| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > mpoexga | Structured version Visualization version GIF version | ||
| Description: If the domain of an operation given by maps-to notation is a set, the operation is a set. (Contributed by NM, 12-Sep-2011.) |
| Ref | Expression |
|---|---|
| mpoexga | ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → (𝑥 ∈ 𝐴, 𝑦 ∈ 𝐵 ↦ 𝐶) ∈ V) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid 2731 | . 2 ⊢ (𝑥 ∈ 𝐴, 𝑦 ∈ 𝐵 ↦ 𝐶) = (𝑥 ∈ 𝐴, 𝑦 ∈ 𝐵 ↦ 𝐶) | |
| 2 | 1 | mpoexg 8008 | 1 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → (𝑥 ∈ 𝐴, 𝑦 ∈ 𝐵 ↦ 𝐶) ∈ V) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∈ wcel 2111 Vcvv 3436 ∈ cmpo 7348 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-rep 5215 ax-sep 5232 ax-nul 5242 ax-pow 5301 ax-pr 5368 ax-un 7668 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-ral 3048 df-rex 3057 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3737 df-csb 3846 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-nul 4281 df-if 4473 df-pw 4549 df-sn 4574 df-pr 4576 df-op 4580 df-uni 4857 df-iun 4941 df-br 5090 df-opab 5152 df-mpt 5171 df-id 5509 df-xp 5620 df-rel 5621 df-cnv 5622 df-co 5623 df-dm 5624 df-rn 5625 df-res 5626 df-ima 5627 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-f1 6486 df-fo 6487 df-f1o 6488 df-fv 6489 df-oprab 7350 df-mpo 7351 df-1st 7921 df-2nd 7922 |
| This theorem is referenced by: el2mpocsbcl 8015 bropopvvv 8020 bropfvvvv 8022 prdsip 17365 imasds 17417 isofn 17682 setchomfval 17986 setccofval 17989 estrchomfval 18032 estrccofval 18035 lsmvalx 19551 dfrngc2 20543 funcrngcsetc 20555 dfringc2 20572 funcringcsetc 20589 mamuval 22308 mamudm 22310 marrepfval 22475 marrepval0 22476 marrepval 22477 marepvfval 22480 marepvval 22482 submaval0 22495 submaval 22496 maduval 22553 minmar1val0 22562 minmar1val 22563 mat2pmatval 22639 mat2pmatf 22643 m2cpmf 22657 cpm2mval 22665 decpmatval0 22679 decpmatmul 22687 pmatcollpw2lem 22692 pmatcollpw3lem 22698 mply1topmatval 22719 mp2pm2mplem1 22721 xkoptsub 23569 precsexlem11 28155 grpodivfval 30514 pstmval 33908 sxsigon 34205 cndprobval 34446 lmod1lem1 48598 lmod1lem2 48599 lmod1lem3 48600 lmod1lem4 48601 lmod1lem5 48602 2arymaptfv 48762 2arymaptfo 48765 invfn 49141 |
| Copyright terms: Public domain | W3C validator |