| Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > dia0eldmN | Structured version Visualization version GIF version | ||
| Description: The lattice zero belongs to the domain of partial isomorphism A. (Contributed by NM, 5-Dec-2013.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| dia0eldm.z | ⊢ 0 = (0.‘𝐾) |
| dia0eldm.h | ⊢ 𝐻 = (LHyp‘𝐾) |
| dia0eldm.i | ⊢ 𝐼 = ((DIsoA‘𝐾)‘𝑊) |
| Ref | Expression |
|---|---|
| dia0eldmN | ⊢ ((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) → 0 ∈ dom 𝐼) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | hlop 39467 | . . . 4 ⊢ (𝐾 ∈ HL → 𝐾 ∈ OP) | |
| 2 | 1 | adantr 480 | . . 3 ⊢ ((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) → 𝐾 ∈ OP) |
| 3 | eqid 2731 | . . . 4 ⊢ (Base‘𝐾) = (Base‘𝐾) | |
| 4 | dia0eldm.z | . . . 4 ⊢ 0 = (0.‘𝐾) | |
| 5 | 3, 4 | op0cl 39289 | . . 3 ⊢ (𝐾 ∈ OP → 0 ∈ (Base‘𝐾)) |
| 6 | 2, 5 | syl 17 | . 2 ⊢ ((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) → 0 ∈ (Base‘𝐾)) |
| 7 | dia0eldm.h | . . . 4 ⊢ 𝐻 = (LHyp‘𝐾) | |
| 8 | 3, 7 | lhpbase 40103 | . . 3 ⊢ (𝑊 ∈ 𝐻 → 𝑊 ∈ (Base‘𝐾)) |
| 9 | eqid 2731 | . . . 4 ⊢ (le‘𝐾) = (le‘𝐾) | |
| 10 | 3, 9, 4 | op0le 39291 | . . 3 ⊢ ((𝐾 ∈ OP ∧ 𝑊 ∈ (Base‘𝐾)) → 0 (le‘𝐾)𝑊) |
| 11 | 1, 8, 10 | syl2an 596 | . 2 ⊢ ((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) → 0 (le‘𝐾)𝑊) |
| 12 | dia0eldm.i | . . 3 ⊢ 𝐼 = ((DIsoA‘𝐾)‘𝑊) | |
| 13 | 3, 9, 7, 12 | diaeldm 41141 | . 2 ⊢ ((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) → ( 0 ∈ dom 𝐼 ↔ ( 0 ∈ (Base‘𝐾) ∧ 0 (le‘𝐾)𝑊))) |
| 14 | 6, 11, 13 | mpbir2and 713 | 1 ⊢ ((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) → 0 ∈ dom 𝐼) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1541 ∈ wcel 2111 class class class wbr 5093 dom cdm 5619 ‘cfv 6487 Basecbs 17126 lecple 17174 0.cp0 18333 OPcops 39277 HLchlt 39455 LHypclh 40089 DIsoAcdia 41133 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-rep 5219 ax-sep 5236 ax-nul 5246 ax-pow 5305 ax-pr 5372 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-ral 3048 df-rex 3057 df-rmo 3346 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3737 df-csb 3846 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-nul 4283 df-if 4475 df-pw 4551 df-sn 4576 df-pr 4578 df-op 4582 df-uni 4859 df-iun 4943 df-br 5094 df-opab 5156 df-mpt 5175 df-id 5514 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-rn 5630 df-res 5631 df-ima 5632 df-iota 6443 df-fun 6489 df-fn 6490 df-f 6491 df-f1 6492 df-fo 6493 df-f1o 6494 df-fv 6495 df-riota 7309 df-ov 7355 df-glb 18257 df-p0 18335 df-oposet 39281 df-ol 39283 df-oml 39284 df-hlat 39456 df-lhyp 40093 df-disoa 41134 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |