MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dju1p1e2ALT Structured version   Visualization version   GIF version

Theorem dju1p1e2ALT 10189
Description: Alternate proof of dju1p1e2 10188. (Contributed by Mario Carneiro, 29-Apr-2015.) (Proof modification is discouraged.) (New usage is discouraged.)
Assertion
Ref Expression
dju1p1e2ALT (1o ⊔ 1o) ≈ 2o

Proof of Theorem dju1p1e2ALT
StepHypRef Expression
1 1on 8492 . . 3 1o ∈ On
21onordi 6465 . . . 4 Ord 1o
3 ordirr 6370 . . . 4 (Ord 1o → ¬ 1o ∈ 1o)
42, 3ax-mp 5 . . 3 ¬ 1o ∈ 1o
5 dju1en 10186 . . 3 ((1o ∈ On ∧ ¬ 1o ∈ 1o) → (1o ⊔ 1o) ≈ suc 1o)
61, 4, 5mp2an 692 . 2 (1o ⊔ 1o) ≈ suc 1o
7 df-2o 8481 . 2 2o = suc 1o
86, 7breqtrri 5146 1 (1o ⊔ 1o) ≈ 2o
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wcel 2108   class class class wbr 5119  Ord word 6351  Oncon0 6352  suc csuc 6354  1oc1o 8473  2oc2o 8474  cen 8956  cdju 9912
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2707  ax-sep 5266  ax-nul 5276  ax-pow 5335  ax-pr 5402  ax-un 7729
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2727  df-clel 2809  df-nfc 2885  df-ne 2933  df-ral 3052  df-rex 3061  df-rab 3416  df-v 3461  df-dif 3929  df-un 3931  df-in 3933  df-ss 3943  df-pss 3946  df-nul 4309  df-if 4501  df-pw 4577  df-sn 4602  df-pr 4604  df-op 4608  df-uni 4884  df-int 4923  df-br 5120  df-opab 5182  df-mpt 5202  df-tr 5230  df-id 5548  df-eprel 5553  df-po 5561  df-so 5562  df-fr 5606  df-we 5608  df-xp 5660  df-rel 5661  df-cnv 5662  df-co 5663  df-dm 5664  df-rn 5665  df-res 5666  df-ima 5667  df-ord 6355  df-on 6356  df-suc 6358  df-iota 6484  df-fun 6533  df-fn 6534  df-f 6535  df-f1 6536  df-fo 6537  df-f1o 6538  df-fv 6539  df-1st 7988  df-2nd 7989  df-1o 8480  df-2o 8481  df-er 8719  df-en 8960  df-dju 9915
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator