Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > mpoexga | Structured version Visualization version GIF version |
Description: If the domain of an operation given by maps-to notation is a set, the operation is a set. (Contributed by NM, 12-Sep-2011.) |
Ref | Expression |
---|---|
mpoexga | ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → (𝑥 ∈ 𝐴, 𝑦 ∈ 𝐵 ↦ 𝐶) ∈ V) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2758 | . 2 ⊢ (𝑥 ∈ 𝐴, 𝑦 ∈ 𝐵 ↦ 𝐶) = (𝑥 ∈ 𝐴, 𝑦 ∈ 𝐵 ↦ 𝐶) | |
2 | 1 | mpoexg 7784 | 1 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → (𝑥 ∈ 𝐴, 𝑦 ∈ 𝐵 ↦ 𝐶) ∈ V) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 399 ∈ wcel 2111 Vcvv 3409 ∈ cmpo 7157 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1911 ax-6 1970 ax-7 2015 ax-8 2113 ax-9 2121 ax-10 2142 ax-11 2158 ax-12 2175 ax-ext 2729 ax-rep 5159 ax-sep 5172 ax-nul 5179 ax-pow 5237 ax-pr 5301 ax-un 7464 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 845 df-3an 1086 df-tru 1541 df-fal 1551 df-ex 1782 df-nf 1786 df-sb 2070 df-mo 2557 df-eu 2588 df-clab 2736 df-cleq 2750 df-clel 2830 df-nfc 2901 df-ne 2952 df-ral 3075 df-rex 3076 df-reu 3077 df-rab 3079 df-v 3411 df-sbc 3699 df-csb 3808 df-dif 3863 df-un 3865 df-in 3867 df-ss 3877 df-nul 4228 df-if 4424 df-pw 4499 df-sn 4526 df-pr 4528 df-op 4532 df-uni 4802 df-iun 4888 df-br 5036 df-opab 5098 df-mpt 5116 df-id 5433 df-xp 5533 df-rel 5534 df-cnv 5535 df-co 5536 df-dm 5537 df-rn 5538 df-res 5539 df-ima 5540 df-iota 6298 df-fun 6341 df-fn 6342 df-f 6343 df-f1 6344 df-fo 6345 df-f1o 6346 df-fv 6347 df-oprab 7159 df-mpo 7160 df-1st 7698 df-2nd 7699 |
This theorem is referenced by: mptmpoopabbrd 7788 el2mpocsbcl 7790 bropopvvv 7795 bropfvvvv 7797 prdsip 16797 imasds 16849 isofn 17109 setchomfval 17410 setccofval 17413 estrchomfval 17447 estrccofval 17450 lsmvalx 18836 mamuval 21093 mamudm 21095 marrepfval 21265 marrepval0 21266 marrepval 21267 marepvfval 21270 marepvval 21272 submaval0 21285 submaval 21286 maduval 21343 minmar1val0 21352 minmar1val 21353 mat2pmatval 21429 mat2pmatf 21433 m2cpmf 21447 cpm2mval 21455 decpmatval0 21469 decpmatmul 21477 pmatcollpw2lem 21482 pmatcollpw3lem 21488 mply1topmatval 21509 mp2pm2mplem1 21511 xkoptsub 22359 grpodivfval 28421 pstmval 31370 sxsigon 31683 cndprobval 31923 dfrngc2 44991 funcrngcsetc 45017 dfringc2 45037 funcringcsetc 45054 lmod1lem1 45289 lmod1lem2 45290 lmod1lem3 45291 lmod1lem4 45292 lmod1lem5 45293 2arymaptfv 45458 2arymaptfo 45461 |
Copyright terms: Public domain | W3C validator |