| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > mpoexga | Structured version Visualization version GIF version | ||
| Description: If the domain of an operation given by maps-to notation is a set, the operation is a set. (Contributed by NM, 12-Sep-2011.) |
| Ref | Expression |
|---|---|
| mpoexga | ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → (𝑥 ∈ 𝐴, 𝑦 ∈ 𝐵 ↦ 𝐶) ∈ V) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid 2735 | . 2 ⊢ (𝑥 ∈ 𝐴, 𝑦 ∈ 𝐵 ↦ 𝐶) = (𝑥 ∈ 𝐴, 𝑦 ∈ 𝐵 ↦ 𝐶) | |
| 2 | 1 | mpoexg 8075 | 1 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → (𝑥 ∈ 𝐴, 𝑦 ∈ 𝐵 ↦ 𝐶) ∈ V) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∈ wcel 2108 Vcvv 3459 ∈ cmpo 7407 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2707 ax-rep 5249 ax-sep 5266 ax-nul 5276 ax-pow 5335 ax-pr 5402 ax-un 7729 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2727 df-clel 2809 df-nfc 2885 df-ne 2933 df-ral 3052 df-rex 3061 df-reu 3360 df-rab 3416 df-v 3461 df-sbc 3766 df-csb 3875 df-dif 3929 df-un 3931 df-in 3933 df-ss 3943 df-nul 4309 df-if 4501 df-pw 4577 df-sn 4602 df-pr 4604 df-op 4608 df-uni 4884 df-iun 4969 df-br 5120 df-opab 5182 df-mpt 5202 df-id 5548 df-xp 5660 df-rel 5661 df-cnv 5662 df-co 5663 df-dm 5664 df-rn 5665 df-res 5666 df-ima 5667 df-iota 6484 df-fun 6533 df-fn 6534 df-f 6535 df-f1 6536 df-fo 6537 df-f1o 6538 df-fv 6539 df-oprab 7409 df-mpo 7410 df-1st 7988 df-2nd 7989 |
| This theorem is referenced by: mptmpoopabbrdOLDOLD 8082 el2mpocsbcl 8084 bropopvvv 8089 bropfvvvv 8091 prdsip 17475 imasds 17527 isofn 17788 setchomfval 18092 setccofval 18095 estrchomfval 18138 estrccofval 18141 lsmvalx 19620 dfrngc2 20588 funcrngcsetc 20600 dfringc2 20617 funcringcsetc 20634 mamuval 22331 mamudm 22333 marrepfval 22498 marrepval0 22499 marrepval 22500 marepvfval 22503 marepvval 22505 submaval0 22518 submaval 22519 maduval 22576 minmar1val0 22585 minmar1val 22586 mat2pmatval 22662 mat2pmatf 22666 m2cpmf 22680 cpm2mval 22688 decpmatval0 22702 decpmatmul 22710 pmatcollpw2lem 22715 pmatcollpw3lem 22721 mply1topmatval 22742 mp2pm2mplem1 22744 xkoptsub 23592 precsexlem11 28171 grpodivfval 30515 pstmval 33926 sxsigon 34223 cndprobval 34465 lmod1lem1 48463 lmod1lem2 48464 lmod1lem3 48465 lmod1lem4 48466 lmod1lem5 48467 2arymaptfv 48631 2arymaptfo 48634 invfn 49000 |
| Copyright terms: Public domain | W3C validator |