![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > nnm2 | Structured version Visualization version GIF version |
Description: Multiply an element of ฯ by 2o. (Contributed by Scott Fenton, 18-Apr-2012.) (Revised by Mario Carneiro, 17-Nov-2014.) |
Ref | Expression |
---|---|
nnm2 | โข (๐ด โ ฯ โ (๐ด ยทo 2o) = (๐ด +o ๐ด)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-2o 8463 | . . 3 โข 2o = suc 1o | |
2 | 1 | oveq2i 7413 | . 2 โข (๐ด ยทo 2o) = (๐ด ยทo suc 1o) |
3 | 1onn 8636 | . . . 4 โข 1o โ ฯ | |
4 | nnmsuc 8603 | . . . 4 โข ((๐ด โ ฯ โง 1o โ ฯ) โ (๐ด ยทo suc 1o) = ((๐ด ยทo 1o) +o ๐ด)) | |
5 | 3, 4 | mpan2 688 | . . 3 โข (๐ด โ ฯ โ (๐ด ยทo suc 1o) = ((๐ด ยทo 1o) +o ๐ด)) |
6 | nnm1 8648 | . . . 4 โข (๐ด โ ฯ โ (๐ด ยทo 1o) = ๐ด) | |
7 | 6 | oveq1d 7417 | . . 3 โข (๐ด โ ฯ โ ((๐ด ยทo 1o) +o ๐ด) = (๐ด +o ๐ด)) |
8 | 5, 7 | eqtrd 2764 | . 2 โข (๐ด โ ฯ โ (๐ด ยทo suc 1o) = (๐ด +o ๐ด)) |
9 | 2, 8 | eqtrid 2776 | 1 โข (๐ด โ ฯ โ (๐ด ยทo 2o) = (๐ด +o ๐ด)) |
Colors of variables: wff setvar class |
Syntax hints: โ wi 4 = wceq 1533 โ wcel 2098 suc csuc 6357 (class class class)co 7402 ฯcom 7849 1oc1o 8455 2oc2o 8456 +o coa 8459 ยทo comu 8460 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2163 ax-ext 2695 ax-sep 5290 ax-nul 5297 ax-pr 5418 ax-un 7719 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3or 1085 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2526 df-eu 2555 df-clab 2702 df-cleq 2716 df-clel 2802 df-nfc 2877 df-ne 2933 df-ral 3054 df-rex 3063 df-reu 3369 df-rab 3425 df-v 3468 df-sbc 3771 df-csb 3887 df-dif 3944 df-un 3946 df-in 3948 df-ss 3958 df-pss 3960 df-nul 4316 df-if 4522 df-pw 4597 df-sn 4622 df-pr 4624 df-op 4628 df-uni 4901 df-iun 4990 df-br 5140 df-opab 5202 df-mpt 5223 df-tr 5257 df-id 5565 df-eprel 5571 df-po 5579 df-so 5580 df-fr 5622 df-we 5624 df-xp 5673 df-rel 5674 df-cnv 5675 df-co 5676 df-dm 5677 df-rn 5678 df-res 5679 df-ima 5680 df-pred 6291 df-ord 6358 df-on 6359 df-lim 6360 df-suc 6361 df-iota 6486 df-fun 6536 df-fn 6537 df-f 6538 df-f1 6539 df-fo 6540 df-f1o 6541 df-fv 6542 df-ov 7405 df-oprab 7406 df-mpo 7407 df-om 7850 df-2nd 7970 df-frecs 8262 df-wrecs 8293 df-recs 8367 df-rdg 8406 df-1o 8462 df-2o 8463 df-oadd 8466 df-omul 8467 |
This theorem is referenced by: nn2m 8650 omopthlem1 8655 omopthlem2 8656 |
Copyright terms: Public domain | W3C validator |