Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > dia0eldmN | Structured version Visualization version GIF version |
Description: The lattice zero belongs to the domain of partial isomorphism A. (Contributed by NM, 5-Dec-2013.) (New usage is discouraged.) |
Ref | Expression |
---|---|
dia0eldm.z | ⊢ 0 = (0.‘𝐾) |
dia0eldm.h | ⊢ 𝐻 = (LHyp‘𝐾) |
dia0eldm.i | ⊢ 𝐼 = ((DIsoA‘𝐾)‘𝑊) |
Ref | Expression |
---|---|
dia0eldmN | ⊢ ((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) → 0 ∈ dom 𝐼) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | hlop 37303 | . . . 4 ⊢ (𝐾 ∈ HL → 𝐾 ∈ OP) | |
2 | 1 | adantr 480 | . . 3 ⊢ ((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) → 𝐾 ∈ OP) |
3 | eqid 2738 | . . . 4 ⊢ (Base‘𝐾) = (Base‘𝐾) | |
4 | dia0eldm.z | . . . 4 ⊢ 0 = (0.‘𝐾) | |
5 | 3, 4 | op0cl 37125 | . . 3 ⊢ (𝐾 ∈ OP → 0 ∈ (Base‘𝐾)) |
6 | 2, 5 | syl 17 | . 2 ⊢ ((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) → 0 ∈ (Base‘𝐾)) |
7 | dia0eldm.h | . . . 4 ⊢ 𝐻 = (LHyp‘𝐾) | |
8 | 3, 7 | lhpbase 37939 | . . 3 ⊢ (𝑊 ∈ 𝐻 → 𝑊 ∈ (Base‘𝐾)) |
9 | eqid 2738 | . . . 4 ⊢ (le‘𝐾) = (le‘𝐾) | |
10 | 3, 9, 4 | op0le 37127 | . . 3 ⊢ ((𝐾 ∈ OP ∧ 𝑊 ∈ (Base‘𝐾)) → 0 (le‘𝐾)𝑊) |
11 | 1, 8, 10 | syl2an 595 | . 2 ⊢ ((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) → 0 (le‘𝐾)𝑊) |
12 | dia0eldm.i | . . 3 ⊢ 𝐼 = ((DIsoA‘𝐾)‘𝑊) | |
13 | 3, 9, 7, 12 | diaeldm 38977 | . 2 ⊢ ((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) → ( 0 ∈ dom 𝐼 ↔ ( 0 ∈ (Base‘𝐾) ∧ 0 (le‘𝐾)𝑊))) |
14 | 6, 11, 13 | mpbir2and 709 | 1 ⊢ ((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) → 0 ∈ dom 𝐼) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1539 ∈ wcel 2108 class class class wbr 5070 dom cdm 5580 ‘cfv 6418 Basecbs 16840 lecple 16895 0.cp0 18056 OPcops 37113 HLchlt 37291 LHypclh 37925 DIsoAcdia 38969 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-rep 5205 ax-sep 5218 ax-nul 5225 ax-pow 5283 ax-pr 5347 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-ral 3068 df-rex 3069 df-reu 3070 df-rab 3072 df-v 3424 df-sbc 3712 df-csb 3829 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-nul 4254 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-op 4565 df-uni 4837 df-iun 4923 df-br 5071 df-opab 5133 df-mpt 5154 df-id 5480 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-iota 6376 df-fun 6420 df-fn 6421 df-f 6422 df-f1 6423 df-fo 6424 df-f1o 6425 df-fv 6426 df-riota 7212 df-ov 7258 df-glb 17980 df-p0 18058 df-oposet 37117 df-ol 37119 df-oml 37120 df-hlat 37292 df-lhyp 37929 df-disoa 38970 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |