Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dihord2cN Structured version   Visualization version   GIF version

Theorem dihord2cN 37296
Description: Part of proof after Lemma N of [Crawley] p. 122. Reverse ordering property. TODO: needed? shorten other proof with it? (Contributed by NM, 3-Mar-2014.) (New usage is discouraged.)
Hypotheses
Ref Expression
dihjust.b 𝐵 = (Base‘𝐾)
dihjust.l = (le‘𝐾)
dihjust.j = (join‘𝐾)
dihjust.m = (meet‘𝐾)
dihjust.a 𝐴 = (Atoms‘𝐾)
dihjust.h 𝐻 = (LHyp‘𝐾)
dihjust.i 𝐼 = ((DIsoB‘𝐾)‘𝑊)
dihjust.J 𝐽 = ((DIsoC‘𝐾)‘𝑊)
dihjust.u 𝑈 = ((DVecH‘𝐾)‘𝑊)
dihjust.s = (LSSum‘𝑈)
dihord2c.t 𝑇 = ((LTrn‘𝐾)‘𝑊)
dihord2c.r 𝑅 = ((trL‘𝐾)‘𝑊)
dihord2c.o 𝑂 = (𝑇 ↦ ( I ↾ 𝐵))
Assertion
Ref Expression
dihord2cN (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑋𝐵 ∧ (𝑓𝑇 ∧ (𝑅𝑓) (𝑋 𝑊))) → ⟨𝑓, 𝑂⟩ ∈ (𝐼‘(𝑋 𝑊)))
Distinct variable groups:   ,𝑓   ,𝑓   ,𝑓   𝑓,,𝐴   𝑓,𝐼   𝑓,𝐽   𝑅,𝑓   𝐵,𝑓,   𝑓,𝐻,   𝑓,𝐾,   ,𝑓,   𝑇,𝑓,   𝑓,𝑊,   𝑓,𝑋
Allowed substitution hints:   ()   𝑅()   𝑈(𝑓,)   𝐼()   𝐽()   ()   ()   𝑂(𝑓,)   𝑋()

Proof of Theorem dihord2cN
StepHypRef Expression
1 simp3 1174 . 2 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑋𝐵 ∧ (𝑓𝑇 ∧ (𝑅𝑓) (𝑋 𝑊))) → (𝑓𝑇 ∧ (𝑅𝑓) (𝑋 𝑊)))
2 eqidd 2826 . 2 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑋𝐵 ∧ (𝑓𝑇 ∧ (𝑅𝑓) (𝑋 𝑊))) → 𝑂 = 𝑂)
3 simp1 1172 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑋𝐵 ∧ (𝑓𝑇 ∧ (𝑅𝑓) (𝑋 𝑊))) → (𝐾 ∈ HL ∧ 𝑊𝐻))
4 simp1l 1260 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑋𝐵 ∧ (𝑓𝑇 ∧ (𝑅𝑓) (𝑋 𝑊))) → 𝐾 ∈ HL)
54hllatd 35439 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑋𝐵 ∧ (𝑓𝑇 ∧ (𝑅𝑓) (𝑋 𝑊))) → 𝐾 ∈ Lat)
6 simp2 1173 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑋𝐵 ∧ (𝑓𝑇 ∧ (𝑅𝑓) (𝑋 𝑊))) → 𝑋𝐵)
7 simp1r 1261 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑋𝐵 ∧ (𝑓𝑇 ∧ (𝑅𝑓) (𝑋 𝑊))) → 𝑊𝐻)
8 dihjust.b . . . . . 6 𝐵 = (Base‘𝐾)
9 dihjust.h . . . . . 6 𝐻 = (LHyp‘𝐾)
108, 9lhpbase 36073 . . . . 5 (𝑊𝐻𝑊𝐵)
117, 10syl 17 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑋𝐵 ∧ (𝑓𝑇 ∧ (𝑅𝑓) (𝑋 𝑊))) → 𝑊𝐵)
12 dihjust.m . . . . 5 = (meet‘𝐾)
138, 12latmcl 17405 . . . 4 ((𝐾 ∈ Lat ∧ 𝑋𝐵𝑊𝐵) → (𝑋 𝑊) ∈ 𝐵)
145, 6, 11, 13syl3anc 1496 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑋𝐵 ∧ (𝑓𝑇 ∧ (𝑅𝑓) (𝑋 𝑊))) → (𝑋 𝑊) ∈ 𝐵)
15 dihjust.l . . . . 5 = (le‘𝐾)
168, 15, 12latmle2 17430 . . . 4 ((𝐾 ∈ Lat ∧ 𝑋𝐵𝑊𝐵) → (𝑋 𝑊) 𝑊)
175, 6, 11, 16syl3anc 1496 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑋𝐵 ∧ (𝑓𝑇 ∧ (𝑅𝑓) (𝑋 𝑊))) → (𝑋 𝑊) 𝑊)
18 dihord2c.t . . . 4 𝑇 = ((LTrn‘𝐾)‘𝑊)
19 dihord2c.r . . . 4 𝑅 = ((trL‘𝐾)‘𝑊)
20 dihord2c.o . . . 4 𝑂 = (𝑇 ↦ ( I ↾ 𝐵))
21 dihjust.i . . . 4 𝐼 = ((DIsoB‘𝐾)‘𝑊)
228, 15, 9, 18, 19, 20, 21dibopelval3 37223 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑋 𝑊) ∈ 𝐵 ∧ (𝑋 𝑊) 𝑊)) → (⟨𝑓, 𝑂⟩ ∈ (𝐼‘(𝑋 𝑊)) ↔ ((𝑓𝑇 ∧ (𝑅𝑓) (𝑋 𝑊)) ∧ 𝑂 = 𝑂)))
233, 14, 17, 22syl12anc 872 . 2 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑋𝐵 ∧ (𝑓𝑇 ∧ (𝑅𝑓) (𝑋 𝑊))) → (⟨𝑓, 𝑂⟩ ∈ (𝐼‘(𝑋 𝑊)) ↔ ((𝑓𝑇 ∧ (𝑅𝑓) (𝑋 𝑊)) ∧ 𝑂 = 𝑂)))
241, 2, 23mpbir2and 706 1 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑋𝐵 ∧ (𝑓𝑇 ∧ (𝑅𝑓) (𝑋 𝑊))) → ⟨𝑓, 𝑂⟩ ∈ (𝐼‘(𝑋 𝑊)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 198  wa 386  w3a 1113   = wceq 1658  wcel 2166  cop 4403   class class class wbr 4873  cmpt 4952   I cid 5249  cres 5344  cfv 6123  (class class class)co 6905  Basecbs 16222  lecple 16312  joincjn 17297  meetcmee 17298  Latclat 17398  LSSumclsm 18400  Atomscatm 35338  HLchlt 35425  LHypclh 36059  LTrncltrn 36176  trLctrl 36233  DVecHcdvh 37153  DIsoBcdib 37213  DIsoCcdic 37247
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1896  ax-4 1910  ax-5 2011  ax-6 2077  ax-7 2114  ax-8 2168  ax-9 2175  ax-10 2194  ax-11 2209  ax-12 2222  ax-13 2391  ax-ext 2803  ax-rep 4994  ax-sep 5005  ax-nul 5013  ax-pow 5065  ax-pr 5127  ax-un 7209
This theorem depends on definitions:  df-bi 199  df-an 387  df-or 881  df-3an 1115  df-tru 1662  df-ex 1881  df-nf 1885  df-sb 2070  df-mo 2605  df-eu 2640  df-clab 2812  df-cleq 2818  df-clel 2821  df-nfc 2958  df-ne 3000  df-ral 3122  df-rex 3123  df-reu 3124  df-rab 3126  df-v 3416  df-sbc 3663  df-csb 3758  df-dif 3801  df-un 3803  df-in 3805  df-ss 3812  df-nul 4145  df-if 4307  df-pw 4380  df-sn 4398  df-pr 4400  df-op 4404  df-uni 4659  df-iun 4742  df-br 4874  df-opab 4936  df-mpt 4953  df-id 5250  df-xp 5348  df-rel 5349  df-cnv 5350  df-co 5351  df-dm 5352  df-rn 5353  df-res 5354  df-ima 5355  df-iota 6086  df-fun 6125  df-fn 6126  df-f 6127  df-f1 6128  df-fo 6129  df-f1o 6130  df-fv 6131  df-riota 6866  df-ov 6908  df-oprab 6909  df-lub 17327  df-glb 17328  df-join 17329  df-meet 17330  df-lat 17399  df-atl 35373  df-cvlat 35397  df-hlat 35426  df-lhyp 36063  df-disoa 37104  df-dib 37214
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator