![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > m2cpminvid | Structured version Visualization version GIF version |
Description: The inverse transformation applied to the transformation of a matrix over a ring R results in the matrix itself. (Contributed by AV, 12-Nov-2019.) (Revised by AV, 13-Dec-2019.) |
Ref | Expression |
---|---|
m2cpminvid.i | ⊢ 𝐼 = (𝑁 cPolyMatToMat 𝑅) |
m2cpminvid.a | ⊢ 𝐴 = (𝑁 Mat 𝑅) |
m2cpminvid.k | ⊢ 𝐾 = (Base‘𝐴) |
m2cpminvid.t | ⊢ 𝑇 = (𝑁 matToPolyMat 𝑅) |
Ref | Expression |
---|---|
m2cpminvid | ⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀 ∈ 𝐾) → (𝐼‘(𝑇‘𝑀)) = 𝑀) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2735 | . . . 4 ⊢ (𝑁 ConstPolyMat 𝑅) = (𝑁 ConstPolyMat 𝑅) | |
2 | m2cpminvid.t | . . . 4 ⊢ 𝑇 = (𝑁 matToPolyMat 𝑅) | |
3 | m2cpminvid.a | . . . 4 ⊢ 𝐴 = (𝑁 Mat 𝑅) | |
4 | m2cpminvid.k | . . . 4 ⊢ 𝐾 = (Base‘𝐴) | |
5 | 1, 2, 3, 4 | m2cpm 22763 | . . 3 ⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀 ∈ 𝐾) → (𝑇‘𝑀) ∈ (𝑁 ConstPolyMat 𝑅)) |
6 | m2cpminvid.i | . . . 4 ⊢ 𝐼 = (𝑁 cPolyMatToMat 𝑅) | |
7 | 6, 1 | cpm2mval 22772 | . . 3 ⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ (𝑇‘𝑀) ∈ (𝑁 ConstPolyMat 𝑅)) → (𝐼‘(𝑇‘𝑀)) = (𝑥 ∈ 𝑁, 𝑦 ∈ 𝑁 ↦ ((coe1‘(𝑥(𝑇‘𝑀)𝑦))‘0))) |
8 | 5, 7 | syld3an3 1408 | . 2 ⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀 ∈ 𝐾) → (𝐼‘(𝑇‘𝑀)) = (𝑥 ∈ 𝑁, 𝑦 ∈ 𝑁 ↦ ((coe1‘(𝑥(𝑇‘𝑀)𝑦))‘0))) |
9 | eqid 2735 | . . . . . . . 8 ⊢ (Poly1‘𝑅) = (Poly1‘𝑅) | |
10 | eqid 2735 | . . . . . . . 8 ⊢ (algSc‘(Poly1‘𝑅)) = (algSc‘(Poly1‘𝑅)) | |
11 | 2, 3, 4, 9, 10 | mat2pmatvalel 22747 | . . . . . . 7 ⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀 ∈ 𝐾) ∧ (𝑥 ∈ 𝑁 ∧ 𝑦 ∈ 𝑁)) → (𝑥(𝑇‘𝑀)𝑦) = ((algSc‘(Poly1‘𝑅))‘(𝑥𝑀𝑦))) |
12 | 11 | 3impb 1114 | . . . . . 6 ⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀 ∈ 𝐾) ∧ 𝑥 ∈ 𝑁 ∧ 𝑦 ∈ 𝑁) → (𝑥(𝑇‘𝑀)𝑦) = ((algSc‘(Poly1‘𝑅))‘(𝑥𝑀𝑦))) |
13 | 12 | fveq2d 6911 | . . . . 5 ⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀 ∈ 𝐾) ∧ 𝑥 ∈ 𝑁 ∧ 𝑦 ∈ 𝑁) → (coe1‘(𝑥(𝑇‘𝑀)𝑦)) = (coe1‘((algSc‘(Poly1‘𝑅))‘(𝑥𝑀𝑦)))) |
14 | 13 | fveq1d 6909 | . . . 4 ⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀 ∈ 𝐾) ∧ 𝑥 ∈ 𝑁 ∧ 𝑦 ∈ 𝑁) → ((coe1‘(𝑥(𝑇‘𝑀)𝑦))‘0) = ((coe1‘((algSc‘(Poly1‘𝑅))‘(𝑥𝑀𝑦)))‘0)) |
15 | simp12 1203 | . . . . 5 ⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀 ∈ 𝐾) ∧ 𝑥 ∈ 𝑁 ∧ 𝑦 ∈ 𝑁) → 𝑅 ∈ Ring) | |
