![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > nnm2 | Structured version Visualization version GIF version |
Description: Multiply an element of ฯ by 2o. (Contributed by Scott Fenton, 18-Apr-2012.) (Revised by Mario Carneiro, 17-Nov-2014.) |
Ref | Expression |
---|---|
nnm2 | โข (๐ด โ ฯ โ (๐ด ยทo 2o) = (๐ด +o ๐ด)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-2o 8482 | . . 3 โข 2o = suc 1o | |
2 | 1 | oveq2i 7426 | . 2 โข (๐ด ยทo 2o) = (๐ด ยทo suc 1o) |
3 | 1onn 8655 | . . . 4 โข 1o โ ฯ | |
4 | nnmsuc 8622 | . . . 4 โข ((๐ด โ ฯ โง 1o โ ฯ) โ (๐ด ยทo suc 1o) = ((๐ด ยทo 1o) +o ๐ด)) | |
5 | 3, 4 | mpan2 690 | . . 3 โข (๐ด โ ฯ โ (๐ด ยทo suc 1o) = ((๐ด ยทo 1o) +o ๐ด)) |
6 | nnm1 8667 | . . . 4 โข (๐ด โ ฯ โ (๐ด ยทo 1o) = ๐ด) | |
7 | 6 | oveq1d 7430 | . . 3 โข (๐ด โ ฯ โ ((๐ด ยทo 1o) +o ๐ด) = (๐ด +o ๐ด)) |
8 | 5, 7 | eqtrd 2768 | . 2 โข (๐ด โ ฯ โ (๐ด ยทo suc 1o) = (๐ด +o ๐ด)) |
9 | 2, 8 | eqtrid 2780 | 1 โข (๐ด โ ฯ โ (๐ด ยทo 2o) = (๐ด +o ๐ด)) |
Colors of variables: wff setvar class |
Syntax hints: โ wi 4 = wceq 1534 โ wcel 2099 suc csuc 6366 (class class class)co 7415 ฯcom 7865 1oc1o 8474 2oc2o 8475 +o coa 8478 ยทo comu 8479 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-10 2130 ax-11 2147 ax-12 2167 ax-ext 2699 ax-sep 5294 ax-nul 5301 ax-pr 5424 ax-un 7735 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 847 df-3or 1086 df-3an 1087 df-tru 1537 df-fal 1547 df-ex 1775 df-nf 1779 df-sb 2061 df-mo 2530 df-eu 2559 df-clab 2706 df-cleq 2720 df-clel 2806 df-nfc 2881 df-ne 2937 df-ral 3058 df-rex 3067 df-reu 3373 df-rab 3429 df-v 3472 df-sbc 3776 df-csb 3891 df-dif 3948 df-un 3950 df-in 3952 df-ss 3962 df-pss 3964 df-nul 4320 df-if 4526 df-pw 4601 df-sn 4626 df-pr 4628 df-op 4632 df-uni 4905 df-iun 4994 df-br 5144 df-opab 5206 df-mpt 5227 df-tr 5261 df-id 5571 df-eprel 5577 df-po 5585 df-so 5586 df-fr 5628 df-we 5630 df-xp 5679 df-rel 5680 df-cnv 5681 df-co 5682 df-dm 5683 df-rn 5684 df-res 5685 df-ima 5686 df-pred 6300 df-ord 6367 df-on 6368 df-lim 6369 df-suc 6370 df-iota 6495 df-fun 6545 df-fn 6546 df-f 6547 df-f1 6548 df-fo 6549 df-f1o 6550 df-fv 6551 df-ov 7418 df-oprab 7419 df-mpo 7420 df-om 7866 df-2nd 7989 df-frecs 8281 df-wrecs 8312 df-recs 8386 df-rdg 8425 df-1o 8481 df-2o 8482 df-oadd 8485 df-omul 8486 |
This theorem is referenced by: nn2m 8669 omopthlem1 8674 omopthlem2 8675 |
Copyright terms: Public domain | W3C validator |