| Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > dihord2cN | Structured version Visualization version GIF version | ||
| Description: Part of proof after Lemma N of [Crawley] p. 122. Reverse ordering property. TODO: needed? shorten other proof with it? (Contributed by NM, 3-Mar-2014.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| dihjust.b | ⊢ 𝐵 = (Base‘𝐾) |
| dihjust.l | ⊢ ≤ = (le‘𝐾) |
| dihjust.j | ⊢ ∨ = (join‘𝐾) |
| dihjust.m | ⊢ ∧ = (meet‘𝐾) |
| dihjust.a | ⊢ 𝐴 = (Atoms‘𝐾) |
| dihjust.h | ⊢ 𝐻 = (LHyp‘𝐾) |
| dihjust.i | ⊢ 𝐼 = ((DIsoB‘𝐾)‘𝑊) |
| dihjust.J | ⊢ 𝐽 = ((DIsoC‘𝐾)‘𝑊) |
| dihjust.u | ⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) |
| dihjust.s | ⊢ ⊕ = (LSSum‘𝑈) |
| dihord2c.t | ⊢ 𝑇 = ((LTrn‘𝐾)‘𝑊) |
| dihord2c.r | ⊢ 𝑅 = ((trL‘𝐾)‘𝑊) |
| dihord2c.o | ⊢ 𝑂 = (ℎ ∈ 𝑇 ↦ ( I ↾ 𝐵)) |
| Ref | Expression |
|---|---|
| dihord2cN | ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑋 ∈ 𝐵 ∧ (𝑓 ∈ 𝑇 ∧ (𝑅‘𝑓) ≤ (𝑋 ∧ 𝑊))) → 〈𝑓, 𝑂〉 ∈ (𝐼‘(𝑋 ∧ 𝑊))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simp3 1138 | . 2 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑋 ∈ 𝐵 ∧ (𝑓 ∈ 𝑇 ∧ (𝑅‘𝑓) ≤ (𝑋 ∧ 𝑊))) → (𝑓 ∈ 𝑇 ∧ (𝑅‘𝑓) ≤ (𝑋 ∧ 𝑊))) | |
| 2 | eqidd 2731 | . 2 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑋 ∈ 𝐵 ∧ (𝑓 ∈ 𝑇 ∧ (𝑅‘𝑓) ≤ (𝑋 ∧ 𝑊))) → 𝑂 = 𝑂) | |
| 3 | simp1 1136 | . . 3 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑋 ∈ 𝐵 ∧ (𝑓 ∈ 𝑇 ∧ (𝑅‘𝑓) ≤ (𝑋 ∧ 𝑊))) → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) | |
| 4 | simp1l 1198 | . . . . 5 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑋 ∈ 𝐵 ∧ (𝑓 ∈ 𝑇 ∧ (𝑅‘𝑓) ≤ (𝑋 ∧ 𝑊))) → 𝐾 ∈ HL) | |
| 5 | 4 | hllatd 39382 | . . . 4 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑋 ∈ 𝐵 ∧ (𝑓 ∈ 𝑇 ∧ (𝑅‘𝑓) ≤ (𝑋 ∧ 𝑊))) → 𝐾 ∈ Lat) |
| 6 | simp2 1137 | . . . 4 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑋 ∈ 𝐵 ∧ (𝑓 ∈ 𝑇 ∧ (𝑅‘𝑓) ≤ (𝑋 ∧ 𝑊))) → 𝑋 ∈ 𝐵) | |
| 7 | simp1r 1199 | . . . . 5 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑋 ∈ 𝐵 ∧ (𝑓 ∈ 𝑇 ∧ (𝑅‘𝑓) ≤ (𝑋 ∧ 𝑊))) → 𝑊 ∈ 𝐻) | |
| 8 | dihjust.b | . . . . . 6 ⊢ 𝐵 = (Base‘𝐾) | |
| 9 | dihjust.h | . . . . . 6 ⊢ 𝐻 = (LHyp‘𝐾) | |
| 10 | 8, 9 | lhpbase 40016 | . . . . 5 ⊢ (𝑊 ∈ 𝐻 → 𝑊 ∈ 𝐵) |
| 11 | 7, 10 | syl 17 | . . . 4 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑋 ∈ 𝐵 ∧ (𝑓 ∈ 𝑇 ∧ (𝑅‘𝑓) ≤ (𝑋 ∧ 𝑊))) → 𝑊 ∈ 𝐵) |
| 12 | dihjust.m | . . . . 5 ⊢ ∧ = (meet‘𝐾) | |
| 13 | 8, 12 | latmcl 18338 | . . . 4 ⊢ ((𝐾 ∈ Lat ∧ 𝑋 ∈ 𝐵 ∧ 𝑊 ∈ 𝐵) → (𝑋 ∧ 𝑊) ∈ 𝐵) |
| 14 | 5, 6, 11, 13 | syl3anc 1373 | . . 3 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑋 ∈ 𝐵 ∧ (𝑓 ∈ 𝑇 ∧ (𝑅‘𝑓) ≤ (𝑋 ∧ 𝑊))) → (𝑋 ∧ 𝑊) ∈ 𝐵) |
| 15 | dihjust.l | . . . . 5 ⊢ ≤ = (le‘𝐾) | |
| 16 | 8, 15, 12 | latmle2 18363 | . . . 4 ⊢ ((𝐾 ∈ Lat ∧ 𝑋 ∈ 𝐵 ∧ 𝑊 ∈ 𝐵) → (𝑋 ∧ 𝑊) ≤ 𝑊) |
| 17 | 5, 6, 11, 16 | syl3anc 1373 | . . 3 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑋 ∈ 𝐵 ∧ (𝑓 ∈ 𝑇 ∧ (𝑅‘𝑓) ≤ (𝑋 ∧ 𝑊))) → (𝑋 ∧ 𝑊) ≤ 𝑊) |
| 18 | dihord2c.t | . . . 4 ⊢ 𝑇 = ((LTrn‘𝐾)‘𝑊) | |
| 19 | dihord2c.r | . . . 4 ⊢ 𝑅 = ((trL‘𝐾)‘𝑊) | |
| 20 | dihord2c.o | . . . 4 ⊢ 𝑂 = (ℎ ∈ 𝑇 ↦ ( I ↾ 𝐵)) | |
| 21 | dihjust.i | . . . 4 ⊢ 𝐼 = ((DIsoB‘𝐾)‘𝑊) | |
| 22 | 8, 15, 9, 18, 19, 20, 21 | dibopelval3 41166 | . . 3 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ ((𝑋 ∧ 𝑊) ∈ 𝐵 ∧ (𝑋 ∧ 𝑊) ≤ 𝑊)) → (〈𝑓, 𝑂〉 ∈ (𝐼‘(𝑋 ∧ 𝑊)) ↔ ((𝑓 ∈ 𝑇 ∧ (𝑅‘𝑓) ≤ (𝑋 ∧ 𝑊)) ∧ 𝑂 = 𝑂))) |
| 23 | 3, 14, 17, 22 | syl12anc 836 | . 2 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑋 ∈ 𝐵 ∧ (𝑓 ∈ 𝑇 ∧ (𝑅‘𝑓) ≤ (𝑋 ∧ 𝑊))) → (〈𝑓, 𝑂〉 ∈ (𝐼‘(𝑋 ∧ 𝑊)) ↔ ((𝑓 ∈ 𝑇 ∧ (𝑅‘𝑓) ≤ (𝑋 ∧ 𝑊)) ∧ 𝑂 = 𝑂))) |
| 24 | 1, 2, 23 | mpbir2and 713 | 1 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑋 ∈ 𝐵 ∧ (𝑓 ∈ 𝑇 ∧ (𝑅‘𝑓) ≤ (𝑋 ∧ 𝑊))) → 〈𝑓, 𝑂〉 ∈ (𝐼‘(𝑋 ∧ 𝑊))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∧ w3a 1086 = wceq 1541 ∈ wcel 2110 〈cop 4580 class class class wbr 5089 ↦ cmpt 5170 I cid 5508 ↾ cres 5616 ‘cfv 6477 (class class class)co 7341 Basecbs 17112 lecple 17160 joincjn 18209 meetcmee 18210 Latclat 18329 LSSumclsm 19539 Atomscatm 39281 HLchlt 39368 LHypclh 40002 LTrncltrn 40119 trLctrl 40176 DVecHcdvh 41096 DIsoBcdib 41156 DIsoCcdic 41190 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2112 ax-9 2120 ax-10 2143 ax-11 2159 ax-12 2179 ax-ext 2702 ax-rep 5215 ax-sep 5232 ax-nul 5242 ax-pow 5301 ax-pr 5368 ax-un 7663 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-ral 3046 df-rex 3055 df-rmo 3344 df-reu 3345 df-rab 3394 df-v 3436 df-sbc 3740 df-csb 3849 df-dif 3903 df-un 3905 df-in 3907 df-ss 3917 df-nul 4282 df-if 4474 df-pw 4550 df-sn 4575 df-pr 4577 df-op 4581 df-uni 4858 df-iun 4941 df-br 5090 df-opab 5152 df-mpt 5171 df-id 5509 df-xp 5620 df-rel 5621 df-cnv 5622 df-co 5623 df-dm 5624 df-rn 5625 df-res 5626 df-ima 5627 df-iota 6433 df-fun 6479 df-fn 6480 df-f 6481 df-f1 6482 df-fo 6483 df-f1o 6484 df-fv 6485 df-riota 7298 df-ov 7344 df-oprab 7345 df-lub 18242 df-glb 18243 df-join 18244 df-meet 18245 df-lat 18330 df-atl 39316 df-cvlat 39340 df-hlat 39369 df-lhyp 40006 df-disoa 41047 df-dib 41157 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |