MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  m2cpminvid Structured version   Visualization version   GIF version

Theorem m2cpminvid 20837
Description: The inverse transformation applied to the transformation of a matrix over a ring R results in the matrix itself. (Contributed by AV, 12-Nov-2019.) (Revised by AV, 13-Dec-2019.)
Hypotheses
Ref Expression
m2cpminvid.i 𝐼 = (𝑁 cPolyMatToMat 𝑅)
m2cpminvid.a 𝐴 = (𝑁 Mat 𝑅)
m2cpminvid.k 𝐾 = (Base‘𝐴)
m2cpminvid.t 𝑇 = (𝑁 matToPolyMat 𝑅)
Assertion
Ref Expression
m2cpminvid ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀𝐾) → (𝐼‘(𝑇𝑀)) = 𝑀)

Proof of Theorem m2cpminvid
Dummy variables 𝑖 𝑗 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2765 . . . 4 (𝑁 ConstPolyMat 𝑅) = (𝑁 ConstPolyMat 𝑅)
2 m2cpminvid.t . . . 4 𝑇 = (𝑁 matToPolyMat 𝑅)
3 m2cpminvid.a . . . 4 𝐴 = (𝑁 Mat 𝑅)
4 m2cpminvid.k . . . 4 𝐾 = (Base‘𝐴)
51, 2, 3, 4m2cpm 20825 . . 3 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀𝐾) → (𝑇𝑀) ∈ (𝑁 ConstPolyMat 𝑅))
6 m2cpminvid.i . . . 4 𝐼 = (𝑁 cPolyMatToMat 𝑅)
76, 1cpm2mval 20834 . . 3 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ (𝑇𝑀) ∈ (𝑁 ConstPolyMat 𝑅)) → (𝐼‘(𝑇𝑀)) = (𝑥𝑁, 𝑦𝑁 ↦ ((coe1‘(𝑥(𝑇𝑀)𝑦))‘0)))
85, 7syld3an3 1528 . 2 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀𝐾) → (𝐼‘(𝑇𝑀)) = (𝑥𝑁, 𝑦𝑁 ↦ ((coe1‘(𝑥(𝑇𝑀)𝑦))‘0)))
9 eqid 2765 . . . . . . . 8 (Poly1𝑅) = (Poly1𝑅)
10 eqid 2765 . . . . . . . 8 (algSc‘(Poly1𝑅)) = (algSc‘(Poly1𝑅))
112, 3, 4, 9, 10mat2pmatvalel 20809 . . . . . . 7 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀𝐾) ∧ (𝑥𝑁𝑦𝑁)) → (𝑥(𝑇𝑀)𝑦) = ((algSc‘(Poly1𝑅))‘(𝑥𝑀𝑦)))
12113impb 1143 . . . . . 6 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀𝐾) ∧ 𝑥𝑁𝑦𝑁) → (𝑥(𝑇𝑀)𝑦) = ((algSc‘(Poly1𝑅))‘(𝑥𝑀𝑦)))
1312fveq2d 6379 . . . . 5 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀𝐾) ∧ 𝑥𝑁𝑦𝑁) → (coe1‘(𝑥(𝑇𝑀)𝑦)) = (coe1‘((algSc‘(Poly1𝑅))‘(𝑥𝑀𝑦))))
1413fveq1d 6377 . . . 4 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀𝐾) ∧ 𝑥𝑁𝑦𝑁) → ((coe1‘(𝑥(𝑇𝑀)𝑦))‘0) = ((coe1‘((algSc‘(Poly1𝑅))‘(𝑥𝑀𝑦)))‘0))
15 simp12 1261 . . . . 5 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀𝐾) ∧ 𝑥𝑁𝑦𝑁) → 𝑅 ∈ Ring)
16 eqid 2765 . . . . . 6 (Base‘𝑅) = (Base‘𝑅)
17 simp2 1167 . . . . . 6 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀𝐾) ∧ 𝑥𝑁𝑦𝑁) → 𝑥𝑁)
18 simp3 1168 . . . . . 6 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀𝐾) ∧ 𝑥𝑁𝑦𝑁) → 𝑦𝑁)
19 simp13 1262 . . . . . 6 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀𝐾) ∧ 𝑥𝑁𝑦𝑁) → 𝑀𝐾)
203, 16, 4, 17, 18, 19matecld 20508 . . . . 5 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀𝐾) ∧ 𝑥𝑁𝑦𝑁) → (𝑥𝑀𝑦) ∈ (Base‘𝑅))
219, 10, 16ply1sclid 19931 . . . . 5 ((𝑅 ∈ Ring ∧ (𝑥𝑀𝑦) ∈ (Base‘𝑅)) → (𝑥𝑀𝑦) = ((coe1‘((algSc‘(Poly1𝑅))‘(𝑥𝑀𝑦)))‘0))
2215, 20, 21syl2anc 579 . . . 4 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀𝐾) ∧ 𝑥𝑁𝑦𝑁) → (𝑥𝑀𝑦) = ((coe1‘((algSc‘(Poly1𝑅))‘(𝑥𝑀𝑦)))‘0))
