| Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > digfval | Structured version Visualization version GIF version | ||
| Description: Operation to obtain the 𝑘 th digit of a nonnegative real number 𝑟 in the positional system with base 𝐵. (Contributed by AV, 23-May-2020.) |
| Ref | Expression |
|---|---|
| digfval | ⊢ (𝐵 ∈ ℕ → (digit‘𝐵) = (𝑘 ∈ ℤ, 𝑟 ∈ (0[,)+∞) ↦ ((⌊‘((𝐵↑-𝑘) · 𝑟)) mod 𝐵))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-dig 48475 | . 2 ⊢ digit = (𝑏 ∈ ℕ ↦ (𝑘 ∈ ℤ, 𝑟 ∈ (0[,)+∞) ↦ ((⌊‘((𝑏↑-𝑘) · 𝑟)) mod 𝑏))) | |
| 2 | oveq1 7420 | . . . . 5 ⊢ (𝑏 = 𝐵 → (𝑏↑-𝑘) = (𝐵↑-𝑘)) | |
| 3 | 2 | fvoveq1d 7435 | . . . 4 ⊢ (𝑏 = 𝐵 → (⌊‘((𝑏↑-𝑘) · 𝑟)) = (⌊‘((𝐵↑-𝑘) · 𝑟))) |
| 4 | id 22 | . . . 4 ⊢ (𝑏 = 𝐵 → 𝑏 = 𝐵) | |
| 5 | 3, 4 | oveq12d 7431 | . . 3 ⊢ (𝑏 = 𝐵 → ((⌊‘((𝑏↑-𝑘) · 𝑟)) mod 𝑏) = ((⌊‘((𝐵↑-𝑘) · 𝑟)) mod 𝐵)) |
| 6 | 5 | mpoeq3dv 7494 | . 2 ⊢ (𝑏 = 𝐵 → (𝑘 ∈ ℤ, 𝑟 ∈ (0[,)+∞) ↦ ((⌊‘((𝑏↑-𝑘) · 𝑟)) mod 𝑏)) = (𝑘 ∈ ℤ, 𝑟 ∈ (0[,)+∞) ↦ ((⌊‘((𝐵↑-𝑘) · 𝑟)) mod 𝐵))) |
| 7 | id 22 | . 2 ⊢ (𝐵 ∈ ℕ → 𝐵 ∈ ℕ) | |
| 8 | zex 12605 | . . . 4 ⊢ ℤ ∈ V | |
| 9 | ovex 7446 | . . . 4 ⊢ (0[,)+∞) ∈ V | |
| 10 | 8, 9 | pm3.2i 470 | . . 3 ⊢ (ℤ ∈ V ∧ (0[,)+∞) ∈ V) |
| 11 | eqid 2734 | . . . 4 ⊢ (𝑘 ∈ ℤ, 𝑟 ∈ (0[,)+∞) ↦ ((⌊‘((𝐵↑-𝑘) · 𝑟)) mod 𝐵)) = (𝑘 ∈ ℤ, 𝑟 ∈ (0[,)+∞) ↦ ((⌊‘((𝐵↑-𝑘) · 𝑟)) mod 𝐵)) | |
| 12 | 11 | mpoexg 8083 | . . 3 ⊢ ((ℤ ∈ V ∧ (0[,)+∞) ∈ V) → (𝑘 ∈ ℤ, 𝑟 ∈ (0[,)+∞) ↦ ((⌊‘((𝐵↑-𝑘) · 𝑟)) mod 𝐵)) ∈ V) |
| 13 | 10, 12 | mp1i 13 | . 2 ⊢ (𝐵 ∈ ℕ → (𝑘 ∈ ℤ, 𝑟 ∈ (0[,)+∞) ↦ ((⌊‘((𝐵↑-𝑘) · 𝑟)) mod 𝐵)) ∈ V) |
| 14 | 1, 6, 7, 13 | fvmptd3 7019 | 1 ⊢ (𝐵 ∈ ℕ → (digit‘𝐵) = (𝑘 ∈ ℤ, 𝑟 ∈ (0[,)+∞) ↦ ((⌊‘((𝐵↑-𝑘) · 𝑟)) mod 𝐵))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1539 ∈ wcel 2107 Vcvv 3463 ‘cfv 6541 (class class class)co 7413 ∈ cmpo 7415 0cc0 11137 · cmul 11142 +∞cpnf 11274 -cneg 11475 ℕcn 12248 ℤcz 12596 [,)cico 13371 ⌊cfl 13812 mod cmo 13891 ↑cexp 14084 digitcdig 48474 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-11 2156 ax-12 2176 ax-ext 2706 ax-rep 5259 ax-sep 5276 ax-nul 5286 ax-pow 5345 ax-pr 5412 ax-un 7737 ax-cnex 11193 ax-resscn 11194 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2064 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2726 df-clel 2808 df-nfc 2884 df-ne 2932 df-ral 3051 df-rex 3060 df-reu 3364 df-rab 3420 df-v 3465 df-sbc 3771 df-csb 3880 df-dif 3934 df-un 3936 df-in 3938 df-ss 3948 df-nul 4314 df-if 4506 df-pw 4582 df-sn 4607 df-pr 4609 df-op 4613 df-uni 4888 df-iun 4973 df-br 5124 df-opab 5186 df-mpt 5206 df-id 5558 df-xp 5671 df-rel 5672 df-cnv 5673 df-co 5674 df-dm 5675 df-rn 5676 df-res 5677 df-ima 5678 df-iota 6494 df-fun 6543 df-fn 6544 df-f 6545 df-f1 6546 df-fo 6547 df-f1o 6548 df-fv 6549 df-ov 7416 df-oprab 7417 df-mpo 7418 df-1st 7996 df-2nd 7997 df-neg 11477 df-z 12597 df-dig 48475 |
| This theorem is referenced by: digval 48477 |
| Copyright terms: Public domain | W3C validator |