![]() |
Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > dicelval1stN | Structured version Visualization version GIF version |
Description: Membership in value of the partial isomorphism C for a lattice 𝐾. (Contributed by NM, 16-Feb-2014.) (New usage is discouraged.) |
Ref | Expression |
---|---|
dicelval1st.l | ⊢ ≤ = (le‘𝐾) |
dicelval1st.a | ⊢ 𝐴 = (Atoms‘𝐾) |
dicelval1st.h | ⊢ 𝐻 = (LHyp‘𝐾) |
dicelval1st.t | ⊢ 𝑇 = ((LTrn‘𝐾)‘𝑊) |
dicelval1st.i | ⊢ 𝐼 = ((DIsoC‘𝐾)‘𝑊) |
Ref | Expression |
---|---|
dicelval1stN | ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ 𝑌 ∈ (𝐼‘𝑄)) → (1st ‘𝑌) ∈ 𝑇) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dicelval1st.l | . . . . . 6 ⊢ ≤ = (le‘𝐾) | |
2 | dicelval1st.a | . . . . . 6 ⊢ 𝐴 = (Atoms‘𝐾) | |
3 | dicelval1st.h | . . . . . 6 ⊢ 𝐻 = (LHyp‘𝐾) | |
4 | dicelval1st.i | . . . . . 6 ⊢ 𝐼 = ((DIsoC‘𝐾)‘𝑊) | |
5 | eqid 2726 | . . . . . 6 ⊢ ((DVecH‘𝐾)‘𝑊) = ((DVecH‘𝐾)‘𝑊) | |
6 | eqid 2726 | . . . . . 6 ⊢ (Base‘((DVecH‘𝐾)‘𝑊)) = (Base‘((DVecH‘𝐾)‘𝑊)) | |
7 | 1, 2, 3, 4, 5, 6 | dicssdvh 40885 | . . . . 5 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) → (𝐼‘𝑄) ⊆ (Base‘((DVecH‘𝐾)‘𝑊))) |
8 | dicelval1st.t | . . . . . . 7 ⊢ 𝑇 = ((LTrn‘𝐾)‘𝑊) | |
9 | eqid 2726 | . . . . . . 7 ⊢ ((TEndo‘𝐾)‘𝑊) = ((TEndo‘𝐾)‘𝑊) | |
10 | 3, 8, 9, 5, 6 | dvhvbase 40786 | . . . . . 6 ⊢ ((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) → (Base‘((DVecH‘𝐾)‘𝑊)) = (𝑇 × ((TEndo‘𝐾)‘𝑊))) |
11 | 10 | adantr 479 | . . . . 5 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) → (Base‘((DVecH‘𝐾)‘𝑊)) = (𝑇 × ((TEndo‘𝐾)‘𝑊))) |
12 | 7, 11 | sseqtrd 4020 | . . . 4 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) → (𝐼‘𝑄) ⊆ (𝑇 × ((TEndo‘𝐾)‘𝑊))) |
13 | 12 | sseld 3978 | . . 3 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) → (𝑌 ∈ (𝐼‘𝑄) → 𝑌 ∈ (𝑇 × ((TEndo‘𝐾)‘𝑊)))) |
14 | 13 | 3impia 1114 | . 2 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ 𝑌 ∈ (𝐼‘𝑄)) → 𝑌 ∈ (𝑇 × ((TEndo‘𝐾)‘𝑊))) |
15 | xp1st 8035 | . 2 ⊢ (𝑌 ∈ (𝑇 × ((TEndo‘𝐾)‘𝑊)) → (1st ‘𝑌) ∈ 𝑇) | |
16 | 14, 15 | syl 17 | 1 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ 𝑌 ∈ (𝐼‘𝑄)) → (1st ‘𝑌) ∈ 𝑇) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 394 ∧ w3a 1084 = wceq 1534 ∈ wcel 2099 class class class wbr 5153 × cxp 5680 ‘cfv 6554 1st c1st 8001 Basecbs 17213 lecple 17273 Atomscatm 38961 HLchlt 39048 LHypclh 39683 LTrncltrn 39800 TEndoctendo 40451 DVecHcdvh 40777 DIsoCcdic 40871 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-10 