2314, 22eqtr4d 2802 . . 3 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀𝐾) ∧ 𝑥𝑁𝑦𝑁) → ((coe1‘(𝑥(𝑇𝑀)𝑦))‘0) = (𝑥𝑀𝑦))
2423mpt2eq3dva 6917 . 2 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀𝐾) → (𝑥𝑁, 𝑦𝑁 ↦ ((coe1‘(𝑥(𝑇𝑀)𝑦))‘0)) = (𝑥𝑁, 𝑦𝑁 ↦ (𝑥𝑀𝑦)))
25 eqidd 2766 . . . . 5 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀𝐾) ∧ (𝑖𝑁𝑗𝑁)) → (𝑥𝑁, 𝑦𝑁 ↦ (𝑥𝑀𝑦)) = (𝑥𝑁, 𝑦𝑁 ↦ (𝑥𝑀𝑦)))
26 oveq12 6851 . . . . . 6 ((𝑥 = 𝑖𝑦 = 𝑗) → (𝑥𝑀𝑦) = (𝑖𝑀𝑗))
2726adantl 473 . . . . 5 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀𝐾) ∧ (𝑖𝑁𝑗𝑁)) ∧ (𝑥 = 𝑖𝑦 = 𝑗)) → (𝑥𝑀𝑦) = (𝑖𝑀𝑗))
28 simprl 787 . . . . 5 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀𝐾) ∧ (𝑖𝑁𝑗𝑁)) → 𝑖𝑁)
29 simprr 789 . . . . 5 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀𝐾) ∧ (𝑖𝑁𝑗𝑁)) → 𝑗𝑁)
30 ovexd 6876 . . . . 5 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀𝐾) ∧ (𝑖𝑁𝑗𝑁)) → (𝑖𝑀𝑗) ∈ V)
3125, 27, 28, 29, 30ovmpt2d 6986 . . . 4 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀𝐾) ∧ (𝑖𝑁𝑗𝑁)) → (𝑖(𝑥𝑁, 𝑦𝑁 ↦ (𝑥𝑀𝑦))𝑗) = (𝑖𝑀𝑗))
3231ralrimivva 3118 . . 3 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀𝐾) → ∀𝑖𝑁𝑗𝑁 (𝑖(𝑥𝑁, 𝑦𝑁 ↦ (𝑥𝑀𝑦))𝑗) = (𝑖𝑀𝑗))
33 simp1 1166 . . . . 5 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀𝐾) → 𝑁 ∈ Fin)
34 simp2 1167 . . . . 5 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀𝐾) → 𝑅 ∈ Ring)
353, 16, 4, 33, 34, 20matbas2d 20505 . . . 4 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀𝐾) → (𝑥𝑁, 𝑦𝑁 ↦ (𝑥𝑀𝑦)) ∈ 𝐾)
36 simp3 1168 . . . 4 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀𝐾) → 𝑀𝐾)
373, 4eqmat 20506 . . . 4 (((𝑥𝑁, 𝑦𝑁 ↦ (𝑥𝑀𝑦)) ∈ 𝐾𝑀𝐾) → ((𝑥𝑁, 𝑦𝑁 ↦ (𝑥𝑀𝑦)) = 𝑀 ↔ ∀𝑖𝑁𝑗𝑁 (𝑖(𝑥𝑁, 𝑦𝑁 ↦ (𝑥𝑀𝑦))𝑗) = (𝑖𝑀𝑗)))
3835, 36, 37syl2anc 579 . . 3 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀𝐾) → ((𝑥𝑁, 𝑦𝑁 ↦ (𝑥𝑀𝑦)) = 𝑀 ↔ ∀𝑖𝑁𝑗𝑁 (𝑖(𝑥𝑁, 𝑦𝑁 ↦ (𝑥𝑀𝑦))𝑗) = (𝑖𝑀𝑗)))
3932, 38mpbird 248 . 2 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀𝐾) → (𝑥𝑁, 𝑦𝑁 ↦ (𝑥𝑀𝑦)) = 𝑀)
408, 24, 393eqtrd 2803 1 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀𝐾) → (𝐼‘(𝑇𝑀)) = 𝑀)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 197  wa 384  w3a 1107   = wceq 1652  wcel 2155  wral 3055  Vcvv 3350  cfv 6068  (class class class)co 6842  cmpt2 6844  Fincfn 8160  0cc0 10189  Basecbs 16132  Ringcrg 18814  algSccascl 19585  Poly1cpl1 19820  coe1cco1 19821   Mat cmat 20489   ConstPolyMat ccpmat 20787   matToPolyMat cmat2pmat 20788   cPolyMatToMat ccpmat2mat 20789
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1890  ax-4 1904  ax-5 2005  ax-6 2070  ax-7 2105  ax-8 2157  ax-9 2164  ax-10 2183  ax-11 2198  ax-12 2211  ax-13 2352  ax-ext 2743  ax-rep 4930  ax-sep 4941  ax-nul 4949  ax-pow 5001  ax-pr 5062  ax-un 7147  ax-inf2 8753  ax-cnex 10245  ax-resscn 10246  ax-1cn 10247  ax-icn 10248  ax-addcl 10249  ax-addrcl 10250  ax-mulcl 10251  ax-mulrcl 10252  ax-mulcom 10253  ax-addass 10254  ax-mulass 10255  ax-distr 10256  ax-i2m1 10257  ax-1ne0 10258  ax-1rid 10259  ax-rnegex 10260  ax-rrecex 10261  ax-cnre 10262  ax-pre-lttri 10263  ax-pre-lttrn 10264  ax-pre-ltadd 10265  ax-pre-mulgt0 10266
This theorem depends on definitions:  df-bi 198  df-an 385  df-or 874  df-3or 1108  df-3an 1109  df-tru 1656  df-ex 1875  df-nf 1879  df-sb 2063  df-mo 2565  df-eu 2582  df-clab 2752  df-cleq 2758  df-clel 2761  df-nfc 2896  df-ne 2938  df-nel 3041  df-ral 3060  df-rex 3061  df-reu 3062  df-rmo 3063  df-rab 3064  df-v 3352  df-sbc 3597  df-csb 3692  df-dif 3735  df-un 3737  df-in 3739  df-ss 3746  df-pss 3748  df-nul 4080  df-if 4244  df-pw 4317  df-sn 4335  df-pr 4337  df-tp 4339  df-op 4341  df-ot 4343  df-uni 4595  df-int 4634  df-iun 4678  df-iin 4679  df-br 4810  df-opab 4872  df-mpt 4889  df-tr 4912  df-id 5185  df-eprel 5190  df-po 5198  df-so 5199  df-fr 5236  df-se 5237  df-we 5238  df-xp 5283  df-rel 5284  df-cnv 5285  df-co 5286  df-dm 5287  df-rn 5288  df-res 5289  df-ima 5290  df-pred 5865  df-ord 5911  df-on 5912  df-lim 5913  df-suc 5914  df-iota 6031  df-fun 6070  df-fn 6071  df-f 6072  df-f1 6073  df-fo 6074  df-f1o 6075  df-fv 6076  df-isom 6077  df-riota 6803  df-ov 6845  df-oprab 6846  df-mpt2 6847  df-of 7095  df-ofr 7096  df-om 7264  df-1st 7366  df-2nd 7367  df-supp 7498  df-wrecs 7610  df-recs 7672  df-rdg 7710  df-1o 7764  df-2o 7765  df-oadd 7768  df-er 7947  df-map 8062  df-pm 8063  df-ixp 8114  df-en 8161  df-dom 8162  df-sdom 8163  df-fin 8164  df-fsupp 8483  df-sup 8555  df-oi 8622  df-card 9016  df-pnf 10330  df-mnf 10331  df-xr 10332  df-ltxr 10333  df-le 10334  df-sub 10522  df-neg 10523  df-nn 11275  df-2 11335  df-3 11336  df-4 11337  df-5 11338  df-6 11339  df-7 11340  df-8 11341  df-9 11342  df-n0 11539  df-z 11625  df-dec 11741  df-uz 11887  df-fz 12534  df-fzo 12674  df-seq 13009  df-hash 13322  df-struct 16134  df-ndx 16135  df-slot 16136  df-base 16138  df-sets 16139  df-ress 16140  df-plusg 16229  df-mulr 16230  df-sca 16232  df-vsca 16233  df-ip 16234  df-tset 16235  df-ple 16236  df-ds 16238  df-hom 16240  df-cco 16241  df-0g 16370  df-gsum 16371  df-prds 16376  df-pws 16378  df-mre 16514  df-mrc 16515  df-acs 16517  df-mgm 17510  df-sgrp 17552  df-mnd 17563  df-mhm 17603  df-submnd 17604  df-grp 17694  df-minusg 17695  df-sbg 17696  df-mulg 17810  df-subg 17857  df-ghm 17924  df-cntz 18015  df-cmn 18461  df-abl 18462  df-mgp 18757  df-ur 18769  df-ring 18816  df-subrg 19047  df-lmod 19134  df-lss 19202  df-sra 19446  df-rgmod 19447  df-ascl 19588  df-psr 19630  df-mvr 19631  df-mpl 19632  df-opsr 19634  df-psr1 19823  df-vr1 19824  df-ply1 19825  df-coe1 19826  df-dsmm 20352  df-frlm 20367  df-mat 20490  df-cpmat 20790  df-mat2pmat 20791  df-cpmat2mat 20792
This theorem is referenced by:  m2cpminv  20844  m2cpminv0  20845  cayhamlem4  20972
  Copyright terms: Public domain W3C validator