Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dihord2cN Structured version   Visualization version   GIF version

Theorem dihord2cN 38475
Description: Part of proof after Lemma N of [Crawley] p. 122. Reverse ordering property. TODO: needed? shorten other proof with it? (Contributed by NM, 3-Mar-2014.) (New usage is discouraged.)
Hypotheses
Ref Expression
dihjust.b 𝐵 = (Base‘𝐾)
dihjust.l = (le‘𝐾)
dihjust.j = (join‘𝐾)
dihjust.m = (meet‘𝐾)
dihjust.a 𝐴 = (Atoms‘𝐾)
dihjust.h 𝐻 = (LHyp‘𝐾)
dihjust.i 𝐼 = ((DIsoB‘𝐾)‘𝑊)
dihjust.J 𝐽 = ((DIsoC‘𝐾)‘𝑊)
dihjust.u 𝑈 = ((DVecH‘𝐾)‘𝑊)
dihjust.s = (LSSum‘𝑈)
dihord2c.t 𝑇 = ((LTrn‘𝐾)‘𝑊)
dihord2c.r 𝑅 = ((trL‘𝐾)‘𝑊)
dihord2c.o 𝑂 = (𝑇 ↦ ( I ↾ 𝐵))
Assertion
Ref Expression
dihord2cN (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑋𝐵 ∧ (𝑓𝑇 ∧ (𝑅𝑓) (𝑋 𝑊))) → ⟨𝑓, 𝑂⟩ ∈ (𝐼‘(𝑋 𝑊)))
Distinct variable groups:   ,𝑓   ,𝑓   ,𝑓   𝑓,,𝐴   𝑓,𝐼   𝑓,𝐽   𝑅,𝑓   𝐵,𝑓,   𝑓,𝐻,   𝑓,𝐾,   ,𝑓,   𝑇,𝑓,   𝑓,𝑊,   𝑓,𝑋
Allowed substitution hints:   ()   𝑅()   𝑈(𝑓,)   𝐼()   𝐽()   ()   ()   𝑂(𝑓,)   𝑋()

Proof of Theorem dihord2cN
StepHypRef Expression
1 simp3 1135 . 2 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑋𝐵 ∧ (𝑓𝑇 ∧ (𝑅𝑓) (𝑋 𝑊))) → (𝑓𝑇 ∧ (𝑅𝑓) (𝑋 𝑊)))
2 eqidd 2823 . 2 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑋𝐵 ∧ (𝑓𝑇 ∧ (𝑅𝑓) (𝑋 𝑊))) → 𝑂 = 𝑂)
3 simp1 1133 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑋𝐵 ∧ (𝑓𝑇 ∧ (𝑅𝑓) (𝑋 𝑊))) → (𝐾 ∈ HL ∧ 𝑊𝐻))
4 simp1l 1194 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑋𝐵 ∧ (𝑓𝑇 ∧ (𝑅𝑓) (𝑋 𝑊))) → 𝐾 ∈ HL)
54hllatd 36618 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑋𝐵 ∧ (𝑓𝑇 ∧ (𝑅𝑓) (𝑋 𝑊))) → 𝐾 ∈ Lat)
6 simp2 1134 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑋𝐵 ∧ (𝑓𝑇 ∧ (𝑅𝑓) (𝑋 𝑊))) → 𝑋𝐵)
7 simp1r 1195 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑋𝐵 ∧ (𝑓𝑇 ∧ (𝑅𝑓) (𝑋 𝑊))) → 𝑊𝐻)
8 dihjust.b . . . . . 6 𝐵 = (Base‘𝐾)
9 dihjust.h . . . . . 6 𝐻 = (LHyp‘𝐾)
108, 9lhpbase 37252 . . . . 5 (𝑊𝐻𝑊𝐵)
117, 10syl 17 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑋𝐵 ∧ (𝑓𝑇 ∧ (𝑅𝑓) (𝑋 𝑊))) → 𝑊𝐵)
12 dihjust.m . . . . 5 = (meet‘𝐾)
138, 12latmcl 17653 . . . 4 ((𝐾 ∈ Lat ∧ 𝑋𝐵𝑊𝐵) → (𝑋 𝑊) ∈ 𝐵)
145, 6, 11, 13syl3anc 1368 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑋𝐵 ∧ (𝑓𝑇 ∧ (𝑅𝑓) (𝑋 𝑊))) → (𝑋 𝑊) ∈ 𝐵)
15 dihjust.l . . . . 5 = (le‘𝐾)
168, 15, 12latmle2 17678 . . . 4 ((𝐾 ∈ Lat ∧ 𝑋𝐵𝑊𝐵) → (𝑋 𝑊) 𝑊)
175, 6, 11, 16syl3anc 1368 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑋𝐵 ∧ (𝑓𝑇 ∧ (𝑅𝑓) (𝑋 𝑊))) → (𝑋 𝑊) 𝑊)
18 dihord2c.t . . . 4 𝑇 = ((LTrn‘𝐾)‘𝑊)
19 dihord2c.r . . . 4 𝑅 = ((trL‘𝐾)‘𝑊)
20 dihord2c.o . . . 4 𝑂 = (𝑇 ↦ ( I ↾ 𝐵))
21 dihjust.i . . . 4 𝐼 = ((DIsoB‘𝐾)‘𝑊)
228, 15, 9, 18, 19, 20, 21dibopelval3 38402 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑋 𝑊) ∈ 𝐵 ∧ (𝑋 𝑊) 𝑊)) → (⟨𝑓, 𝑂⟩ ∈ (𝐼‘(𝑋 𝑊)) ↔ ((𝑓𝑇 ∧ (𝑅𝑓) (𝑋 𝑊)) ∧ 𝑂 = 𝑂)))
233, 14, 17, 22syl12anc 835 . 2 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑋𝐵 ∧ (𝑓𝑇 ∧ (𝑅𝑓) (𝑋 𝑊))) → (⟨𝑓, 𝑂⟩ ∈ (𝐼‘(𝑋 𝑊)) ↔ ((𝑓𝑇 ∧ (𝑅𝑓) (𝑋 𝑊)) ∧ 𝑂 = 𝑂)))
241, 2, 23mpbir2and 712 1 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑋𝐵 ∧ (𝑓𝑇 ∧ (𝑅𝑓) (𝑋 𝑊))) → ⟨𝑓, 𝑂⟩ ∈ (𝐼‘(𝑋 𝑊)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 209  wa 399  w3a 1084   = wceq 1538  wcel 2114  cop 4545   class class class wbr 5042  cmpt 5122   I cid 5436  cres 5534  cfv 6334  (class class class)co 7140  Basecbs 16474  lecple 16563  joincjn 17545  meetcmee 17546  Latclat 17646  LSSumclsm 18750  Atomscatm 36517  HLchlt 36604  LHypclh 37238  LTrncltrn 37355  trLctrl 37412  DVecHcdvh 38332  DIsoBcdib 38392  DIsoCcdic 38426
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2178  ax-ext 2794  ax-rep 5166  ax-sep 5179  ax-nul 5186  ax-pow 5243  ax-pr 5307  ax-un 7446
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2622  df-eu 2653  df-clab 2801  df-cleq 2815  df-clel 2894  df-nfc 2962  df-ne 3012  df-ral 3135  df-rex 3136  df-reu 3137  df-rab 3139  df-v 3471  df-sbc 3748  df-csb 3856  df-dif 3911  df-un 3913  df-in 3915  df-ss 3925  df-nul 4266  df-if 4440  df-pw 4513  df-sn 4540  df-pr 4542  df-op 4546  df-uni 4814  df-iun 4896  df-br 5043  df-opab 5105  df-mpt 5123  df-id 5437  df-xp 5538  df-rel 5539  df-cnv 5540  df-co 5541  df-dm 5542  df-rn 5543  df-res 5544  df-ima 5545  df-iota 6293  df-fun 6336  df-fn 6337  df-f 6338  df-f1 6339  df-fo 6340  df-f1o 6341  df-fv 6342  df-riota 7098  df-ov 7143  df-oprab 7144  df-lub 17575  df-glb 17576  df-join 17577  df-meet 17578  df-lat 17647  df-atl 36552  df-cvlat 36576  df-hlat 36605  df-lhyp 37242  df-disoa 38283  df-dib 38393
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator