| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > dju1p1e2ALT | Structured version Visualization version GIF version | ||
| Description: Alternate proof of dju1p1e2 10181. (Contributed by Mario Carneiro, 29-Apr-2015.) (Proof modification is discouraged.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| dju1p1e2ALT | ⊢ (1o ⊔ 1o) ≈ 2o |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 1on 8487 | . . 3 ⊢ 1o ∈ On | |
| 2 | 1 | onordi 6462 | . . . 4 ⊢ Ord 1o |
| 3 | ordirr 6368 | . . . 4 ⊢ (Ord 1o → ¬ 1o ∈ 1o) | |
| 4 | 2, 3 | ax-mp 5 | . . 3 ⊢ ¬ 1o ∈ 1o |
| 5 | dju1en 10179 | . . 3 ⊢ ((1o ∈ On ∧ ¬ 1o ∈ 1o) → (1o ⊔ 1o) ≈ suc 1o) | |
| 6 | 1, 4, 5 | mp2an 692 | . 2 ⊢ (1o ⊔ 1o) ≈ suc 1o |
| 7 | df-2o 8476 | . 2 ⊢ 2o = suc 1o | |
| 8 | 6, 7 | breqtrri 5144 | 1 ⊢ (1o ⊔ 1o) ≈ 2o |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 ∈ wcel 2107 class class class wbr 5117 Ord word 6349 Oncon0 6350 suc csuc 6352 1oc1o 8468 2oc2o 8469 ≈ cen 8951 ⊔ cdju 9905 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-11 2156 ax-12 2176 ax-ext 2706 ax-sep 5264 ax-nul 5274 ax-pow 5333 ax-pr 5400 ax-un 7724 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2064 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2726 df-clel 2808 df-nfc 2884 df-ne 2932 df-ral 3051 df-rex 3060 df-rab 3414 df-v 3459 df-dif 3927 df-un 3929 df-in 3931 df-ss 3941 df-pss 3944 df-nul 4307 df-if 4499 df-pw 4575 df-sn 4600 df-pr 4602 df-op 4606 df-uni 4882 df-int 4921 df-br 5118 df-opab 5180 df-mpt 5200 df-tr 5228 df-id 5546 df-eprel 5551 df-po 5559 df-so 5560 df-fr 5604 df-we 5606 df-xp 5658 df-rel 5659 df-cnv 5660 df-co 5661 df-dm 5662 df-rn 5663 df-res 5664 df-ima 5665 df-ord 6353 df-on 6354 df-suc 6356 df-iota 6481 df-fun 6530 df-fn 6531 df-f 6532 df-f1 6533 df-fo 6534 df-f1o 6535 df-fv 6536 df-1st 7983 df-2nd 7984 df-1o 8475 df-2o 8476 df-er 8714 df-en 8955 df-dju 9908 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |