![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > mpoexga | Structured version Visualization version GIF version |
Description: If the domain of an operation given by maps-to notation is a set, the operation is a set. (Contributed by NM, 12-Sep-2011.) |
Ref | Expression |
---|---|
mpoexga | ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → (𝑥 ∈ 𝐴, 𝑦 ∈ 𝐵 ↦ 𝐶) ∈ V) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2735 | . 2 ⊢ (𝑥 ∈ 𝐴, 𝑦 ∈ 𝐵 ↦ 𝐶) = (𝑥 ∈ 𝐴, 𝑦 ∈ 𝐵 ↦ 𝐶) | |
2 | 1 | mpoexg 8100 | 1 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → (𝑥 ∈ 𝐴, 𝑦 ∈ 𝐵 ↦ 𝐶) ∈ V) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 ∈ wcel 2106 Vcvv 3478 ∈ cmpo 7433 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-8 2108 ax-9 2116 ax-10 2139 ax-11 2155 ax-12 2175 ax-ext 2706 ax-rep 5285 ax-sep 5302 ax-nul 5312 ax-pow 5371 ax-pr 5438 ax-un 7754 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1540 df-fal 1550 df-ex 1777 df-nf 1781 df-sb 2063 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2727 df-clel 2814 df-nfc 2890 df-ne 2939 df-ral 3060 df-rex 3069 df-reu 3379 df-rab 3434 df-v 3480 df-sbc 3792 df-csb 3909 df-dif 3966 df-un 3968 df-in 3970 df-ss 3980 df-nul 4340 df-if 4532 df-pw 4607 df-sn 4632 df-pr 4634 df-op 4638 df-uni 4913 df-iun 4998 df-br 5149 df-opab 5211 df-mpt 5232 df-id 5583 df-xp 5695 df-rel 5696 df-cnv 5697 df-co 5698 df-dm 5699 df-rn 5700 df-res 5701 df-ima 5702 df-iota 6516 df-fun 6565 df-fn 6566 df-f 6567 df-f1 6568 df-fo 6569 df-f1o 6570 df-fv 6571 df-oprab 7435 df-mpo 7436 df-1st 8013 df-2nd 8014 |
This theorem is referenced by: mptmpoopabbrdOLDOLD 8107 el2mpocsbcl 8109 bropopvvv 8114 bropfvvvv 8116 prdsip 17508 imasds 17560 isofn 17823 setchomfval 18133 setccofval 18136 estrchomfval 18181 estrccofval 18184 lsmvalx 19672 dfrngc2 20645 funcrngcsetc 20657 dfringc2 20674 funcringcsetc 20691 mamuval 22413 mamudm 22415 marrepfval 22582 marrepval0 22583 marrepval 22584 marepvfval 22587 marepvval 22589 submaval0 22602 submaval 22603 maduval 22660 minmar1val0 22669 minmar1val 22670 mat2pmatval 22746 mat2pmatf 22750 m2cpmf 22764 cpm2mval 22772 decpmatval0 22786 decpmatmul 22794 pmatcollpw2lem 22799 pmatcollpw3lem 22805 mply1topmatval 22826 mp2pm2mplem1 22828 xkoptsub 23678 precsexlem11 28256 grpodivfval 30563 pstmval 33856 sxsigon 34173 cndprobval 34415 lmod1lem1 48333 lmod1lem2 48334 lmod1lem3 48335 lmod1lem4 48336 lmod1lem5 48337 2arymaptfv 48501 2arymaptfo 48504 |
Copyright terms: Public domain | W3C validator |