Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > dia0eldmN | Structured version Visualization version GIF version |
Description: The lattice zero belongs to the domain of partial isomorphism A. (Contributed by NM, 5-Dec-2013.) (New usage is discouraged.) |
Ref | Expression |
---|---|
dia0eldm.z | ⊢ 0 = (0.‘𝐾) |
dia0eldm.h | ⊢ 𝐻 = (LHyp‘𝐾) |
dia0eldm.i | ⊢ 𝐼 = ((DIsoA‘𝐾)‘𝑊) |
Ref | Expression |
---|---|
dia0eldmN | ⊢ ((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) → 0 ∈ dom 𝐼) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | hlop 37376 | . . . 4 ⊢ (𝐾 ∈ HL → 𝐾 ∈ OP) | |
2 | 1 | adantr 481 | . . 3 ⊢ ((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) → 𝐾 ∈ OP) |
3 | eqid 2738 | . . . 4 ⊢ (Base‘𝐾) = (Base‘𝐾) | |
4 | dia0eldm.z | . . . 4 ⊢ 0 = (0.‘𝐾) | |
5 | 3, 4 | op0cl 37198 | . . 3 ⊢ (𝐾 ∈ OP → 0 ∈ (Base‘𝐾)) |
6 | 2, 5 | syl 17 | . 2 ⊢ ((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) → 0 ∈ (Base‘𝐾)) |
7 | dia0eldm.h | . . . 4 ⊢ 𝐻 = (LHyp‘𝐾) | |
8 | 3, 7 | lhpbase 38012 | . . 3 ⊢ (𝑊 ∈ 𝐻 → 𝑊 ∈ (Base‘𝐾)) |
9 | eqid 2738 | . . . 4 ⊢ (le‘𝐾) = (le‘𝐾) | |
10 | 3, 9, 4 | op0le 37200 | . . 3 ⊢ ((𝐾 ∈ OP ∧ 𝑊 ∈ (Base‘𝐾)) → 0 (le‘𝐾)𝑊) |
11 | 1, 8, 10 | syl2an 596 | . 2 ⊢ ((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) → 0 (le‘𝐾)𝑊) |
12 | dia0eldm.i | . . 3 ⊢ 𝐼 = ((DIsoA‘𝐾)‘𝑊) | |
13 | 3, 9, 7, 12 | diaeldm 39050 | . 2 ⊢ ((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) → ( 0 ∈ dom 𝐼 ↔ ( 0 ∈ (Base‘𝐾) ∧ 0 (le‘𝐾)𝑊))) |
14 | 6, 11, 13 | mpbir2and 710 | 1 ⊢ ((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) → 0 ∈ dom 𝐼) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 = wceq 1539 ∈ wcel 2106 class class class wbr 5074 dom cdm 5589 ‘cfv 6433 Basecbs 16912 lecple 16969 0.cp0 18141 OPcops 37186 HLchlt 37364 LHypclh 37998 DIsoAcdia 39042 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-rep 5209 ax-sep 5223 ax-nul 5230 ax-pow 5288 ax-pr 5352 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ne 2944 df-ral 3069 df-rex 3070 df-reu 3072 df-rab 3073 df-v 3434 df-sbc 3717 df-csb 3833 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-nul 4257 df-if 4460 df-pw 4535 df-sn 4562 df-pr 4564 df-op 4568 df-uni 4840 df-iun 4926 df-br 5075 df-opab 5137 df-mpt 5158 df-id 5489 df-xp 5595 df-rel 5596 df-cnv 5597 df-co 5598 df-dm 5599 df-rn 5600 df-res 5601 df-ima 5602 df-iota 6391 df-fun 6435 df-fn 6436 df-f 6437 df-f1 6438 df-fo 6439 df-f1o 6440 df-fv 6441 df-riota 7232 df-ov 7278 df-glb 18065 df-p0 18143 df-oposet 37190 df-ol 37192 df-oml 37193 df-hlat 37365 df-lhyp 38002 df-disoa 39043 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |