MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mpoexga Structured version   Visualization version   GIF version

Theorem mpoexga 8059
Description: If the domain of an operation given by maps-to notation is a set, the operation is a set. (Contributed by NM, 12-Sep-2011.)
Assertion
Ref Expression
mpoexga ((𝐴𝑉𝐵𝑊) → (𝑥𝐴, 𝑦𝐵𝐶) ∈ V)
Distinct variable groups:   𝑥,𝑦,𝐴   𝑥,𝐵,𝑦
Allowed substitution hints:   𝐶(𝑥,𝑦)   𝑉(𝑥,𝑦)   𝑊(𝑥,𝑦)

Proof of Theorem mpoexga
StepHypRef Expression
1 eqid 2730 . 2 (𝑥𝐴, 𝑦𝐵𝐶) = (𝑥𝐴, 𝑦𝐵𝐶)
21mpoexg 8058 1 ((𝐴𝑉𝐵𝑊) → (𝑥𝐴, 𝑦𝐵𝐶) ∈ V)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  wcel 2109  Vcvv 3450  cmpo 7392
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-rep 5237  ax-sep 5254  ax-nul 5264  ax-pow 5323  ax-pr 5390  ax-un 7714
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-ral 3046  df-rex 3055  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3757  df-csb 3866  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-op 4599  df-uni 4875  df-iun 4960  df-br 5111  df-opab 5173  df-mpt 5192  df-id 5536  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-f1 6519  df-fo 6520  df-f1o 6521  df-fv 6522  df-oprab 7394  df-mpo 7395  df-1st 7971  df-2nd 7972
This theorem is referenced by:  mptmpoopabbrdOLDOLD  8065  el2mpocsbcl  8067  bropopvvv  8072  bropfvvvv  8074  prdsip  17431  imasds  17483  isofn  17744  setchomfval  18048  setccofval  18051  estrchomfval  18094  estrccofval  18097  lsmvalx  19576  dfrngc2  20544  funcrngcsetc  20556  dfringc2  20573  funcringcsetc  20590  mamuval  22287  mamudm  22289  marrepfval  22454  marrepval0  22455  marrepval  22456  marepvfval  22459  marepvval  22461  submaval0  22474  submaval  22475  maduval  22532  minmar1val0  22541  minmar1val  22542  mat2pmatval  22618  mat2pmatf  22622  m2cpmf  22636  cpm2mval  22644  decpmatval0  22658  decpmatmul  22666  pmatcollpw2lem  22671  pmatcollpw3lem  22677  mply1topmatval  22698  mp2pm2mplem1  22700  xkoptsub  23548  precsexlem11  28126  grpodivfval  30470  pstmval  33892  sxsigon  34189  cndprobval  34431  lmod1lem1  48480  lmod1lem2  48481  lmod1lem3  48482  lmod1lem4  48483  lmod1lem5  48484  2arymaptfv  48644  2arymaptfo  48647  invfn  49023
  Copyright terms: Public domain W3C validator