![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > mpoexga | Structured version Visualization version GIF version |
Description: If the domain of an operation given by maps-to notation is a set, the operation is a set. (Contributed by NM, 12-Sep-2011.) |
Ref | Expression |
---|---|
mpoexga | ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → (𝑥 ∈ 𝐴, 𝑦 ∈ 𝐵 ↦ 𝐶) ∈ V) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2731 | . 2 ⊢ (𝑥 ∈ 𝐴, 𝑦 ∈ 𝐵 ↦ 𝐶) = (𝑥 ∈ 𝐴, 𝑦 ∈ 𝐵 ↦ 𝐶) | |
2 | 1 | mpoexg 8067 | 1 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → (𝑥 ∈ 𝐴, 𝑦 ∈ 𝐵 ↦ 𝐶) ∈ V) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 ∈ wcel 2105 Vcvv 3473 ∈ cmpo 7414 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-10 2136 ax-11 2153 ax-12 2170 ax-ext 2702 ax-rep 5285 ax-sep 5299 ax-nul 5306 ax-pow 5363 ax-pr 5427 ax-un 7729 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2533 df-eu 2562 df-clab 2709 df-cleq 2723 df-clel 2809 df-nfc 2884 df-ne 2940 df-ral 3061 df-rex 3070 df-reu 3376 df-rab 3432 df-v 3475 df-sbc 3778 df-csb 3894 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-nul 4323 df-if 4529 df-pw 4604 df-sn 4629 df-pr 4631 df-op 4635 df-uni 4909 df-iun 4999 df-br 5149 df-opab 5211 df-mpt 5232 df-id 5574 df-xp 5682 df-rel 5683 df-cnv 5684 df-co 5685 df-dm 5686 df-rn 5687 df-res 5688 df-ima 5689 df-iota 6495 df-fun 6545 df-fn 6546 df-f 6547 df-f1 6548 df-fo 6549 df-f1o 6550 df-fv 6551 df-oprab 7416 df-mpo 7417 df-1st 7979 df-2nd 7980 |
This theorem is referenced by: mptmpoopabbrdOLDOLD 8074 el2mpocsbcl 8076 bropopvvv 8081 bropfvvvv 8083 prdsip 17414 imasds 17466 isofn 17729 setchomfval 18036 setccofval 18039 estrchomfval 18084 estrccofval 18087 lsmvalx 19552 mamuval 22121 mamudm 22123 marrepfval 22295 marrepval0 22296 marrepval 22297 marepvfval 22300 marepvval 22302 submaval0 22315 submaval 22316 maduval 22373 minmar1val0 22382 minmar1val 22383 mat2pmatval 22459 mat2pmatf 22463 m2cpmf 22477 cpm2mval 22485 decpmatval0 22499 decpmatmul 22507 pmatcollpw2lem 22512 pmatcollpw3lem 22518 mply1topmatval 22539 mp2pm2mplem1 22541 xkoptsub 23391 precsexlem11 27917 grpodivfval 30069 pstmval 33188 sxsigon 33503 cndprobval 33745 dfrngc2 46971 funcrngcsetc 46997 dfringc2 47017 funcringcsetc 47034 lmod1lem1 47268 lmod1lem2 47269 lmod1lem3 47270 lmod1lem4 47271 lmod1lem5 47272 2arymaptfv 47437 2arymaptfo 47440 |
Copyright terms: Public domain | W3C validator |