Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > dju1p1e2ALT | Structured version Visualization version GIF version |
Description: Alternate proof of dju1p1e2 9860. (Contributed by Mario Carneiro, 29-Apr-2015.) (Proof modification is discouraged.) (New usage is discouraged.) |
Ref | Expression |
---|---|
dju1p1e2ALT | ⊢ (1o ⊔ 1o) ≈ 2o |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 1on 8274 | . . 3 ⊢ 1o ∈ On | |
2 | 1 | onordi 6356 | . . . 4 ⊢ Ord 1o |
3 | ordirr 6269 | . . . 4 ⊢ (Ord 1o → ¬ 1o ∈ 1o) | |
4 | 2, 3 | ax-mp 5 | . . 3 ⊢ ¬ 1o ∈ 1o |
5 | dju1en 9858 | . . 3 ⊢ ((1o ∈ On ∧ ¬ 1o ∈ 1o) → (1o ⊔ 1o) ≈ suc 1o) | |
6 | 1, 4, 5 | mp2an 688 | . 2 ⊢ (1o ⊔ 1o) ≈ suc 1o |
7 | df-2o 8268 | . 2 ⊢ 2o = suc 1o | |
8 | 6, 7 | breqtrri 5097 | 1 ⊢ (1o ⊔ 1o) ≈ 2o |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 ∈ wcel 2108 class class class wbr 5070 Ord word 6250 Oncon0 6251 suc csuc 6253 1oc1o 8260 2oc2o 8261 ≈ cen 8688 ⊔ cdju 9587 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-sep 5218 ax-nul 5225 ax-pow 5283 ax-pr 5347 ax-un 7566 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3or 1086 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-ral 3068 df-rex 3069 df-rab 3072 df-v 3424 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-pss 3902 df-nul 4254 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-tp 4563 df-op 4565 df-uni 4837 df-int 4877 df-br 5071 df-opab 5133 df-mpt 5154 df-tr 5188 df-id 5480 df-eprel 5486 df-po 5494 df-so 5495 df-fr 5535 df-we 5537 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-ord 6254 df-on 6255 df-suc 6257 df-iota 6376 df-fun 6420 df-fn 6421 df-f 6422 df-f1 6423 df-fo 6424 df-f1o 6425 df-fv 6426 df-1st 7804 df-2nd 7805 df-1o 8267 df-2o 8268 df-er 8456 df-en 8692 df-dju 9590 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |