![]() |
Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > dia0eldmN | Structured version Visualization version GIF version |
Description: The lattice zero belongs to the domain of partial isomorphism A. (Contributed by NM, 5-Dec-2013.) (New usage is discouraged.) |
Ref | Expression |
---|---|
dia0eldm.z | β’ 0 = (0.βπΎ) |
dia0eldm.h | β’ π» = (LHypβπΎ) |
dia0eldm.i | β’ πΌ = ((DIsoAβπΎ)βπ) |
Ref | Expression |
---|---|
dia0eldmN | β’ ((πΎ β HL β§ π β π») β 0 β dom πΌ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | hlop 38232 | . . . 4 β’ (πΎ β HL β πΎ β OP) | |
2 | 1 | adantr 482 | . . 3 β’ ((πΎ β HL β§ π β π») β πΎ β OP) |
3 | eqid 2733 | . . . 4 β’ (BaseβπΎ) = (BaseβπΎ) | |
4 | dia0eldm.z | . . . 4 β’ 0 = (0.βπΎ) | |
5 | 3, 4 | op0cl 38054 | . . 3 β’ (πΎ β OP β 0 β (BaseβπΎ)) |
6 | 2, 5 | syl 17 | . 2 β’ ((πΎ β HL β§ π β π») β 0 β (BaseβπΎ)) |
7 | dia0eldm.h | . . . 4 β’ π» = (LHypβπΎ) | |
8 | 3, 7 | lhpbase 38869 | . . 3 β’ (π β π» β π β (BaseβπΎ)) |
9 | eqid 2733 | . . . 4 β’ (leβπΎ) = (leβπΎ) | |
10 | 3, 9, 4 | op0le 38056 | . . 3 β’ ((πΎ β OP β§ π β (BaseβπΎ)) β 0 (leβπΎ)π) |
11 | 1, 8, 10 | syl2an 597 | . 2 β’ ((πΎ β HL β§ π β π») β 0 (leβπΎ)π) |
12 | dia0eldm.i | . . 3 β’ πΌ = ((DIsoAβπΎ)βπ) | |
13 | 3, 9, 7, 12 | diaeldm 39907 | . 2 β’ ((πΎ β HL β§ π β π») β ( 0 β dom πΌ β ( 0 β (BaseβπΎ) β§ 0 (leβπΎ)π))) |
14 | 6, 11, 13 | mpbir2and 712 | 1 β’ ((πΎ β HL β§ π β π») β 0 β dom πΌ) |
Colors of variables: wff setvar class |
Syntax hints: β wi 4 β§ wa 397 = wceq 1542 β wcel 2107 class class class wbr 5149 dom cdm 5677 βcfv 6544 Basecbs 17144 lecple 17204 0.cp0 18376 OPcops 38042 HLchlt 38220 LHypclh 38855 DIsoAcdia 39899 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-10 2138 ax-11 2155 ax-12 2172 ax-ext 2704 ax-rep 5286 ax-sep 5300 ax-nul 5307 ax-pow 5364 ax-pr 5428 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 847 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1783 df-nf 1787 df-sb 2069 df-mo 2535 df-eu 2564 df-clab 2711 df-cleq 2725 df-clel 2811 df-nfc 2886 df-ne 2942 df-ral 3063 df-rex 3072 df-rmo 3377 df-reu 3378 df-rab 3434 df-v 3477 df-sbc 3779 df-csb 3895 df-dif 3952 df-un 3954 df-in 3956 df-ss 3966 df-nul 4324 df-if 4530 df-pw 4605 df-sn 4630 df-pr 4632 df-op 4636 df-uni 4910 df-iun 5000 df-br 5150 df-opab 5212 df-mpt 5233 df-id 5575 df-xp 5683 df-rel 5684 df-cnv 5685 df-co 5686 df-dm 5687 df-rn 5688 df-res 5689 df-ima 5690 df-iota 6496 df-fun 6546 df-fn 6547 df-f 6548 df-f1 6549 df-fo 6550 df-f1o 6551 df-fv 6552 df-riota 7365 df-ov 7412 df-glb 18300 df-p0 18378 df-oposet 38046 df-ol 38048 df-oml 38049 df-hlat 38221 df-lhyp 38859 df-disoa 39900 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |