MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dju1p1e2ALT Structured version   Visualization version   GIF version

Theorem dju1p1e2ALT 10168
Description: Alternate proof of dju1p1e2 10167. (Contributed by Mario Carneiro, 29-Apr-2015.) (Proof modification is discouraged.) (New usage is discouraged.)
Assertion
Ref Expression
dju1p1e2ALT (1o ⊔ 1o) ≈ 2o

Proof of Theorem dju1p1e2ALT
StepHypRef Expression
1 1on 8477 . . 3 1o ∈ On
21onordi 6475 . . . 4 Ord 1o
3 ordirr 6382 . . . 4 (Ord 1o → ¬ 1o ∈ 1o)
42, 3ax-mp 5 . . 3 ¬ 1o ∈ 1o
5 dju1en 10165 . . 3 ((1o ∈ On ∧ ¬ 1o ∈ 1o) → (1o ⊔ 1o) ≈ suc 1o)
61, 4, 5mp2an 690 . 2 (1o ⊔ 1o) ≈ suc 1o
7 df-2o 8466 . 2 2o = suc 1o
86, 7breqtrri 5175 1 (1o ⊔ 1o) ≈ 2o
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wcel 2106   class class class wbr 5148  Ord word 6363  Oncon0 6364  suc csuc 6366  1oc1o 8458  2oc2o 8459  cen 8935  cdju 9892
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2703  ax-sep 5299  ax-nul 5306  ax-pow 5363  ax-pr 5427  ax-un 7724
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2534  df-eu 2563  df-clab 2710  df-cleq 2724  df-clel 2810  df-nfc 2885  df-ne 2941  df-ral 3062  df-rex 3071  df-rab 3433  df-v 3476  df-dif 3951  df-un 3953  df-in 3955  df-ss 3965  df-pss 3967  df-nul 4323  df-if 4529  df-pw 4604  df-sn 4629  df-pr 4631  df-op 4635  df-uni 4909  df-int 4951  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5574  df-eprel 5580  df-po 5588  df-so 5589  df-fr 5631  df-we 5633  df-xp 5682  df-rel 5683  df-cnv 5684  df-co 5685  df-dm 5686  df-rn 5687  df-res 5688  df-ima 5689  df-ord 6367  df-on 6368  df-suc 6370  df-iota 6495  df-fun 6545  df-fn 6546  df-f 6547  df-f1 6548  df-fo 6549  df-f1o 6550  df-fv 6551  df-1st 7974  df-2nd 7975  df-1o 8465  df-2o 8466  df-er 8702  df-en 8939  df-dju 9895
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator