MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dju1p1e2ALT Structured version   Visualization version   GIF version

Theorem dju1p1e2ALT 10128
Description: Alternate proof of dju1p1e2 10127. (Contributed by Mario Carneiro, 29-Apr-2015.) (Proof modification is discouraged.) (New usage is discouraged.)
Assertion
Ref Expression
dju1p1e2ALT (1o ⊔ 1o) ≈ 2o

Proof of Theorem dju1p1e2ALT
StepHypRef Expression
1 1on 8446 . . 3 1o ∈ On
21onordi 6445 . . . 4 Ord 1o
3 ordirr 6350 . . . 4 (Ord 1o → ¬ 1o ∈ 1o)
42, 3ax-mp 5 . . 3 ¬ 1o ∈ 1o
5 dju1en 10125 . . 3 ((1o ∈ On ∧ ¬ 1o ∈ 1o) → (1o ⊔ 1o) ≈ suc 1o)
61, 4, 5mp2an 692 . 2 (1o ⊔ 1o) ≈ suc 1o
7 df-2o 8435 . 2 2o = suc 1o
86, 7breqtrri 5134 1 (1o ⊔ 1o) ≈ 2o
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wcel 2109   class class class wbr 5107  Ord word 6331  Oncon0 6332  suc csuc 6334  1oc1o 8427  2oc2o 8428  cen 8915  cdju 9851
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387  ax-un 7711
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rab 3406  df-v 3449  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-pss 3934  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-int 4911  df-br 5108  df-opab 5170  df-mpt 5189  df-tr 5215  df-id 5533  df-eprel 5538  df-po 5546  df-so 5547  df-fr 5591  df-we 5593  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-ord 6335  df-on 6336  df-suc 6338  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fo 6517  df-f1o 6518  df-fv 6519  df-1st 7968  df-2nd 7969  df-1o 8434  df-2o 8435  df-er 8671  df-en 8919  df-dju 9854
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator