| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > mpoexga | Structured version Visualization version GIF version | ||
| Description: If the domain of an operation given by maps-to notation is a set, the operation is a set. (Contributed by NM, 12-Sep-2011.) |
| Ref | Expression |
|---|---|
| mpoexga | ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → (𝑥 ∈ 𝐴, 𝑦 ∈ 𝐵 ↦ 𝐶) ∈ V) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid 2729 | . 2 ⊢ (𝑥 ∈ 𝐴, 𝑦 ∈ 𝐵 ↦ 𝐶) = (𝑥 ∈ 𝐴, 𝑦 ∈ 𝐵 ↦ 𝐶) | |
| 2 | 1 | mpoexg 8011 | 1 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → (𝑥 ∈ 𝐴, 𝑦 ∈ 𝐵 ↦ 𝐶) ∈ V) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∈ wcel 2109 Vcvv 3436 ∈ cmpo 7351 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5218 ax-sep 5235 ax-nul 5245 ax-pow 5304 ax-pr 5371 ax-un 7671 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-reu 3344 df-rab 3395 df-v 3438 df-sbc 3743 df-csb 3852 df-dif 3906 df-un 3908 df-in 3910 df-ss 3920 df-nul 4285 df-if 4477 df-pw 4553 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4859 df-iun 4943 df-br 5093 df-opab 5155 df-mpt 5174 df-id 5514 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-rn 5630 df-res 5631 df-ima 5632 df-iota 6438 df-fun 6484 df-fn 6485 df-f 6486 df-f1 6487 df-fo 6488 df-f1o 6489 df-fv 6490 df-oprab 7353 df-mpo 7354 df-1st 7924 df-2nd 7925 |
| This theorem is referenced by: el2mpocsbcl 8018 bropopvvv 8023 bropfvvvv 8025 prdsip 17365 imasds 17417 isofn 17682 setchomfval 17986 setccofval 17989 estrchomfval 18032 estrccofval 18035 lsmvalx 19518 dfrngc2 20513 funcrngcsetc 20525 dfringc2 20542 funcringcsetc 20559 mamuval 22278 mamudm 22280 marrepfval 22445 marrepval0 22446 marrepval 22447 marepvfval 22450 marepvval 22452 submaval0 22465 submaval 22466 maduval 22523 minmar1val0 22532 minmar1val 22533 mat2pmatval 22609 mat2pmatf 22613 m2cpmf 22627 cpm2mval 22635 decpmatval0 22649 decpmatmul 22657 pmatcollpw2lem 22662 pmatcollpw3lem 22668 mply1topmatval 22689 mp2pm2mplem1 22691 xkoptsub 23539 precsexlem11 28124 grpodivfval 30478 pstmval 33862 sxsigon 34159 cndprobval 34401 lmod1lem1 48476 lmod1lem2 48477 lmod1lem3 48478 lmod1lem4 48479 lmod1lem5 48480 2arymaptfv 48640 2arymaptfo 48643 invfn 49019 |
| Copyright terms: Public domain | W3C validator |