16 | eqid 2735 | . . . . . 6 ⊢ (Base‘𝑅) = (Base‘𝑅) | |
17 | simp2 1136 | . . . . . 6 ⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀 ∈ 𝐾) ∧ 𝑥 ∈ 𝑁 ∧ 𝑦 ∈ 𝑁) → 𝑥 ∈ 𝑁) | |
18 | simp3 1137 | . . . . . 6 ⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀 ∈ 𝐾) ∧ 𝑥 ∈ 𝑁 ∧ 𝑦 ∈ 𝑁) → 𝑦 ∈ 𝑁) | |
19 | simp13 1204 | . . . . . 6 ⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀 ∈ 𝐾) ∧ 𝑥 ∈ 𝑁 ∧ 𝑦 ∈ 𝑁) → 𝑀 ∈ 𝐾) | |
20 | 3, 16, 4, 17, 18, 19 | matecld 22448 | . . . . 5 ⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀 ∈ 𝐾) ∧ 𝑥 ∈ 𝑁 ∧ 𝑦 ∈ 𝑁) → (𝑥𝑀𝑦) ∈ (Base‘𝑅)) |
21 | 9, 10, 16 | ply1sclid 22307 | . . . . 5 ⊢ ((𝑅 ∈ Ring ∧ (𝑥𝑀𝑦) ∈ (Base‘𝑅)) → (𝑥𝑀𝑦) = ((coe1‘((algSc‘(Poly1‘𝑅))‘(𝑥𝑀𝑦)))‘0)) |
22 | 15, 20, 21 | syl2anc 584 | . . . 4 ⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀 ∈ 𝐾) ∧ 𝑥 ∈ 𝑁 ∧ 𝑦 ∈ 𝑁) → (𝑥𝑀𝑦) = ((coe1‘((algSc‘(Poly1‘𝑅))‘(𝑥𝑀𝑦)))‘0)) |
23 | 14, 22 | eqtr4d 2778 | . . 3 ⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀 ∈ 𝐾) ∧ 𝑥 ∈ 𝑁 ∧ 𝑦 ∈ 𝑁) → ((coe1‘(𝑥(𝑇‘𝑀)𝑦))‘0) = (𝑥𝑀𝑦)) |
24 | 23 | mpoeq3dva 7510 | . 2 ⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀 ∈ 𝐾) → (𝑥 ∈ 𝑁, 𝑦 ∈ 𝑁 ↦ ((coe1‘(𝑥(𝑇‘𝑀)𝑦))‘0)) = (𝑥 ∈ 𝑁, 𝑦 ∈ 𝑁 ↦ (𝑥𝑀𝑦))) |
25 | eqidd 2736 | . . . . 5 ⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀 ∈ 𝐾) ∧ (𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁)) → (𝑥 ∈ 𝑁, 𝑦 ∈ 𝑁 ↦ (𝑥𝑀𝑦)) = (𝑥 ∈ 𝑁, 𝑦 ∈ 𝑁 ↦ (𝑥𝑀𝑦))) | |
26 | oveq12 7440 | . . . . . 6 ⊢ ((𝑥 = 𝑖 ∧ 𝑦 = 𝑗) → (𝑥𝑀𝑦) = (𝑖𝑀𝑗)) | |
27 | 26 | adantl 481 | . . . . 5 ⊢ ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀 ∈ 𝐾) ∧ (𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁)) ∧ (𝑥 = 𝑖 ∧ 𝑦 = 𝑗)) → (𝑥𝑀𝑦) = (𝑖𝑀𝑗)) |
28 | simprl 771 | . . . . 5 ⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀 ∈ 𝐾) ∧ (𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁)) → 𝑖 ∈ 𝑁) | |
29 | simprr 773 | . . . . 5 ⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀 ∈ 𝐾) ∧ (𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁)) → 𝑗 ∈ 𝑁) | |
30 | ovexd 7466 | . . . . 5 ⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀 ∈ 𝐾) ∧ (𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁)) → (𝑖𝑀𝑗) ∈ V) | |
31 | 25, 27, 28, 29, 30 | ovmpod 7585 | . . . 4 ⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀 ∈ 𝐾) ∧ (𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁)) → (𝑖(𝑥 ∈ 𝑁, 𝑦 ∈ 𝑁 ↦ (𝑥𝑀𝑦))𝑗) = (𝑖𝑀𝑗)) |
