| Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > dia0eldmN | Structured version Visualization version GIF version | ||
| Description: The lattice zero belongs to the domain of partial isomorphism A. (Contributed by NM, 5-Dec-2013.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| dia0eldm.z | ⊢ 0 = (0.‘𝐾) |
| dia0eldm.h | ⊢ 𝐻 = (LHyp‘𝐾) |
| dia0eldm.i | ⊢ 𝐼 = ((DIsoA‘𝐾)‘𝑊) |
| Ref | Expression |
|---|---|
| dia0eldmN | ⊢ ((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) → 0 ∈ dom 𝐼) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | hlop 39358 | . . . 4 ⊢ (𝐾 ∈ HL → 𝐾 ∈ OP) | |
| 2 | 1 | adantr 480 | . . 3 ⊢ ((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) → 𝐾 ∈ OP) |
| 3 | eqid 2729 | . . . 4 ⊢ (Base‘𝐾) = (Base‘𝐾) | |
| 4 | dia0eldm.z | . . . 4 ⊢ 0 = (0.‘𝐾) | |
| 5 | 3, 4 | op0cl 39180 | . . 3 ⊢ (𝐾 ∈ OP → 0 ∈ (Base‘𝐾)) |
| 6 | 2, 5 | syl 17 | . 2 ⊢ ((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) → 0 ∈ (Base‘𝐾)) |
| 7 | dia0eldm.h | . . . 4 ⊢ 𝐻 = (LHyp‘𝐾) | |
| 8 | 3, 7 | lhpbase 39994 | . . 3 ⊢ (𝑊 ∈ 𝐻 → 𝑊 ∈ (Base‘𝐾)) |
| 9 | eqid 2729 | . . . 4 ⊢ (le‘𝐾) = (le‘𝐾) | |
| 10 | 3, 9, 4 | op0le 39182 | . . 3 ⊢ ((𝐾 ∈ OP ∧ 𝑊 ∈ (Base‘𝐾)) → 0 (le‘𝐾)𝑊) |
| 11 | 1, 8, 10 | syl2an 596 | . 2 ⊢ ((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) → 0 (le‘𝐾)𝑊) |
| 12 | dia0eldm.i | . . 3 ⊢ 𝐼 = ((DIsoA‘𝐾)‘𝑊) | |
| 13 | 3, 9, 7, 12 | diaeldm 41032 | . 2 ⊢ ((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) → ( 0 ∈ dom 𝐼 ↔ ( 0 ∈ (Base‘𝐾) ∧ 0 (le‘𝐾)𝑊))) |
| 14 | 6, 11, 13 | mpbir2and 713 | 1 ⊢ ((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) → 0 ∈ dom 𝐼) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2109 class class class wbr 5088 dom cdm 5613 ‘cfv 6476 Basecbs 17107 lecple 17155 0.cp0 18314 OPcops 39168 HLchlt 39346 LHypclh 39980 DIsoAcdia 41024 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5214 ax-sep 5231 ax-nul 5241 ax-pow 5300 ax-pr 5367 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-rmo 3343 df-reu 3344 df-rab 3393 df-v 3435 df-sbc 3739 df-csb 3848 df-dif 3902 df-un 3904 df-in 3906 df-ss 3916 df-nul 4281 df-if 4473 df-pw 4549 df-sn 4574 df-pr 4576 df-op 4580 df-uni 4857 df-iun 4940 df-br 5089 df-opab 5151 df-mpt 5170 df-id 5508 df-xp 5619 df-rel 5620 df-cnv 5621 df-co 5622 df-dm 5623 df-rn 5624 df-res 5625 df-ima 5626 df-iota 6432 df-fun 6478 df-fn 6479 df-f 6480 df-f1 6481 df-fo 6482 df-f1o 6483 df-fv 6484 df-riota 7297 df-ov 7343 df-glb 18238 df-p0 18316 df-oposet 39172 df-ol 39174 df-oml 39175 df-hlat 39347 df-lhyp 39984 df-disoa 41025 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |