![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > mpoexga | Structured version Visualization version GIF version |
Description: If the domain of an operation given by maps-to notation is a set, the operation is a set. (Contributed by NM, 12-Sep-2011.) |
Ref | Expression |
---|---|
mpoexga | ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → (𝑥 ∈ 𝐴, 𝑦 ∈ 𝐵 ↦ 𝐶) ∈ V) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2740 | . 2 ⊢ (𝑥 ∈ 𝐴, 𝑦 ∈ 𝐵 ↦ 𝐶) = (𝑥 ∈ 𝐴, 𝑦 ∈ 𝐵 ↦ 𝐶) | |
2 | 1 | mpoexg 8117 | 1 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → (𝑥 ∈ 𝐴, 𝑦 ∈ 𝐵 ↦ 𝐶) ∈ V) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 ∈ wcel 2108 Vcvv 3488 ∈ cmpo 7450 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-rep 5303 ax-sep 5317 ax-nul 5324 ax-pow 5383 ax-pr 5447 ax-un 7770 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-ral 3068 df-rex 3077 df-reu 3389 df-rab 3444 df-v 3490 df-sbc 3805 df-csb 3922 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-nul 4353 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-iun 5017 df-br 5167 df-opab 5229 df-mpt 5250 df-id 5593 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-res 5712 df-ima 5713 df-iota 6525 df-fun 6575 df-fn 6576 df-f 6577 df-f1 6578 df-fo 6579 df-f1o 6580 df-fv 6581 df-oprab 7452 df-mpo 7453 df-1st 8030 df-2nd 8031 |
This theorem is referenced by: mptmpoopabbrdOLDOLD 8124 el2mpocsbcl 8126 bropopvvv 8131 bropfvvvv 8133 prdsip 17521 imasds 17573 isofn 17836 setchomfval 18146 setccofval 18149 estrchomfval 18194 estrccofval 18197 lsmvalx 19681 dfrngc2 20650 funcrngcsetc 20662 dfringc2 20679 funcringcsetc 20696 mamuval 22418 mamudm 22420 marrepfval 22587 marrepval0 22588 marrepval 22589 marepvfval 22592 marepvval 22594 submaval0 22607 submaval 22608 maduval 22665 minmar1val0 22674 minmar1val 22675 mat2pmatval 22751 mat2pmatf 22755 m2cpmf 22769 cpm2mval 22777 decpmatval0 22791 decpmatmul 22799 pmatcollpw2lem 22804 pmatcollpw3lem 22810 mply1topmatval 22831 mp2pm2mplem1 22833 xkoptsub 23683 precsexlem11 28259 grpodivfval 30566 pstmval 33841 sxsigon 34156 cndprobval 34398 lmod1lem1 48216 lmod1lem2 48217 lmod1lem3 48218 lmod1lem4 48219 lmod1lem5 48220 2arymaptfv 48385 2arymaptfo 48388 |
Copyright terms: Public domain | W3C validator |