![]() |
Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > dihord2cN | Structured version Visualization version GIF version |
Description: Part of proof after Lemma N of [Crawley] p. 122. Reverse ordering property. TODO: needed? shorten other proof with it? (Contributed by NM, 3-Mar-2014.) (New usage is discouraged.) |
Ref | Expression |
---|---|
dihjust.b | ⊢ 𝐵 = (Base‘𝐾) |
dihjust.l | ⊢ ≤ = (le‘𝐾) |
dihjust.j | ⊢ ∨ = (join‘𝐾) |
dihjust.m | ⊢ ∧ = (meet‘𝐾) |
dihjust.a | ⊢ 𝐴 = (Atoms‘𝐾) |
dihjust.h | ⊢ 𝐻 = (LHyp‘𝐾) |
dihjust.i | ⊢ 𝐼 = ((DIsoB‘𝐾)‘𝑊) |
dihjust.J | ⊢ 𝐽 = ((DIsoC‘𝐾)‘𝑊) |
dihjust.u | ⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) |
dihjust.s | ⊢ ⊕ = (LSSum‘𝑈) |
dihord2c.t | ⊢ 𝑇 = ((LTrn‘𝐾)‘𝑊) |
dihord2c.r | ⊢ 𝑅 = ((trL‘𝐾)‘𝑊) |
dihord2c.o | ⊢ 𝑂 = (ℎ ∈ 𝑇 ↦ ( I ↾ 𝐵)) |
Ref | Expression |
---|---|
dihord2cN | ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑋 ∈ 𝐵 ∧ (𝑓 ∈ 𝑇 ∧ (𝑅‘𝑓) ≤ (𝑋 ∧ 𝑊))) → 〈𝑓, 𝑂〉 ∈ (𝐼‘(𝑋 ∧ 𝑊))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simp3 1139 | . 2 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑋 ∈ 𝐵 ∧ (𝑓 ∈ 𝑇 ∧ (𝑅‘𝑓) ≤ (𝑋 ∧ 𝑊))) → (𝑓 ∈ 𝑇 ∧ (𝑅‘𝑓) ≤ (𝑋 ∧ 𝑊))) | |
2 | eqidd 2738 | . 2 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑋 ∈ 𝐵 ∧ (𝑓 ∈ 𝑇 ∧ (𝑅‘𝑓) ≤ (𝑋 ∧ 𝑊))) → 𝑂 = 𝑂) | |
3 | simp1 1137 | . . 3 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑋 ∈ 𝐵 ∧ (𝑓 ∈ 𝑇 ∧ (𝑅‘𝑓) ≤ (𝑋 ∧ 𝑊))) → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) | |
4 | simp1l 1198 | . . . . 5 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑋 ∈ 𝐵 ∧ (𝑓 ∈ 𝑇 ∧ (𝑅‘𝑓) ≤ (𝑋 ∧ 𝑊))) → 𝐾 ∈ HL) | |
5 | 4 | hllatd 39360 | . . . 4 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑋 ∈ 𝐵 ∧ (𝑓 ∈ 𝑇 ∧ (𝑅‘𝑓) ≤ (𝑋 ∧ 𝑊))) → 𝐾 ∈ Lat) |
6 | simp2 1138 | . . . 4 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑋 ∈ 𝐵 ∧ (𝑓 ∈ 𝑇 ∧ (𝑅‘𝑓) ≤ (𝑋 ∧ 𝑊))) → 𝑋 ∈ 𝐵) | |
7 | simp1r 1199 | . . . . 5 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑋 ∈ 𝐵 ∧ (𝑓 ∈ 𝑇 ∧ (𝑅‘𝑓) ≤ (𝑋 ∧ 𝑊))) → 𝑊 ∈ 𝐻) | |
8 | dihjust.b | . . . . . 6 ⊢ 𝐵 = (Base‘𝐾) | |
9 | dihjust.h | . . . . . 6 ⊢ 𝐻 = (LHyp‘𝐾) | |
10 | 8, 9 | lhpbase 39995 | . . . . 5 ⊢ (𝑊 ∈ 𝐻 → 𝑊 ∈ 𝐵) |
11 | 7, 10 | syl 17 | . . . 4 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑋 ∈ 𝐵 ∧ (𝑓 ∈ 𝑇 ∧ (𝑅‘𝑓) ≤ (𝑋 ∧ 𝑊))) → 𝑊 ∈ 𝐵) |
12 | dihjust.m | . . . . 5 ⊢ ∧ = (meet‘𝐾) | |
13 | 8, 12 | latmcl 18507 | . . . 4 ⊢ ((𝐾 ∈ Lat ∧ 𝑋 ∈ 𝐵 ∧ 𝑊 ∈ 𝐵) → (𝑋 ∧ 𝑊) ∈ 𝐵) |
14 | 5, 6, 11, 13 | syl3anc 1372 | . . 3 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑋 ∈ 𝐵 ∧ (𝑓 ∈ 𝑇 ∧ (𝑅‘𝑓) ≤ (𝑋 ∧ 𝑊))) → (𝑋 ∧ 𝑊) ∈ 𝐵) |
15 | dihjust.l | . . . . 5 ⊢ ≤ = (le‘𝐾) | |
16 | 8, 15, 12 | latmle2 18532 | . . . 4 ⊢ ((𝐾 ∈ Lat ∧ 𝑋 ∈ 𝐵 ∧ 𝑊 ∈ 𝐵) → (𝑋 ∧ 𝑊) ≤ 𝑊) |
17 | 5, 6, 11, 16 | syl3anc 1372 | . . 3 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑋 ∈ 𝐵 ∧ (𝑓 ∈ 𝑇 ∧ (𝑅‘𝑓) ≤ (𝑋 ∧ 𝑊))) → (𝑋 ∧ 𝑊) ≤ 𝑊) |
18 | dihord2c.t | . . . 4 ⊢ 𝑇 = ((LTrn‘𝐾)‘𝑊) | |
19 | dihord2c.r | . . . 4 ⊢ 𝑅 = ((trL‘𝐾)‘𝑊) | |
20 | dihord2c.o | . . . 4 ⊢ 𝑂 = (ℎ ∈ 𝑇 ↦ ( I ↾ 𝐵)) | |
21 | dihjust.i | . . . 4 ⊢ 𝐼 = ((DIsoB‘𝐾)‘𝑊) | |
22 | 8, 15, 9, 18, 19, 20, 21 | dibopelval3 41145 | . . 3 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ ((𝑋 ∧ 𝑊) ∈ 𝐵 ∧ (𝑋 ∧ 𝑊) ≤ 𝑊)) → (〈𝑓, 𝑂〉 ∈ (𝐼‘(𝑋 ∧ 𝑊)) ↔ ((𝑓 ∈ 𝑇 ∧ (𝑅‘𝑓) ≤ (𝑋 ∧ 𝑊)) ∧ 𝑂 = 𝑂))) |
23 | 3, 14, 17, 22 | syl12anc 837 | . 2 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑋 ∈ 𝐵 ∧ (𝑓 ∈ 𝑇 ∧ (𝑅‘𝑓) ≤ (𝑋 ∧ 𝑊))) → (〈𝑓, 𝑂〉 ∈ (𝐼‘(𝑋 ∧ 𝑊)) ↔ ((𝑓 ∈ 𝑇 ∧ (𝑅‘𝑓) ≤ (𝑋 ∧ 𝑊)) ∧ 𝑂 = 𝑂))) |
24 | 1, 2, 23 | mpbir2and 713 | 1 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑋 ∈ 𝐵 ∧ (𝑓 ∈ 𝑇 ∧ (𝑅‘𝑓) ≤ (𝑋 ∧ 𝑊))) → 〈𝑓, 𝑂〉 ∈ (𝐼‘(𝑋 ∧ 𝑊))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∧ w3a 1087 = wceq 1539 ∈ wcel 2108 〈cop 4640 class class class wbr 5151 ↦ cmpt 5234 I cid 5586 ↾ cres 5695 ‘cfv 6569 (class class class)co 7438 Basecbs 17254 lecple 17314 joincjn 18378 meetcmee 18379 Latclat 18498 LSSumclsm 19676 Atomscatm 39259 HLchlt 39346 LHypclh 39981 LTrncltrn 40098 trLctrl 40155 DVecHcdvh 41075 DIsoBcdib 41135 DIsoCcdic 41169 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2708 ax-rep 5288 ax-sep 5305 ax-nul 5315 ax-pow 5374 ax-pr 5441 ax-un 7761 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 849 df-3an 1089 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2065 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2729 df-clel 2816 df-nfc 2892 df-ne 2941 df-ral 3062 df-rex 3071 df-rmo 3380 df-reu 3381 df-rab 3437 df-v 3483 df-sbc 3795 df-csb 3912 df-dif 3969 df-un 3971 df-in 3973 df-ss 3983 df-nul 4343 df-if 4535 df-pw 4610 df-sn 4635 df-pr 4637 df-op 4641 df-uni 4916 df-iun 5001 df-br 5152 df-opab 5214 df-mpt 5235 df-id 5587 df-xp 5699 df-rel 5700 df-cnv 5701 df-co 5702 df-dm 5703 df-rn 5704 df-res 5705 df-ima 5706 df-iota 6522 df-fun 6571 df-fn 6572 df-f 6573 df-f1 6574 df-fo 6575 df-f1o 6576 df-fv 6577 df-riota 7395 df-ov 7441 df-oprab 7442 df-lub 18413 df-glb 18414 df-join 18415 df-meet 18416 df-lat 18499 df-atl 39294 df-cvlat 39318 df-hlat 39347 df-lhyp 39985 df-disoa 41026 df-dib 41136 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |