| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > mpoexga | Structured version Visualization version GIF version | ||
| Description: If the domain of an operation given by maps-to notation is a set, the operation is a set. (Contributed by NM, 12-Sep-2011.) |
| Ref | Expression |
|---|---|
| mpoexga | ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → (𝑥 ∈ 𝐴, 𝑦 ∈ 𝐵 ↦ 𝐶) ∈ V) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid 2730 | . 2 ⊢ (𝑥 ∈ 𝐴, 𝑦 ∈ 𝐵 ↦ 𝐶) = (𝑥 ∈ 𝐴, 𝑦 ∈ 𝐵 ↦ 𝐶) | |
| 2 | 1 | mpoexg 8058 | 1 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → (𝑥 ∈ 𝐴, 𝑦 ∈ 𝐵 ↦ 𝐶) ∈ V) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∈ wcel 2109 Vcvv 3450 ∈ cmpo 7392 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-rep 5237 ax-sep 5254 ax-nul 5264 ax-pow 5323 ax-pr 5390 ax-un 7714 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-ral 3046 df-rex 3055 df-reu 3357 df-rab 3409 df-v 3452 df-sbc 3757 df-csb 3866 df-dif 3920 df-un 3922 df-in 3924 df-ss 3934 df-nul 4300 df-if 4492 df-pw 4568 df-sn 4593 df-pr 4595 df-op 4599 df-uni 4875 df-iun 4960 df-br 5111 df-opab 5173 df-mpt 5192 df-id 5536 df-xp 5647 df-rel 5648 df-cnv 5649 df-co 5650 df-dm 5651 df-rn 5652 df-res 5653 df-ima 5654 df-iota 6467 df-fun 6516 df-fn 6517 df-f 6518 df-f1 6519 df-fo 6520 df-f1o 6521 df-fv 6522 df-oprab 7394 df-mpo 7395 df-1st 7971 df-2nd 7972 |
| This theorem is referenced by: mptmpoopabbrdOLDOLD 8065 el2mpocsbcl 8067 bropopvvv 8072 bropfvvvv 8074 prdsip 17431 imasds 17483 isofn 17744 setchomfval 18048 setccofval 18051 estrchomfval 18094 estrccofval 18097 lsmvalx 19576 dfrngc2 20544 funcrngcsetc 20556 dfringc2 20573 funcringcsetc 20590 mamuval 22287 mamudm 22289 marrepfval 22454 marrepval0 22455 marrepval 22456 marepvfval 22459 marepvval 22461 submaval0 22474 submaval 22475 maduval 22532 minmar1val0 22541 minmar1val 22542 mat2pmatval 22618 mat2pmatf 22622 m2cpmf 22636 cpm2mval 22644 decpmatval0 22658 decpmatmul 22666 pmatcollpw2lem 22671 pmatcollpw3lem 22677 mply1topmatval 22698 mp2pm2mplem1 22700 xkoptsub 23548 precsexlem11 28126 grpodivfval 30470 pstmval 33892 sxsigon 34189 cndprobval 34431 lmod1lem1 48480 lmod1lem2 48481 lmod1lem3 48482 lmod1lem4 48483 lmod1lem5 48484 2arymaptfv 48644 2arymaptfo 48647 invfn 49023 |
| Copyright terms: Public domain | W3C validator |