| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > mpoexga | Structured version Visualization version GIF version | ||
| Description: If the domain of an operation given by maps-to notation is a set, the operation is a set. (Contributed by NM, 12-Sep-2011.) |
| Ref | Expression |
|---|---|
| mpoexga | ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → (𝑥 ∈ 𝐴, 𝑦 ∈ 𝐵 ↦ 𝐶) ∈ V) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid 2729 | . 2 ⊢ (𝑥 ∈ 𝐴, 𝑦 ∈ 𝐵 ↦ 𝐶) = (𝑥 ∈ 𝐴, 𝑦 ∈ 𝐵 ↦ 𝐶) | |
| 2 | 1 | mpoexg 8055 | 1 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → (𝑥 ∈ 𝐴, 𝑦 ∈ 𝐵 ↦ 𝐶) ∈ V) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∈ wcel 2109 Vcvv 3447 ∈ cmpo 7389 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5234 ax-sep 5251 ax-nul 5261 ax-pow 5320 ax-pr 5387 ax-un 7711 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-reu 3355 df-rab 3406 df-v 3449 df-sbc 3754 df-csb 3863 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-nul 4297 df-if 4489 df-pw 4565 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-iun 4957 df-br 5108 df-opab 5170 df-mpt 5189 df-id 5533 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-res 5650 df-ima 5651 df-iota 6464 df-fun 6513 df-fn 6514 df-f 6515 df-f1 6516 df-fo 6517 df-f1o 6518 df-fv 6519 df-oprab 7391 df-mpo 7392 df-1st 7968 df-2nd 7969 |
| This theorem is referenced by: mptmpoopabbrdOLDOLD 8062 el2mpocsbcl 8064 bropopvvv 8069 bropfvvvv 8071 prdsip 17424 imasds 17476 isofn 17737 setchomfval 18041 setccofval 18044 estrchomfval 18087 estrccofval 18090 lsmvalx 19569 dfrngc2 20537 funcrngcsetc 20549 dfringc2 20566 funcringcsetc 20583 mamuval 22280 mamudm 22282 marrepfval 22447 marrepval0 22448 marrepval 22449 marepvfval 22452 marepvval 22454 submaval0 22467 submaval 22468 maduval 22525 minmar1val0 22534 minmar1val 22535 mat2pmatval 22611 mat2pmatf 22615 m2cpmf 22629 cpm2mval 22637 decpmatval0 22651 decpmatmul 22659 pmatcollpw2lem 22664 pmatcollpw3lem 22670 mply1topmatval 22691 mp2pm2mplem1 22693 xkoptsub 23541 precsexlem11 28119 grpodivfval 30463 pstmval 33885 sxsigon 34182 cndprobval 34424 lmod1lem1 48476 lmod1lem2 48477 lmod1lem3 48478 lmod1lem4 48479 lmod1lem5 48480 2arymaptfv 48640 2arymaptfo 48643 invfn 49019 |
| Copyright terms: Public domain | W3C validator |