2130 ax-11 2147 ax-12 2167 ax-ext 2697 ax-rep 5290 ax-sep 5304 ax-nul 5311 ax-pow 5369 ax-pr 5433 ax-un 7746 ax-cnex 11214 ax-resscn 11215 ax-1cn 11216 ax-icn 11217 ax-addcl 11218 ax-addrcl 11219 ax-mulcl 11220 ax-mulrcl 11221 ax-mulcom 11222 ax-addass 11223 ax-mulass 11224 ax-distr 11225 ax-i2m1 11226 ax-1ne0 11227 ax-1rid 11228 ax-rnegex 11229 ax-rrecex 11230 ax-cnre 11231 ax-pre-lttri 11232 ax-pre-lttrn 11233 ax-pre-ltadd 11234 ax-pre-mulgt0 11235 ax-riotaBAD 38651 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3or 1085 df-3an 1086 df-tru 1537 df-fal 1547 df-ex 1775 df-nf 1779 df-sb 2061 df-mo 2529 df-eu 2558 df-clab 2704 df-cleq 2718 df-clel 2803 df-nfc 2878 df-ne 2931 df-nel 3037 df-ral 3052 df-rex 3061 df-rmo 3364 df-reu 3365 df-rab 3420 df-v 3464 df-sbc 3777 df-csb 3893 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-pss 3967 df-nul 4326 df-if 4534 df-pw 4609 df-sn 4634 df-pr 4636 df-tp 4638 df-op 4640 df-uni 4914 df-iun 5003 df-iin 5004 df-br 5154 df-opab 5216 df-mpt 5237 df-tr 5271 df-id 5580 df-eprel 5586 df-po 5594 df-so 5595 df-fr 5637 df-we 5639 df-xp 5688 df-rel 5689 df-cnv 5690 df-co 5691 df-dm 5692 df-rn 5693 df-res 5694 df-ima 5695 df-pred 6312 df-ord 6379 df-on 6380 df-lim 6381 df-suc 6382 df-iota 6506 df-fun 6556 df-fn 6557 df-f 6558 df-f1 6559 df-fo 6560 df-f1o 6561 df-fv 6562 df-riota 7380 df-ov 7427 df-oprab 7428 df-mpo 7429 df-om 7877 df-1st 8003 df-2nd 8004 df-undef 8288 df-frecs 8296 df-wrecs 8327 df-recs 8401 df-rdg 8440 df-1o 8496 df-er 8734 df-map 8857 df-en 8975 df-dom 8976 df-sdom 8977 df-fin 8978 df-pnf 11300 df-mnf 11301 df-xr 11302 df-ltxr 11303 df-le 11304 df-sub 11496 df-neg 11497 df-nn 12265 df-2 12327 df-3 12328 df-4 12329 df-5 12330 df-6 12331 df-n0 12525 df-z 12611 df-uz 12875 df-fz 13539 df-struct 17149 df-slot 17184 df-ndx 17196 df-base 17214 df-plusg 17279 df-sca 17282 df-vsca 17283 df-proset 18320 df-poset 18338 df-plt 18355 df-lub 18371 df-glb 18372 df-join 18373 df-meet 18374 df-p0 18450 df-p1 18451 df-lat 18457 df-clat 18524 df-oposet 38874 df-ol 38876 df-oml 38877 df-covers 38964 df-ats 38965 df-atl 38996 df-cvlat 39020 df-hlat 39049 df-llines 39197 df-lplanes 39198 df-lvols 39199 df-lines 39200 df-psubsp 39202 df-pmap 39203 df-padd 39495 df-lhyp 39687 df-laut 39688 df-ldil 39803 df-ltrn 39804 df-trl 39858 df-tendo 40454 df-dvech 40778 df-dic 40872 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |