|   | Metamath Proof Explorer | < Previous  
      Next > Nearby theorems | |
| Mirrors > Home > MPE Home > Th. List > nnm2 | Structured version Visualization version GIF version | ||
| Description: Multiply an element of ω by 2o. (Contributed by Scott Fenton, 18-Apr-2012.) (Revised by Mario Carneiro, 17-Nov-2014.) | 
| Ref | Expression | 
|---|---|
| nnm2 | ⊢ (𝐴 ∈ ω → (𝐴 ·o 2o) = (𝐴 +o 𝐴)) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | df-2o 8508 | . . 3 ⊢ 2o = suc 1o | |
| 2 | 1 | oveq2i 7443 | . 2 ⊢ (𝐴 ·o 2o) = (𝐴 ·o suc 1o) | 
| 3 | 1onn 8679 | . . . 4 ⊢ 1o ∈ ω | |
| 4 | nnmsuc 8646 | . . . 4 ⊢ ((𝐴 ∈ ω ∧ 1o ∈ ω) → (𝐴 ·o suc 1o) = ((𝐴 ·o 1o) +o 𝐴)) | |
| 5 | 3, 4 | mpan2 691 | . . 3 ⊢ (𝐴 ∈ ω → (𝐴 ·o suc 1o) = ((𝐴 ·o 1o) +o 𝐴)) | 
| 6 | nnm1 8691 | . . . 4 ⊢ (𝐴 ∈ ω → (𝐴 ·o 1o) = 𝐴) | |
| 7 | 6 | oveq1d 7447 | . . 3 ⊢ (𝐴 ∈ ω → ((𝐴 ·o 1o) +o 𝐴) = (𝐴 +o 𝐴)) | 
| 8 | 5, 7 | eqtrd 2776 | . 2 ⊢ (𝐴 ∈ ω → (𝐴 ·o suc 1o) = (𝐴 +o 𝐴)) | 
| 9 | 2, 8 | eqtrid 2788 | 1 ⊢ (𝐴 ∈ ω → (𝐴 ·o 2o) = (𝐴 +o 𝐴)) | 
| Colors of variables: wff setvar class | 
| Syntax hints: → wi 4 = wceq 1539 ∈ wcel 2107 suc csuc 6385 (class class class)co 7432 ωcom 7888 1oc1o 8500 2oc2o 8501 +o coa 8504 ·o comu 8505 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-11 2156 ax-12 2176 ax-ext 2707 ax-sep 5295 ax-nul 5305 ax-pr 5431 ax-un 7756 | 
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2064 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2728 df-clel 2815 df-nfc 2891 df-ne 2940 df-ral 3061 df-rex 3070 df-reu 3380 df-rab 3436 df-v 3481 df-sbc 3788 df-csb 3899 df-dif 3953 df-un 3955 df-in 3957 df-ss 3967 df-pss 3970 df-nul 4333 df-if 4525 df-pw 4601 df-sn 4626 df-pr 4628 df-op 4632 df-uni 4907 df-iun 4992 df-br 5143 df-opab 5205 df-mpt 5225 df-tr 5259 df-id 5577 df-eprel 5583 df-po 5591 df-so 5592 df-fr 5636 df-we 5638 df-xp 5690 df-rel 5691 df-cnv 5692 df-co 5693 df-dm 5694 df-rn 5695 df-res 5696 df-ima 5697 df-pred 6320 df-ord 6386 df-on 6387 df-lim 6388 df-suc 6389 df-iota 6513 df-fun 6562 df-fn 6563 df-f 6564 df-f1 6565 df-fo 6566 df-f1o 6567 df-fv 6568 df-ov 7435 df-oprab 7436 df-mpo 7437 df-om 7889 df-2nd 8016 df-frecs 8307 df-wrecs 8338 df-recs 8412 df-rdg 8451 df-1o 8507 df-2o 8508 df-oadd 8511 df-omul 8512 | 
| This theorem is referenced by: nn2m 8693 omopthlem1 8698 omopthlem2 8699 | 
| Copyright terms: Public domain | W3C validator |