MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mpoexga Structured version   Visualization version   GIF version

Theorem mpoexga 8012
Description: If the domain of an operation given by maps-to notation is a set, the operation is a set. (Contributed by NM, 12-Sep-2011.)
Assertion
Ref Expression
mpoexga ((𝐴𝑉𝐵𝑊) → (𝑥𝐴, 𝑦𝐵𝐶) ∈ V)
Distinct variable groups:   𝑥,𝑦,𝐴   𝑥,𝐵,𝑦
Allowed substitution hints:   𝐶(𝑥,𝑦)   𝑉(𝑥,𝑦)   𝑊(𝑥,𝑦)

Proof of Theorem mpoexga
StepHypRef Expression
1 eqid 2729 . 2 (𝑥𝐴, 𝑦𝐵𝐶) = (𝑥𝐴, 𝑦𝐵𝐶)
21mpoexg 8011 1 ((𝐴𝑉𝐵𝑊) → (𝑥𝐴, 𝑦𝐵𝐶) ∈ V)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  wcel 2109  Vcvv 3436  cmpo 7351
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5218  ax-sep 5235  ax-nul 5245  ax-pow 5304  ax-pr 5371  ax-un 7671
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-reu 3344  df-rab 3395  df-v 3438  df-sbc 3743  df-csb 3852  df-dif 3906  df-un 3908  df-in 3910  df-ss 3920  df-nul 4285  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4859  df-iun 4943  df-br 5093  df-opab 5155  df-mpt 5174  df-id 5514  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-iota 6438  df-fun 6484  df-fn 6485  df-f 6486  df-f1 6487  df-fo 6488  df-f1o 6489  df-fv 6490  df-oprab 7353  df-mpo 7354  df-1st 7924  df-2nd 7925
This theorem is referenced by:  el2mpocsbcl  8018  bropopvvv  8023  bropfvvvv  8025  prdsip  17365  imasds  17417  isofn  17682  setchomfval  17986  setccofval  17989  estrchomfval  18032  estrccofval  18035  lsmvalx  19518  dfrngc2  20513  funcrngcsetc  20525  dfringc2  20542  funcringcsetc  20559  mamuval  22278  mamudm  22280  marrepfval  22445  marrepval0  22446  marrepval  22447  marepvfval  22450  marepvval  22452  submaval0  22465  submaval  22466  maduval  22523  minmar1val0  22532  minmar1val  22533  mat2pmatval  22609  mat2pmatf  22613  m2cpmf  22627  cpm2mval  22635  decpmatval0  22649  decpmatmul  22657  pmatcollpw2lem  22662  pmatcollpw3lem  22668  mply1topmatval  22689  mp2pm2mplem1  22691  xkoptsub  23539  precsexlem11  28124  grpodivfval  30478  pstmval  33862  sxsigon  34159  cndprobval  34401  lmod1lem1  48476  lmod1lem2  48477  lmod1lem3  48478  lmod1lem4  48479  lmod1lem5  48480  2arymaptfv  48640  2arymaptfo  48643  invfn  49019
  Copyright terms: Public domain W3C validator