![]() |
Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > digfval | Structured version Visualization version GIF version |
Description: Operation to obtain the π th digit of a nonnegative real number π in the positional system with base π΅. (Contributed by AV, 23-May-2020.) |
Ref | Expression |
---|---|
digfval | β’ (π΅ β β β (digitβπ΅) = (π β β€, π β (0[,)+β) β¦ ((ββ((π΅β-π) Β· π)) mod π΅))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-dig 47592 | . 2 β’ digit = (π β β β¦ (π β β€, π β (0[,)+β) β¦ ((ββ((πβ-π) Β· π)) mod π))) | |
2 | oveq1 7421 | . . . . 5 β’ (π = π΅ β (πβ-π) = (π΅β-π)) | |
3 | 2 | fvoveq1d 7436 | . . . 4 β’ (π = π΅ β (ββ((πβ-π) Β· π)) = (ββ((π΅β-π) Β· π))) |
4 | id 22 | . . . 4 β’ (π = π΅ β π = π΅) | |
5 | 3, 4 | oveq12d 7432 | . . 3 β’ (π = π΅ β ((ββ((πβ-π) Β· π)) mod π) = ((ββ((π΅β-π) Β· π)) mod π΅)) |
6 | 5 | mpoeq3dv 7493 | . 2 β’ (π = π΅ β (π β β€, π β (0[,)+β) β¦ ((ββ((πβ-π) Β· π)) mod π)) = (π β β€, π β (0[,)+β) β¦ ((ββ((π΅β-π) Β· π)) mod π΅))) |
7 | id 22 | . 2 β’ (π΅ β β β π΅ β β) | |
8 | zex 12589 | . . . 4 β’ β€ β V | |
9 | ovex 7447 | . . . 4 β’ (0[,)+β) β V | |
10 | 8, 9 | pm3.2i 470 | . . 3 β’ (β€ β V β§ (0[,)+β) β V) |
11 | eqid 2727 | . . . 4 β’ (π β β€, π β (0[,)+β) β¦ ((ββ((π΅β-π) Β· π)) mod π΅)) = (π β β€, π β (0[,)+β) β¦ ((ββ((π΅β-π) Β· π)) mod π΅)) | |
12 | 11 | mpoexg 8075 | . . 3 β’ ((β€ β V β§ (0[,)+β) β V) β (π β β€, π β (0[,)+β) β¦ ((ββ((π΅β-π) Β· π)) mod π΅)) β V) |
13 | 10, 12 | mp1i 13 | . 2 β’ (π΅ β β β (π β β€, π β (0[,)+β) β¦ ((ββ((π΅β-π) Β· π)) mod π΅)) β V) |
14 | 1, 6, 7, 13 | fvmptd3 7022 | 1 β’ (π΅ β β β (digitβπ΅) = (π β β€, π β (0[,)+β) β¦ ((ββ((π΅β-π) Β· π)) mod π΅))) |
Colors of variables: wff setvar class |
Syntax hints: β wi 4 β§ wa 395 = wceq 1534 β wcel 2099 Vcvv 3469 βcfv 6542 (class class class)co 7414 β cmpo 7416 0cc0 11130 Β· cmul 11135 +βcpnf 11267 -cneg 11467 βcn 12234 β€cz 12580 [,)cico 13350 βcfl 13779 mod cmo 13858 βcexp 14050 digitcdig 47591 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-10 2130 ax-11 2147 ax-12 2164 ax-ext 2698 ax-rep 5279 ax-sep 5293 ax-nul 5300 ax-pow 5359 ax-pr 5423 ax-un 7734 ax-cnex 11186 ax-resscn 11187 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 847 df-3or 1086 df-3an 1087 df-tru 1537 df-fal 1547 df-ex 1775 df-nf 1779 df-sb 2061 df-mo 2529 df-eu 2558 df-clab 2705 df-cleq 2719 df-clel 2805 df-nfc 2880 df-ne 2936 df-ral 3057 df-rex 3066 df-reu 3372 df-rab 3428 df-v 3471 df-sbc 3775 df-csb 3890 df-dif 3947 df-un 3949 df-in 3951 df-ss 3961 df-nul 4319 df-if 4525 df-pw 4600 df-sn 4625 df-pr 4627 df-op 4631 df-uni 4904 df-iun 4993 df-br 5143 df-opab 5205 df-mpt 5226 df-id 5570 df-xp 5678 df-rel 5679 df-cnv 5680 df-co 5681 df-dm 5682 df-rn 5683 df-res 5684 df-ima 5685 df-iota 6494 df-fun 6544 df-fn 6545 df-f 6546 df-f1 6547 df-fo 6548 df-f1o 6549 df-fv 6550 df-ov 7417 df-oprab 7418 df-mpo 7419 df-1st 7987 df-2nd 7988 df-neg 11469 df-z 12581 df-dig 47592 |
This theorem is referenced by: digval 47594 |
Copyright terms: Public domain | W3C validator |