Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > mpoexga | Structured version Visualization version GIF version |
Description: If the domain of an operation given by maps-to notation is a set, the operation is a set. (Contributed by NM, 12-Sep-2011.) |
Ref | Expression |
---|---|
mpoexga | ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → (𝑥 ∈ 𝐴, 𝑦 ∈ 𝐵 ↦ 𝐶) ∈ V) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2738 | . 2 ⊢ (𝑥 ∈ 𝐴, 𝑦 ∈ 𝐵 ↦ 𝐶) = (𝑥 ∈ 𝐴, 𝑦 ∈ 𝐵 ↦ 𝐶) | |
2 | 1 | mpoexg 7917 | 1 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → (𝑥 ∈ 𝐴, 𝑦 ∈ 𝐵 ↦ 𝐶) ∈ V) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 ∈ wcel 2106 Vcvv 3432 ∈ cmpo 7277 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-rep 5209 ax-sep 5223 ax-nul 5230 ax-pow 5288 ax-pr 5352 ax-un 7588 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ne 2944 df-ral 3069 df-rex 3070 df-reu 3072 df-rab 3073 df-v 3434 df-sbc 3717 df-csb 3833 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-nul 4257 df-if 4460 df-pw 4535 df-sn 4562 df-pr 4564 df-op 4568 df-uni 4840 df-iun 4926 df-br 5075 df-opab 5137 df-mpt 5158 df-id 5489 df-xp 5595 df-rel 5596 df-cnv 5597 df-co 5598 df-dm 5599 df-rn 5600 df-res 5601 df-ima 5602 df-iota 6391 df-fun 6435 df-fn 6436 df-f 6437 df-f1 6438 df-fo 6439 df-f1o 6440 df-fv 6441 df-oprab 7279 df-mpo 7280 df-1st 7831 df-2nd 7832 |
This theorem is referenced by: mptmpoopabbrdOLD 7923 el2mpocsbcl 7925 bropopvvv 7930 bropfvvvv 7932 prdsip 17172 imasds 17224 isofn 17487 setchomfval 17794 setccofval 17797 estrchomfval 17842 estrccofval 17845 lsmvalx 19244 mamuval 21535 mamudm 21537 marrepfval 21709 marrepval0 21710 marrepval 21711 marepvfval 21714 marepvval 21716 submaval0 21729 submaval 21730 maduval 21787 minmar1val0 21796 minmar1val 21797 mat2pmatval 21873 mat2pmatf 21877 m2cpmf 21891 cpm2mval 21899 decpmatval0 21913 decpmatmul 21921 pmatcollpw2lem 21926 pmatcollpw3lem 21932 mply1topmatval 21953 mp2pm2mplem1 21955 xkoptsub 22805 grpodivfval 28896 pstmval 31845 sxsigon 32160 cndprobval 32400 dfrngc2 45530 funcrngcsetc 45556 dfringc2 45576 funcringcsetc 45593 lmod1lem1 45828 lmod1lem2 45829 lmod1lem3 45830 lmod1lem4 45831 lmod1lem5 45832 2arymaptfv 45997 2arymaptfo 46000 |
Copyright terms: Public domain | W3C validator |