi 9402 df-card 9835 df-pnf 11151 df-mnf 11152 df-xr 11153 df-ltxr 11154 df-le 11155 df-sub 11349 df-neg 11350 df-nn 12129 df-2 12191 df-3 12192 df-4 12193 df-5 12194 df-6 12195 df-7 12196 df-8 12197 df-9 12198 df-n0 12385 df-z 12472 df-dec 12592 df-uz 12736 df-fz 13411 df-fzo 13558 df-seq 13909 df-hash 14238 df-struct 17058 df-sets 17075 df-slot 17093 df-ndx 17105 df-base 17121 df-ress 17142 df-plusg 17174 df-mulr 17175 df-sca 17177 df-vsca 17178 df-ip 17179 df-tset 17180 df-ple 17181 df-ds 17183 df-hom 17185 df-cco 17186 df-0g 17345 df-gsum 17346 df-prds 17351 df-pws 17353 df-mre 17488 df-mrc 17489 df-acs 17491 df-mgm 18514 df-sgrp 18593 df-mnd 18609 df-mhm 18657 df-submnd 18658 df-grp 18815 df-minusg 18816 df-sbg 18817 df-mulg 18947 df-subg 19002 df-ghm 19092 df-cntz 19196 df-cmn 19661 df-abl 19662 df-mgp 20026 df-rng 20038 df-ur 20067 df-ring 20120 df-subrng 20431 df-subrg 20455 df-lmod 20765 df-lss 20835 df-sra 21077 df-rgmod 21078 df-dsmm 21639 df-frlm 21654 df-ascl 21762 df-psr 21816 df-mvr 21817 df-mpl 21818 df-opsr 21820 df-psr1 22062 df-vr1 22063 df-ply1 22064 df-coe1 22065 df-mat 22293 df-cpmat 22591 df-mat2pmat 22592 df-cpmat2mat 22593 |
| This theorem is referenced by: m2cpminv 22645 m2cpminv0 22646 cayhamlem4 22773 |
| Copyright terms: Public domain | W3C validator |