![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > mpoexga | Structured version Visualization version GIF version |
Description: If the domain of an operation given by maps-to notation is a set, the operation is a set. (Contributed by NM, 12-Sep-2011.) |
Ref | Expression |
---|---|
mpoexga | ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → (𝑥 ∈ 𝐴, 𝑦 ∈ 𝐵 ↦ 𝐶) ∈ V) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2730 | . 2 ⊢ (𝑥 ∈ 𝐴, 𝑦 ∈ 𝐵 ↦ 𝐶) = (𝑥 ∈ 𝐴, 𝑦 ∈ 𝐵 ↦ 𝐶) | |
2 | 1 | mpoexg 8065 | 1 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → (𝑥 ∈ 𝐴, 𝑦 ∈ 𝐵 ↦ 𝐶) ∈ V) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 394 ∈ wcel 2104 Vcvv 3472 ∈ cmpo 7413 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1911 ax-6 1969 ax-7 2009 ax-8 2106 ax-9 2114 ax-10 2135 ax-11 2152 ax-12 2169 ax-ext 2701 ax-rep 5284 ax-sep 5298 ax-nul 5305 ax-pow 5362 ax-pr 5426 ax-un 7727 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2532 df-eu 2561 df-clab 2708 df-cleq 2722 df-clel 2808 df-nfc 2883 df-ne 2939 df-ral 3060 df-rex 3069 df-reu 3375 df-rab 3431 df-v 3474 df-sbc 3777 df-csb 3893 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-nul 4322 df-if 4528 df-pw 4603 df-sn 4628 df-pr 4630 df-op 4634 df-uni 4908 df-iun 4998 df-br 5148 df-opab 5210 df-mpt 5231 df-id 5573 df-xp 5681 df-rel 5682 df-cnv 5683 df-co 5684 df-dm 5685 df-rn 5686 df-res 5687 df-ima 5688 df-iota 6494 df-fun 6544 df-fn 6545 df-f 6546 df-f1 6547 df-fo 6548 df-f1o 6549 df-fv 6550 df-oprab 7415 df-mpo 7416 df-1st 7977 df-2nd 7978 |
This theorem is referenced by: mptmpoopabbrdOLD 8071 el2mpocsbcl 8073 bropopvvv 8078 bropfvvvv 8080 prdsip 17411 imasds 17463 isofn 17726 setchomfval 18033 setccofval 18036 estrchomfval 18081 estrccofval 18084 lsmvalx 19548 mamuval 22108 mamudm 22110 marrepfval 22282 marrepval0 22283 marrepval 22284 marepvfval 22287 marepvval 22289 submaval0 22302 submaval 22303 maduval 22360 minmar1val0 22369 minmar1val 22370 mat2pmatval 22446 mat2pmatf 22450 m2cpmf 22464 cpm2mval 22472 decpmatval0 22486 decpmatmul 22494 pmatcollpw2lem 22499 pmatcollpw3lem 22505 mply1topmatval 22526 mp2pm2mplem1 22528 xkoptsub 23378 precsexlem11 27902 grpodivfval 30054 pstmval 33173 sxsigon 33488 cndprobval 33730 dfrngc2 46958 funcrngcsetc 46984 dfringc2 47004 funcringcsetc 47021 lmod1lem1 47255 lmod1lem2 47256 lmod1lem3 47257 lmod1lem4 47258 lmod1lem5 47259 2arymaptfv 47424 2arymaptfo 47427 |
Copyright terms: Public domain | W3C validator |