Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dia0eldmN Structured version   Visualization version   GIF version

Theorem dia0eldmN 41029
Description: The lattice zero belongs to the domain of partial isomorphism A. (Contributed by NM, 5-Dec-2013.) (New usage is discouraged.)
Hypotheses
Ref Expression
dia0eldm.z 0 = (0.‘𝐾)
dia0eldm.h 𝐻 = (LHyp‘𝐾)
dia0eldm.i 𝐼 = ((DIsoA‘𝐾)‘𝑊)
Assertion
Ref Expression
dia0eldmN ((𝐾 ∈ HL ∧ 𝑊𝐻) → 0 ∈ dom 𝐼)

Proof of Theorem dia0eldmN
StepHypRef Expression
1 hlop 39350 . . . 4 (𝐾 ∈ HL → 𝐾 ∈ OP)
21adantr 480 . . 3 ((𝐾 ∈ HL ∧ 𝑊𝐻) → 𝐾 ∈ OP)
3 eqid 2729 . . . 4 (Base‘𝐾) = (Base‘𝐾)
4 dia0eldm.z . . . 4 0 = (0.‘𝐾)
53, 4op0cl 39172 . . 3 (𝐾 ∈ OP → 0 ∈ (Base‘𝐾))
62, 5syl 17 . 2 ((𝐾 ∈ HL ∧ 𝑊𝐻) → 0 ∈ (Base‘𝐾))
7 dia0eldm.h . . . 4 𝐻 = (LHyp‘𝐾)
83, 7lhpbase 39987 . . 3 (𝑊𝐻𝑊 ∈ (Base‘𝐾))
9 eqid 2729 . . . 4 (le‘𝐾) = (le‘𝐾)
103, 9, 4op0le 39174 . . 3 ((𝐾 ∈ OP ∧ 𝑊 ∈ (Base‘𝐾)) → 0 (le‘𝐾)𝑊)
111, 8, 10syl2an 596 . 2 ((𝐾 ∈ HL ∧ 𝑊𝐻) → 0 (le‘𝐾)𝑊)
12 dia0eldm.i . . 3 𝐼 = ((DIsoA‘𝐾)‘𝑊)
133, 9, 7, 12diaeldm 41025 . 2 ((𝐾 ∈ HL ∧ 𝑊𝐻) → ( 0 ∈ dom 𝐼 ↔ ( 0 ∈ (Base‘𝐾) ∧ 0 (le‘𝐾)𝑊)))
146, 11, 13mpbir2and 713 1 ((𝐾 ∈ HL ∧ 𝑊𝐻) → 0 ∈ dom 𝐼)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2109   class class class wbr 5102  dom cdm 5631  cfv 6500  Basecbs 17157  lecple 17205  0.cp0 18364  OPcops 39160  HLchlt 39338  LHypclh 39973  DIsoAcdia 41017
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5229  ax-sep 5246  ax-nul 5256  ax-pow 5315  ax-pr 5382
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rmo 3351  df-reu 3352  df-rab 3403  df-v 3446  df-sbc 3751  df-csb 3860  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-nul 4293  df-if 4485  df-pw 4561  df-sn 4586  df-pr 4588  df-op 4592  df-uni 4868  df-iun 4953  df-br 5103  df-opab 5165  df-mpt 5184  df-id 5526  df-xp 5637  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-rn 5642  df-res 5643  df-ima 5644  df-iota 6453  df-fun 6502  df-fn 6503  df-f 6504  df-f1 6505  df-fo 6506  df-f1o 6507  df-fv 6508  df-riota 7327  df-ov 7373  df-glb 18288  df-p0 18366  df-oposet 39164  df-ol 39166  df-oml 39167  df-hlat 39339  df-lhyp 39977  df-disoa 41018
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator