![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > mpoexga | Structured version Visualization version GIF version |
Description: If the domain of an operation given by maps-to notation is a set, the operation is a set. (Contributed by NM, 12-Sep-2011.) |
Ref | Expression |
---|---|
mpoexga | ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → (𝑥 ∈ 𝐴, 𝑦 ∈ 𝐵 ↦ 𝐶) ∈ V) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2733 | . 2 ⊢ (𝑥 ∈ 𝐴, 𝑦 ∈ 𝐵 ↦ 𝐶) = (𝑥 ∈ 𝐴, 𝑦 ∈ 𝐵 ↦ 𝐶) | |
2 | 1 | mpoexg 8063 | 1 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → (𝑥 ∈ 𝐴, 𝑦 ∈ 𝐵 ↦ 𝐶) ∈ V) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 397 ∈ wcel 2107 Vcvv 3475 ∈ cmpo 7411 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-10 2138 ax-11 2155 ax-12 2172 ax-ext 2704 ax-rep 5286 ax-sep 5300 ax-nul 5307 ax-pow 5364 ax-pr 5428 ax-un 7725 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 847 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1783 df-nf 1787 df-sb 2069 df-mo 2535 df-eu 2564 df-clab 2711 df-cleq 2725 df-clel 2811 df-nfc 2886 df-ne 2942 df-ral 3063 df-rex 3072 df-reu 3378 df-rab 3434 df-v 3477 df-sbc 3779 df-csb 3895 df-dif 3952 df-un 3954 df-in 3956 df-ss 3966 df-nul 4324 df-if 4530 df-pw 4605 df-sn 4630 df-pr 4632 df-op 4636 df-uni 4910 df-iun 5000 df-br 5150 df-opab 5212 df-mpt 5233 df-id 5575 df-xp 5683 df-rel 5684 df-cnv 5685 df-co 5686 df-dm 5687 df-rn 5688 df-res 5689 df-ima 5690 df-iota 6496 df-fun 6546 df-fn 6547 df-f 6548 df-f1 6549 df-fo 6550 df-f1o 6551 df-fv 6552 df-oprab 7413 df-mpo 7414 df-1st 7975 df-2nd 7976 |
This theorem is referenced by: mptmpoopabbrdOLD 8069 el2mpocsbcl 8071 bropopvvv 8076 bropfvvvv 8078 prdsip 17407 imasds 17459 isofn 17722 setchomfval 18029 setccofval 18032 estrchomfval 18077 estrccofval 18080 lsmvalx 19507 mamuval 21888 mamudm 21890 marrepfval 22062 marrepval0 22063 marrepval 22064 marepvfval 22067 marepvval 22069 submaval0 22082 submaval 22083 maduval 22140 minmar1val0 22149 minmar1val 22150 mat2pmatval 22226 mat2pmatf 22230 m2cpmf 22244 cpm2mval 22252 decpmatval0 22266 decpmatmul 22274 pmatcollpw2lem 22279 pmatcollpw3lem 22285 mply1topmatval 22306 mp2pm2mplem1 22308 xkoptsub 23158 precsexlem11 27663 grpodivfval 29787 pstmval 32875 sxsigon 33190 cndprobval 33432 dfrngc2 46870 funcrngcsetc 46896 dfringc2 46916 funcringcsetc 46933 lmod1lem1 47168 lmod1lem2 47169 lmod1lem3 47170 lmod1lem4 47171 lmod1lem5 47172 2arymaptfv 47337 2arymaptfo 47340 |
Copyright terms: Public domain | W3C validator |