| Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > dicelval1stN | Structured version Visualization version GIF version | ||
| Description: Membership in value of the partial isomorphism C for a lattice 𝐾. (Contributed by NM, 16-Feb-2014.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| dicelval1st.l | ⊢ ≤ = (le‘𝐾) |
| dicelval1st.a | ⊢ 𝐴 = (Atoms‘𝐾) |
| dicelval1st.h | ⊢ 𝐻 = (LHyp‘𝐾) |
| dicelval1st.t | ⊢ 𝑇 = ((LTrn‘𝐾)‘𝑊) |
| dicelval1st.i | ⊢ 𝐼 = ((DIsoC‘𝐾)‘𝑊) |
| Ref | Expression |
|---|---|
| dicelval1stN | ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ 𝑌 ∈ (𝐼‘𝑄)) → (1st ‘𝑌) ∈ 𝑇) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dicelval1st.l | . . . . . 6 ⊢ ≤ = (le‘𝐾) | |
| 2 | dicelval1st.a | . . . . . 6 ⊢ 𝐴 = (Atoms‘𝐾) | |
| 3 | dicelval1st.h | . . . . . 6 ⊢ 𝐻 = (LHyp‘𝐾) | |
| 4 | dicelval1st.i | . . . . . 6 ⊢ 𝐼 = ((DIsoC‘𝐾)‘𝑊) | |
| 5 | eqid 2734 | . . . . . 6 ⊢ ((DVecH‘𝐾)‘𝑊) = ((DVecH‘𝐾)‘𝑊) | |
| 6 | eqid 2734 | . . . . . 6 ⊢ (Base‘((DVecH‘𝐾)‘𝑊)) = (Base‘((DVecH‘𝐾)‘𝑊)) | |
| 7 | 1, 2, 3, 4, 5, 6 | dicssdvh 41147 | . . . . 5 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) → (𝐼‘𝑄) ⊆ (Base‘((DVecH‘𝐾)‘𝑊))) |
| 8 | dicelval1st.t | . . . . . . 7 ⊢ 𝑇 = ((LTrn‘𝐾)‘𝑊) | |
| 9 | eqid 2734 | . . . . . . 7 ⊢ ((TEndo‘𝐾)‘𝑊) = ((TEndo‘𝐾)‘𝑊) | |
| 10 | 3, 8, 9, 5, 6 | dvhvbase 41048 | . . . . . 6 ⊢ ((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) → (Base‘((DVecH‘𝐾)‘𝑊)) = (𝑇 × ((TEndo‘𝐾)‘𝑊))) |
| 11 | 10 | adantr 480 | . . . . 5 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) → (Base‘((DVecH‘𝐾)‘𝑊)) = (𝑇 × ((TEndo‘𝐾)‘𝑊))) |
| 12 | 7, 11 | sseqtrd 4000 | . . . 4 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) → (𝐼‘𝑄) ⊆ (𝑇 × ((TEndo‘𝐾)‘𝑊))) |
| 13 | 12 | sseld 3962 | . . 3 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) → (𝑌 ∈ (𝐼‘𝑄) → 𝑌 ∈ (𝑇 × ((TEndo‘𝐾)‘𝑊)))) |
| 14 | 13 | 3impia 1117 | . 2 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ 𝑌 ∈ (𝐼‘𝑄)) → 𝑌 ∈ (𝑇 × ((TEndo‘𝐾)‘𝑊))) |
| 15 | xp1st 8028 | . 2 ⊢ (𝑌 ∈ (𝑇 × ((TEndo‘𝐾)‘𝑊)) → (1st ‘𝑌) ∈ 𝑇) | |
| 16 | 14, 15 | syl 17 | 1 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ 𝑌 ∈ (𝐼‘𝑄)) → (1st ‘𝑌) ∈ 𝑇) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 ∧ w3a 1086 = wceq 1539 ∈ wcel 2107 class class class wbr 5123 × cxp 5663 ‘cfv 6541 1st c1st 7994 Basecbs 17229 lecple 17280 Atomscatm 39223 HLchlt 39310 LHypclh 39945 LTrncltrn 40062 TEndoctendo 40713 DVecHcdvh 