Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > dju1p1e2ALT | Structured version Visualization version GIF version |
Description: Alternate proof of dju1p1e2 9646. (Contributed by Mario Carneiro, 29-Apr-2015.) (Proof modification is discouraged.) (New usage is discouraged.) |
Ref | Expression |
---|---|
dju1p1e2ALT | ⊢ (1o ⊔ 1o) ≈ 2o |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 1on 8125 | . . 3 ⊢ 1o ∈ On | |
2 | 1 | onordi 6279 | . . . 4 ⊢ Ord 1o |
3 | ordirr 6192 | . . . 4 ⊢ (Ord 1o → ¬ 1o ∈ 1o) | |
4 | 2, 3 | ax-mp 5 | . . 3 ⊢ ¬ 1o ∈ 1o |
5 | dju1en 9644 | . . 3 ⊢ ((1o ∈ On ∧ ¬ 1o ∈ 1o) → (1o ⊔ 1o) ≈ suc 1o) | |
6 | 1, 4, 5 | mp2an 691 | . 2 ⊢ (1o ⊔ 1o) ≈ suc 1o |
7 | df-2o 8119 | . 2 ⊢ 2o = suc 1o | |
8 | 6, 7 | breqtrri 5063 | 1 ⊢ (1o ⊔ 1o) ≈ 2o |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 ∈ wcel 2111 class class class wbr 5036 Ord word 6173 Oncon0 6174 suc csuc 6176 1oc1o 8111 2oc2o 8112 ≈ cen 8537 ⊔ cdju 9373 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1911 ax-6 1970 ax-7 2015 ax-8 2113 ax-9 2121 ax-10 2142 ax-11 2158 ax-12 2175 ax-ext 2729 ax-sep 5173 ax-nul 5180 ax-pow 5238 ax-pr 5302 ax-un 7465 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 845 df-3or 1085 df-3an 1086 df-tru 1541 df-fal 1551 df-ex 1782 df-nf 1786 df-sb 2070 df-mo 2557 df-eu 2588 df-clab 2736 df-cleq 2750 df-clel 2830 df-nfc 2901 df-ne 2952 df-ral 3075 df-rex 3076 df-rab 3079 df-v 3411 df-sbc 3699 df-dif 3863 df-un 3865 df-in 3867 df-ss 3877 df-pss 3879 df-nul 4228 df-if 4424 df-pw 4499 df-sn 4526 df-pr 4528 df-tp 4530 df-op 4532 df-uni 4802 df-int 4842 df-br 5037 df-opab 5099 df-mpt 5117 df-tr 5143 df-id 5434 df-eprel 5439 df-po 5447 df-so 5448 df-fr 5487 df-we 5489 df-xp 5534 df-rel 5535 df-cnv 5536 df-co 5537 df-dm 5538 df-rn 5539 df-res 5540 df-ima 5541 df-ord 6177 df-on 6178 df-suc 6180 df-iota 6299 df-fun 6342 df-fn 6343 df-f 6344 df-f1 6345 df-fo 6346 df-f1o 6347 df-fv 6348 df-1st 7699 df-2nd 7700 df-1o 8118 df-2o 8119 df-er 8305 df-en 8541 df-dju 9376 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |