Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > m2cpminvid | Structured version Visualization version GIF version |
Description: The inverse transformation applied to the transformation of a matrix over a ring R results in the matrix itself. (Contributed by AV, 12-Nov-2019.) (Revised by AV, 13-Dec-2019.) |
Ref | Expression |
---|---|
m2cpminvid.i | ⊢ 𝐼 = (𝑁 cPolyMatToMat 𝑅) |
m2cpminvid.a | ⊢ 𝐴 = (𝑁 Mat 𝑅) |
m2cpminvid.k | ⊢ 𝐾 = (Base‘𝐴) |
m2cpminvid.t | ⊢ 𝑇 = (𝑁 matToPolyMat 𝑅) |
Ref | Expression |
---|---|
m2cpminvid | ⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀 ∈ 𝐾) → (𝐼‘(𝑇‘𝑀)) = 𝑀) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2758 | . . . 4 ⊢ (𝑁 ConstPolyMat 𝑅) = (𝑁 ConstPolyMat 𝑅) | |
2 | m2cpminvid.t | . . . 4 ⊢ 𝑇 = (𝑁 matToPolyMat 𝑅) | |
3 | m2cpminvid.a | . . . 4 ⊢ 𝐴 = (𝑁 Mat 𝑅) | |
4 | m2cpminvid.k | . . . 4 ⊢ 𝐾 = (Base‘𝐴) | |
5 | 1, 2, 3, 4 | m2cpm 21441 | . . 3 ⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀 ∈ 𝐾) → (𝑇‘𝑀) ∈ (𝑁 ConstPolyMat 𝑅)) |
6 | m2cpminvid.i | . . . 4 ⊢ 𝐼 = (𝑁 cPolyMatToMat 𝑅) | |
7 | 6, 1 | cpm2mval 21450 | . . 3 ⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ (𝑇‘𝑀) ∈ (𝑁 ConstPolyMat 𝑅)) → (𝐼‘(𝑇‘𝑀)) = (𝑥 ∈ 𝑁, 𝑦 ∈ 𝑁 ↦ ((coe1‘(𝑥(𝑇‘𝑀)𝑦))‘0))) |
8 | 5, 7 | syld3an3 1406 | . 2 ⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀 ∈ 𝐾) → (𝐼‘(𝑇‘𝑀)) = (𝑥 ∈ 𝑁, 𝑦 ∈ 𝑁 ↦ ((coe1‘(𝑥(𝑇‘𝑀)𝑦))‘0))) |
9 | eqid 2758 | . . . . . . . 8 ⊢ (Poly1‘𝑅) = (Poly1‘𝑅) | |
10 | eqid 2758 | . . . . . . . 8 ⊢ (algSc‘(Poly1‘𝑅)) = (algSc‘(Poly1‘𝑅)) | |
11 | 2, 3, 4, 9, 10 | mat2pmatvalel 21425 | . . . . . . 7 ⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀 ∈ 𝐾) ∧ (𝑥 ∈ 𝑁 ∧ 𝑦 ∈ 𝑁)) → (𝑥(𝑇‘𝑀)𝑦) = ((algSc‘(Poly1‘𝑅))‘(𝑥𝑀𝑦))) |
12 | 11 | 3impb 1112 | . . . . . 6 ⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀 ∈ 𝐾) ∧ 𝑥 ∈ 𝑁 ∧ 𝑦 ∈ 𝑁) → (𝑥(𝑇‘𝑀)𝑦) = ((algSc‘(Poly1‘𝑅))‘(𝑥𝑀𝑦))) |
13 | 12 | fveq2d 6662 | . . . . 5 ⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀 ∈ 𝐾) ∧ 𝑥 ∈ 𝑁 ∧ 𝑦 ∈ 𝑁) → (coe1‘(𝑥(𝑇‘𝑀)𝑦)) = (coe1‘((algSc‘(Poly1‘𝑅))‘(𝑥𝑀𝑦)))) |
14 | 13 | fveq1d 6660 | . . . 4 ⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀 ∈ 𝐾) ∧ 𝑥 ∈ 𝑁 ∧ 𝑦 ∈ 𝑁) → ((coe1‘(𝑥(𝑇‘𝑀)𝑦))‘0) = ((coe1‘((algSc‘(Poly1‘𝑅))‘(𝑥𝑀𝑦)))‘0)) |
15 | simp12 1201 | . . . . 5 ⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀 ∈ 𝐾) ∧ 𝑥 ∈ 𝑁 ∧ 𝑦 ∈ 𝑁) → 𝑅 ∈ Ring) | |
16 | eqid 2758 | . . . . . 6 ⊢ (Base‘𝑅) = (Base‘𝑅) | |
17 | simp2 1134 | . . . . . 6 ⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀 ∈ 𝐾) ∧ 𝑥 ∈ 𝑁 ∧ 𝑦 ∈ 𝑁) → 𝑥 ∈ 𝑁) | |
18 | simp3 1135 | . . . . . 6 ⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀 ∈ 𝐾) ∧ 𝑥 ∈ 𝑁 ∧ 𝑦 ∈ 𝑁) → 𝑦 ∈ 𝑁) | |
19 | simp13 1202 | . . . . . 6 ⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀 ∈ 𝐾) ∧ 𝑥 ∈ 𝑁 ∧ 𝑦 ∈ 𝑁) → 𝑀 ∈ 𝐾) | |
20 | 3, 16, 4, 17, 18, 19 | matecld 21126 | . . . . 5 ⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀 ∈ 𝐾) ∧ 𝑥 ∈ 𝑁 ∧ 𝑦 ∈ 𝑁) → (𝑥𝑀𝑦) ∈ (Base‘𝑅)) |
21 | 9, 10, 16 | ply1sclid 21012 | . . . . 5 ⊢ ((𝑅 ∈ Ring ∧ (𝑥𝑀𝑦) ∈ (Base‘𝑅)) → (𝑥𝑀𝑦) = ((coe1‘((algSc‘(Poly1‘𝑅))‘(𝑥𝑀𝑦)))‘0)) |
22 | 15, 20, 21 | syl2anc 587 | . . . 4 ⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀 ∈ 𝐾) ∧ 𝑥 ∈ 𝑁 ∧ 𝑦 ∈ 𝑁) → (𝑥𝑀𝑦) = ((coe1‘((algSc‘(Poly1‘𝑅))‘(𝑥𝑀𝑦)))‘0)) |
23 | 14, 22 | eqtr4d 2796 | . . 3 ⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀 ∈ 𝐾) ∧ 𝑥 ∈ 𝑁 ∧ 𝑦 ∈ 𝑁) → ((coe1‘(𝑥(𝑇‘𝑀)𝑦))‘0) = (𝑥𝑀𝑦)) |
24 | 23 | mpoeq3dva 7225 | . 2 ⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀 ∈ 𝐾) → (𝑥 ∈ 𝑁, 𝑦 ∈ 𝑁 ↦ ((coe1‘(𝑥(𝑇‘𝑀)𝑦))‘0)) = (𝑥 ∈ 𝑁, 𝑦 ∈ 𝑁 ↦ (𝑥𝑀𝑦))) |
25 | eqidd 2759 | . . . . 5 ⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀 ∈ 𝐾) ∧ (𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁)) → (𝑥 ∈ 𝑁, 𝑦 ∈ 𝑁 ↦ (𝑥𝑀𝑦)) = (𝑥 ∈ 𝑁, 𝑦 ∈ 𝑁 ↦ (𝑥𝑀𝑦))) | |
26 | oveq12 7159 | . . . . . 6 ⊢ ((𝑥 = 𝑖 ∧ 𝑦 = 𝑗) → (𝑥𝑀𝑦) = (𝑖𝑀𝑗)) | |
27 | 26 | adantl 485 | . . . . 5 ⊢ ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀 ∈ 𝐾) ∧ (𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁)) ∧ (𝑥 = 𝑖 ∧ 𝑦 = 𝑗)) → (𝑥𝑀𝑦) = (𝑖𝑀𝑗)) |
28 | simprl 770 | . . . . 5 ⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀 ∈ 𝐾) ∧ (𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁)) → 𝑖 ∈ 𝑁) | |
29 | simprr 772 | . . . . 5 ⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀 ∈ 𝐾) ∧ (𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁)) → 𝑗 ∈ 𝑁) | |
30 | ovexd 7185 | . . . . 5 ⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀 ∈ 𝐾) ∧ (𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁)) → (𝑖𝑀𝑗) ∈ V) | |
31 | 25, 27, 28, 29, 30 | ovmpod 7297 | . . . 4 ⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀 ∈ 𝐾) ∧ (𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁)) → (𝑖(𝑥 ∈ 𝑁, 𝑦 ∈ 𝑁 ↦ (𝑥𝑀𝑦))𝑗) = (𝑖𝑀𝑗)) |
32 | 31 | ralrimivva 3120 | . . 3 ⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀 ∈ 𝐾) → ∀𝑖 ∈ 𝑁 ∀𝑗 ∈ 𝑁 (𝑖(𝑥 ∈ 𝑁, 𝑦 ∈ 𝑁 ↦ (𝑥𝑀𝑦))𝑗) = (𝑖𝑀𝑗)) |
33 | simp1 1133 | . . . . 5 ⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀 ∈ 𝐾) → 𝑁 ∈ Fin) | |
34 | simp2 1134 | . . . . 5 ⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀 ∈ 𝐾) → 𝑅 ∈ Ring) | |
35 | 3, 16, 4, 33, 34, 20 | matbas2d 21123 | . . . 4 ⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀 ∈ 𝐾) → (𝑥 ∈ 𝑁, 𝑦 ∈ 𝑁 ↦ (𝑥𝑀𝑦)) ∈ 𝐾) |
36 | simp3 1135 | . . . 4 ⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀 ∈ 𝐾) → 𝑀 ∈ 𝐾) | |
37 | 3, 4 | eqmat 21124 | . . . 4 ⊢ (((𝑥 ∈ 𝑁, 𝑦 ∈ 𝑁 ↦ (𝑥𝑀𝑦)) ∈ 𝐾 ∧ 𝑀 ∈ 𝐾) → ((𝑥 ∈ 𝑁, 𝑦 ∈ 𝑁 ↦ (𝑥𝑀𝑦)) = 𝑀 ↔ ∀𝑖 ∈ 𝑁 ∀𝑗 ∈ 𝑁 (𝑖(𝑥 ∈ 𝑁, 𝑦 ∈ 𝑁 ↦ (𝑥𝑀𝑦))𝑗) = (𝑖𝑀𝑗))) |
38 | 35, 36, 37 | syl2anc 587 | . . 3 ⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀 ∈ 𝐾) → ((𝑥 ∈ 𝑁, 𝑦 ∈ 𝑁 ↦ (𝑥𝑀𝑦)) = 𝑀 ↔ ∀𝑖 ∈ 𝑁 ∀𝑗 ∈ 𝑁 (𝑖(𝑥 ∈ 𝑁, 𝑦 ∈ 𝑁 ↦ (𝑥𝑀𝑦))𝑗) = (𝑖𝑀𝑗))) |
39 | 32, 38 | mpbird 260 | . 2 ⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀 ∈ 𝐾) → (𝑥 ∈ 𝑁, 𝑦 ∈ 𝑁 ↦ (𝑥𝑀𝑦)) = 𝑀) |
40 | 8, 24, 39 | 3eqtrd 2797 | 1 ⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀 ∈ 𝐾) → (𝐼‘(𝑇‘𝑀)) = 𝑀) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 209 ∧ wa 399 ∧ w3a 1084 = wceq 1538 ∈ wcel 2111 ∀wral 3070 Vcvv 3409 ‘cfv 6335 (class class class)co 7150 ∈ cmpo 7152 Fincfn 8527 0cc0 10575 Basecbs 16541 Ringcrg 19365 algSccascl 20617 Poly1cpl1 20901 coe1cco1 20902 Mat cmat 21107 ConstPolyMat ccpmat 21403 matToPolyMat cmat2pmat 21404 cPolyMatToMat ccpmat2mat 21405 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1911 ax-6 1970 ax-7 2015 ax-8 2113 ax-9 2121 ax-10 2142 ax-11 2158 ax-12 2175 ax-ext 2729 ax-rep 5156 ax-sep 5169 ax-nul 5176 ax-pow 5234 ax-pr 5298 ax-un 7459 ax-cnex 10631 ax-resscn 10632 ax-1cn 10633 ax-icn 10634 ax-addcl 10635 ax-addrcl 10636 ax-mulcl 10637 ax-mulrcl 10638 ax-mulcom 10639 ax-addass 10640 ax-mulass 10641 ax-distr 10642 ax-i2m1 10643 ax-1ne0 10644 ax-1rid 10645 ax-rnegex 10646 ax-rrecex 10647 ax-cnre 10648 ax-pre-lttri 10649 ax-pre-lttrn 10650 ax-pre-ltadd 10651 ax-pre-mulgt0 10652 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 845 df-3or 1085 df-3an 1086 df-tru 1541 df-fal 1551 df-ex 1782 df-nf 1786 df-sb 2070 df-mo 2557 df-eu 2588 df-clab 2736 df-cleq 2750 df-clel 2830 df-nfc 2901 df-ne 2952 df-nel 3056 df-ral 3075 df-rex 3076 df-reu 3077 df-rmo 3078 df-rab 3079 df-v 3411 df-sbc 3697 df-csb 3806 df-dif 3861 df-un 3863 df-in 3865 df-ss 3875 df-pss 3877 df-nul 4226 df-if 4421 df-pw 4496 df-sn 4523 df-pr 4525 df-tp 4527 df-op 4529 df-ot 4531 df-uni 4799 df-int 4839 df-iun 4885 df-iin 4886 df-br 5033 df-opab 5095 df-mpt 5113 df-tr 5139 df-id 5430 df-eprel 5435 df-po 5443 df-so 5444 df-fr 5483 df-se 5484 df-we 5485 df-xp 5530 df-rel 5531 df-cnv 5532 df-co 5533 df-dm 5534 df-rn 5535 df-res 5536 df-ima 5537 df-pred 6126 df-ord 6172 df-on 6173 df-lim 6174 df-suc 6175 df-iota 6294 df-fun 6337 df-fn 6338 df-f 6339 df-f1 6340 df-fo 6341 df-f1o 6342 df-fv 6343 df-isom 6344 df-riota 7108 df-ov 7153 df-oprab 7154 df-mpo 7155 df-of 7405 df-ofr 7406 df-om 7580 df-1st 7693 df-2nd 7694 df-supp 7836 df-wrecs 7957 df-recs 8018 df-rdg 8056 df-1o 8112 df-er 8299 df-map 8418 df-pm 8419 df-ixp 8480 df-en 8528 df-dom 8529 df-sdom 8530 df-fin 8531 df-fsupp 8867 df-sup 8939 df-oi 9007 df-card 9401 df-pnf 10715 df-mnf 10716 df-xr 10717 df-ltxr 10718 df-le 10719 df-sub 10910 df-neg 10911 df-nn 11675 df-2 11737 df-3 11738 df-4 11739 df-5 11740 df-6 11741 df-7 11742 df-8 11743 df-9 11744 df-n0 11935 df-z 12021 df-dec 12138 df-uz 12283 df-fz 12940 df-fzo 13083 df-seq 13419 df-hash 13741 df-struct 16543 df-ndx 16544 df-slot 16545 df-base 16547 df-sets 16548 df-ress 16549 df-plusg 16636 df-mulr 16637 df-sca 16639 df-vsca 16640 df-ip 16641 df-tset 16642 df-ple 16643 df-ds 16645 df-hom 16647 df-cco 16648 df-0g 16773 df-gsum 16774 df-prds 16779 df-pws 16781 df-mre 16915 df-mrc 16916 df-acs 16918 df-mgm 17918 df-sgrp 17967 df-mnd 17978 df-mhm 18022 df-submnd 18023 df-grp 18172 df-minusg 18173 df-sbg 18174 df-mulg 18292 df-subg 18343 df-ghm 18423 df-cntz 18514 df-cmn 18975 df-abl 18976 df-mgp 19308 df-ur 19320 df-ring 19367 df-subrg 19601 df-lmod 19704 df-lss 19772 df-sra 20012 df-rgmod 20013 df-dsmm 20497 df-frlm 20512 df-ascl 20620 df-psr 20671 df-mvr 20672 df-mpl 20673 df-opsr 20675 df-psr1 20904 df-vr1 20905 df-ply1 20906 df-coe1 20907 df-mat 21108 df-cpmat 21406 df-mat2pmat 21407 df-cpmat2mat 21408 |
This theorem is referenced by: m2cpminv 21460 m2cpminv0 21461 cayhamlem4 21588 |
Copyright terms: Public domain | W3C validator |