32 | 31 | ralrimivva 3200 | . . 3 ⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀 ∈ 𝐾) → ∀𝑖 ∈ 𝑁 ∀𝑗 ∈ 𝑁 (𝑖(𝑥 ∈ 𝑁, 𝑦 ∈ 𝑁 ↦ (𝑥𝑀𝑦))𝑗) = (𝑖𝑀𝑗)) |
33 | simp1 1135 | . . . . 5 ⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀 ∈ 𝐾) → 𝑁 ∈ Fin) | |
34 | simp2 1136 | . . . . 5 ⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀 ∈ 𝐾) → 𝑅 ∈ Ring) | |
35 | 3, 16, 4, 33, 34, 20 | matbas2d 22445 | . . . 4 ⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀 ∈ 𝐾) → (𝑥 ∈ 𝑁, 𝑦 ∈ 𝑁 ↦ (𝑥𝑀𝑦)) ∈ 𝐾) |
36 | simp3 1137 | . . . 4 ⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀 ∈ 𝐾) → 𝑀 ∈ 𝐾) | |
37 | 3, 4 | eqmat 22446 | . . . 4 ⊢ (((𝑥 ∈ 𝑁, 𝑦 ∈ 𝑁 ↦ (𝑥𝑀𝑦)) ∈ 𝐾 ∧ 𝑀 ∈ 𝐾) → ((𝑥 ∈ 𝑁, 𝑦 ∈ 𝑁 ↦ (𝑥𝑀𝑦)) = 𝑀 ↔ ∀𝑖 ∈ 𝑁 ∀𝑗 ∈ 𝑁 (𝑖(𝑥 ∈ 𝑁, 𝑦 ∈ 𝑁 ↦ (𝑥𝑀𝑦))𝑗) = (𝑖𝑀𝑗))) |
38 | 35, 36, 37 | syl2anc 584 | . . 3 ⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀 ∈ 𝐾) → ((𝑥 ∈ 𝑁, 𝑦 ∈ 𝑁 ↦ (𝑥𝑀𝑦)) = 𝑀 ↔ ∀𝑖 ∈ 𝑁 ∀𝑗 ∈ 𝑁 (𝑖(𝑥 ∈ 𝑁, 𝑦 ∈ 𝑁 ↦ (𝑥𝑀𝑦))𝑗) = (𝑖𝑀𝑗))) |
39 | 32, 38 | mpbird 257 | . 2 ⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀 ∈ 𝐾) → (𝑥 ∈ 𝑁, 𝑦 ∈ 𝑁 ↦ (𝑥𝑀𝑦)) = 𝑀) |
40 | 8, 24, 39 | 3eqtrd 2779 | 1 ⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀 ∈ 𝐾) → (𝐼‘(𝑇‘𝑀)) = 𝑀) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∧ w3a 1086 = wceq 1537 ∈ wcel 2106 ∀wral 3059 Vcvv 3478 ‘cfv 6563 (class class class)co 7431 ∈ cmpo 7433 Fincfn 8984 0cc0 11153 Basecbs 17245 Ringcrg 20251 algSccascl 21890 Poly1cpl1 22194 coe1cco1 22195 Mat cmat 22427 ConstPolyMat ccpmat 22725 matToPolyMat cmat2pmat 22726 cPolyMatToMat ccpmat2mat 22727 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-8 2108 ax-9 2116 ax-10 2139 ax-11 2155 ax-12 2175 ax-ext 2706 ax-rep 5285 ax-sep 5302 ax-nul 5312 ax-pow 5371 ax-pr 5438 ax-un 7754 ax-cnex 11209 ax-resscn 11210 ax-1cn 11211 ax-icn 11212 ax-addcl 11213 ax-addrcl 11214 ax-mulcl 11215 ax-mulrcl 11216 ax-mulcom 11217 ax-addass 11218 ax-mulass 11219 ax-distr 11220 ax-i2m1 11221 ax-1ne0 11222 ax-1rid 11223 ax-rnegex 11224 ax-rrecex 11225 ax-cnre 11226 ax-pre-lttri 11227 ax-pre-lttrn 11228 ax-pre-ltadd 11229 ax-pre-mulgt0 11230 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1540 df-fal 1550 df-ex 1777 df-nf 1781 df-sb 2063 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2727 df-clel 2814 df-nfc 2890 df-ne 2939 df-nel 3045 df-ral 3060 df-rex 3069 df-rmo 3378 df-reu 3379 df-rab 3434 df-v 3480 df-sbc 3792 df-csb 3909 df-dif 3966 df-un 3968 df-in 3970 df-ss 3980 df-pss 3983 df-nul 4340 df-if 4532 df-pw 4607 df-sn 4632 df-pr 4634 df-tp 4636 df-op 4638 df-ot 4640 df-uni 4913 df-int 4952 df-iun 4998 df-iin 4999 df-br 5149 df-opab 5211 df-mpt 5232 df-tr 5266 df-id 5583 df-eprel 5589 df-po 5597 df-so 5598 df-fr 5641 df-se 5642 df-we 5643 df-xp 5695 df-rel 5696 df-cnv 5697 df-co 5698 df-dm 5699 df-rn 5700 df-res 5701 df-ima 5702 df-pred 6323 df-ord 6389 df-on 6390 df-lim 6391 df-suc 6392 df-iota 6516 df-fun 6565 df-fn 6566 df-f 6567 df-f1 6568 df-fo 6569 df-f1o 6570 df-fv 6571 df-isom 6572 df-riota 7388 df-ov 7434 df-oprab 7435 df-mpo 7436 df-of 7697 df-ofr 7698 df-om 7888 df-1st 8013 df-2nd 8014 df-supp 8185 df-frecs 8305 df-wrecs 8336 df-recs 8410 df-rdg 8449 df-1o 8505 df-2o 8506 df-er 8744 df-map 8867 df-pm 8868 df-ixp 8937 df-en 8985 df-dom 8986 df-sdom 8987 df-fin 8988 df-fsupp 9400 df-sup 9480 df-oi 9548 df-card 9977 df-pnf 11295 df-mnf 11296 df-xr 11297 df-ltxr 11298 df-le 11299 df-sub 11492 df-neg 11493 df-nn 12265 df-2 12327 df-3 12328 df-4 12329 df-5 12330 df-6 12331 df-7 12332 df-8 12333 df-9 12334 df-n0 12525 df-z 12612 df-dec 12732 df-uz 12877 df-fz 13545 df-fzo 13692 df-seq 14040 df-hash 14367 df-struct 17181 df-sets 17198 df-slot 17216 df-ndx 17228 df-base 17246 df-ress 17275 df-plusg 17311 df-mulr 17312 df-sca 17314 df-vsca 17315 df-ip 17316 df-tset 17317 df-ple 17318 df-ds 17320 df-hom 17322 df-cco 17323 df-0g 17488 df-gsum 17489 df-prds 17494 df-pws 17496 df-mre 17631 df-mrc 17632 df-acs 17634 df-mgm 18666 df-sgrp 18745 df-mnd 18761 df-mhm 18809 df-submnd 18810 df-grp 18967 df-minusg 18968 df-sbg 18969 df-mulg 19099 df-subg 19154 df-ghm 19244 df-cntz 19348 df-cmn 19815 df-abl 19816 df-mgp 20153 df-rng 20171 df-ur 20200 df-ring 20253 df-subrng 20563 df-subrg 20587 df-lmod 20877 df-lss 20948 df-sra 21190 df-rgmod 21191 df-dsmm 21770 df-frlm 21785 df-ascl 21893 df-psr 21947 df-mvr 21948 df-mpl 21949 df-opsr 21951 df-psr1 22197 df-vr1 22198 df-ply1 22199 df-coe1 22200 df-mat 22428 df-cpmat 22728 df-mat2pmat 22729 df-cpmat2mat 22730 |
This theorem is referenced by: m2cpminv 22782 m2cpminv0 22783 cayhamlem4 22910 |
Copyright terms: Public domain | W3C validator |