Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dia0eldmN Structured version   Visualization version   GIF version

Theorem dia0eldmN 41145
Description: The lattice zero belongs to the domain of partial isomorphism A. (Contributed by NM, 5-Dec-2013.) (New usage is discouraged.)
Hypotheses
Ref Expression
dia0eldm.z 0 = (0.‘𝐾)
dia0eldm.h 𝐻 = (LHyp‘𝐾)
dia0eldm.i 𝐼 = ((DIsoA‘𝐾)‘𝑊)
Assertion
Ref Expression
dia0eldmN ((𝐾 ∈ HL ∧ 𝑊𝐻) → 0 ∈ dom 𝐼)

Proof of Theorem dia0eldmN
StepHypRef Expression
1 hlop 39467 . . . 4 (𝐾 ∈ HL → 𝐾 ∈ OP)
21adantr 480 . . 3 ((𝐾 ∈ HL ∧ 𝑊𝐻) → 𝐾 ∈ OP)
3 eqid 2731 . . . 4 (Base‘𝐾) = (Base‘𝐾)
4 dia0eldm.z . . . 4 0 = (0.‘𝐾)
53, 4op0cl 39289 . . 3 (𝐾 ∈ OP → 0 ∈ (Base‘𝐾))
62, 5syl 17 . 2 ((𝐾 ∈ HL ∧ 𝑊𝐻) → 0 ∈ (Base‘𝐾))
7 dia0eldm.h . . . 4 𝐻 = (LHyp‘𝐾)
83, 7lhpbase 40103 . . 3 (𝑊𝐻𝑊 ∈ (Base‘𝐾))
9 eqid 2731 . . . 4 (le‘𝐾) = (le‘𝐾)
103, 9, 4op0le 39291 . . 3 ((𝐾 ∈ OP ∧ 𝑊 ∈ (Base‘𝐾)) → 0 (le‘𝐾)𝑊)
111, 8, 10syl2an 596 . 2 ((𝐾 ∈ HL ∧ 𝑊𝐻) → 0 (le‘𝐾)𝑊)
12 dia0eldm.i . . 3 𝐼 = ((DIsoA‘𝐾)‘𝑊)
133, 9, 7, 12diaeldm 41141 . 2 ((𝐾 ∈ HL ∧ 𝑊𝐻) → ( 0 ∈ dom 𝐼 ↔ ( 0 ∈ (Base‘𝐾) ∧ 0 (le‘𝐾)𝑊)))
146, 11, 13mpbir2and 713 1 ((𝐾 ∈ HL ∧ 𝑊𝐻) → 0 ∈ dom 𝐼)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1541  wcel 2111   class class class wbr 5093  dom cdm 5619  cfv 6487  Basecbs 17126  lecple 17174  0.cp0 18333  OPcops 39277  HLchlt 39455  LHypclh 40089  DIsoAcdia 41133
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-rep 5219  ax-sep 5236  ax-nul 5246  ax-pow 5305  ax-pr 5372
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-ral 3048  df-rex 3057  df-rmo 3346  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3737  df-csb 3846  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-nul 4283  df-if 4475  df-pw 4551  df-sn 4576  df-pr 4578  df-op 4582  df-uni 4859  df-iun 4943  df-br 5094  df-opab 5156  df-mpt 5175  df-id 5514  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-iota 6443  df-fun 6489  df-fn 6490  df-f 6491  df-f1 6492  df-fo 6493  df-f1o 6494  df-fv 6495  df-riota 7309  df-ov 7355  df-glb 18257  df-p0 18335  df-oposet 39281  df-ol 39283  df-oml 39284  df-hlat 39456  df-lhyp 40093  df-disoa 41134
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator