Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  digfval Structured version   Visualization version   GIF version

Theorem digfval 45943
Description: Operation to obtain the 𝑘 th digit of a nonnegative real number 𝑟 in the positional system with base 𝐵. (Contributed by AV, 23-May-2020.)
Assertion
Ref Expression
digfval (𝐵 ∈ ℕ → (digit‘𝐵) = (𝑘 ∈ ℤ, 𝑟 ∈ (0[,)+∞) ↦ ((⌊‘((𝐵↑-𝑘) · 𝑟)) mod 𝐵)))
Distinct variable group:   𝑘,𝑟,𝐵

Proof of Theorem digfval
Dummy variable 𝑏 is distinct from all other variables.
StepHypRef Expression
1 df-dig 45942 . 2 digit = (𝑏 ∈ ℕ ↦ (𝑘 ∈ ℤ, 𝑟 ∈ (0[,)+∞) ↦ ((⌊‘((𝑏↑-𝑘) · 𝑟)) mod 𝑏)))
2 oveq1 7282 . . . . 5 (𝑏 = 𝐵 → (𝑏↑-𝑘) = (𝐵↑-𝑘))
32fvoveq1d 7297 . . . 4 (𝑏 = 𝐵 → (⌊‘((𝑏↑-𝑘) · 𝑟)) = (⌊‘((𝐵↑-𝑘) · 𝑟)))
4 id 22 . . . 4 (𝑏 = 𝐵𝑏 = 𝐵)
53, 4oveq12d 7293 . . 3 (𝑏 = 𝐵 → ((⌊‘((𝑏↑-𝑘) · 𝑟)) mod 𝑏) = ((⌊‘((𝐵↑-𝑘) · 𝑟)) mod 𝐵))
65mpoeq3dv 7354 . 2 (𝑏 = 𝐵 → (𝑘 ∈ ℤ, 𝑟 ∈ (0[,)+∞) ↦ ((⌊‘((𝑏↑-𝑘) · 𝑟)) mod 𝑏)) = (𝑘 ∈ ℤ, 𝑟 ∈ (0[,)+∞) ↦ ((⌊‘((𝐵↑-𝑘) · 𝑟)) mod 𝐵)))
7 id 22 . 2 (𝐵 ∈ ℕ → 𝐵 ∈ ℕ)
8 zex 12328 . . . 4 ℤ ∈ V
9 ovex 7308 . . . 4 (0[,)+∞) ∈ V
108, 9pm3.2i 471 . . 3 (ℤ ∈ V ∧ (0[,)+∞) ∈ V)
11 eqid 2738 . . . 4 (𝑘 ∈ ℤ, 𝑟 ∈ (0[,)+∞) ↦ ((⌊‘((𝐵↑-𝑘) · 𝑟)) mod 𝐵)) = (𝑘 ∈ ℤ, 𝑟 ∈ (0[,)+∞) ↦ ((⌊‘((𝐵↑-𝑘) · 𝑟)) mod 𝐵))
1211mpoexg 7917 . . 3 ((ℤ ∈ V ∧ (0[,)+∞) ∈ V) → (𝑘 ∈ ℤ, 𝑟 ∈ (0[,)+∞) ↦ ((⌊‘((𝐵↑-𝑘) · 𝑟)) mod 𝐵)) ∈ V)
1310, 12mp1i 13 . 2 (𝐵 ∈ ℕ → (𝑘 ∈ ℤ, 𝑟 ∈ (0[,)+∞) ↦ ((⌊‘((𝐵↑-𝑘) · 𝑟)) mod 𝐵)) ∈ V)
141, 6, 7, 13fvmptd3 6898 1 (𝐵 ∈ ℕ → (digit‘𝐵) = (𝑘 ∈ ℤ, 𝑟 ∈ (0[,)+∞) ↦ ((⌊‘((𝐵↑-𝑘) · 𝑟)) mod 𝐵)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396   = wceq 1539  wcel 2106  Vcvv 3432  cfv 6433  (class class class)co 7275  cmpo 7277  0cc0 10871   · cmul 10876  +∞cpnf 11006  -cneg 11206  cn 11973  cz 12319  [,)cico 13081  cfl 13510   mod cmo 13589  cexp 13782  digitcdig 45941
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-rep 5209  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7588  ax-cnex 10927  ax-resscn 10928
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-ral 3069  df-rex 3070  df-reu 3072  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-iun 4926  df-br 5075  df-opab 5137  df-mpt 5158  df-id 5489  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-fo 6439  df-f1o 6440  df-fv 6441  df-ov 7278  df-oprab 7279  df-mpo 7280  df-1st 7831  df-2nd 7832  df-neg 11208  df-z 12320  df-dig 45942
This theorem is referenced by:  digval  45944
  Copyright terms: Public domain W3C validator