41039 DIsoCcdic 41133 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-11 2156 ax-12 2176 ax-ext 2706 ax-rep 5259 ax-sep 5276 ax-nul 5286 ax-pow 5345 ax-pr 5412 ax-un 7737 ax-cnex 11193 ax-resscn 11194 ax-1cn 11195 ax-icn 11196 ax-addcl 11197 ax-addrcl 11198 ax-mulcl 11199 ax-mulrcl 11200 ax-mulcom 11201 ax-addass 11202 ax-mulass 11203 ax-distr 11204 ax-i2m1 11205 ax-1ne0 11206 ax-1rid 11207 ax-rnegex 11208 ax-rrecex 11209 ax-cnre 11210 ax-pre-lttri 11211 ax-pre-lttrn 11212 ax-pre-ltadd 11213 ax-pre-mulgt0 11214 ax-riotaBAD 38913 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2064 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2726 df-clel 2808 df-nfc 2884 df-ne 2932 df-nel 3036 df-ral 3051 df-rex 3060 df-rmo 3363 df-reu 3364 df-rab 3420 df-v 3465 df-sbc 3771 df-csb 3880 df-dif 3934 df-un 3936 df-in 3938 df-ss 3948 df-pss 3951 df-nul 4314 df-if 4506 df-pw 4582 df-sn 4607 df-pr 4609 df-tp 4611 df-op 4613 df-uni 4888 df-iun 4973 df-iin 4974 df-br 5124 df-opab 5186 df-mpt 5206 df-tr 5240 df-id 5558 df-eprel 5564 df-po 5572 df-so 5573 df-fr 5617 df-we 5619 df-xp 5671 df-rel 5672 df-cnv 5673 df-co 5674 df-dm 5675 df-rn 5676 df-res 5677 df-ima 5678 df-pred 6301 df-ord 6366 df-on 6367 df-lim 6368 df-suc 6369 df-iota 6494 df-fun 6543 df-fn 6544 df-f 6545 df-f1 6546 df-fo 6547 df-f1o 6548 df-fv 6549 df-riota 7370 df-ov 7416 df-oprab 7417 df-mpo 7418 df-om 7870 df-1st 7996 df-2nd 7997 df-undef 8280 df-frecs 8288 df-wrecs 8319 df-recs 8393 df-rdg 8432 df-1o 8488 df-er 8727 df-map 8850 df-en 8968 df-dom 8969 df-sdom 8970 df-fin 8971 df-pnf 11279 df-mnf 11280 df-xr 11281 df-ltxr 11282 df-le 11283 df-sub 11476 df-neg 11477 df-nn 12249 df-2 12311 df-3 12312 df-4 12313 df-5 12314 df-6 12315 df-n0 12510 df-z 12597 df-uz 12861 df-fz 13530 df-struct 17166 df-slot 17201 df-ndx 17213 df-base 17230 df-plusg 17286 df-sca 17289 df-vsca 17290 df-proset 18310 df-poset 18329 df-plt 18344 df-lub 18360 df-glb 18361 df-join 18362 df-meet 18363 df-p0 18439 df-p1 18440 df-lat 18446 df-clat 18513 df-oposet 39136 df-ol 39138 df-oml 39139 df-covers 39226 df-ats 39227 df-atl 39258 df-cvlat 39282 df-hlat 39311 df-llines 39459 df-lplanes 39460 df-lvols 39461 df-lines 39462 df-psubsp 39464 df-pmap 39465 df-padd 39757 df-lhyp 39949 df-laut 39950 df-ldil 40065 df-ltrn 40066 df-trl 40120 df-tendo 40716 df-dvech 41040 df-dic 41134 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |