![]() |
Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > digfval | Structured version Visualization version GIF version |
Description: Operation to obtain the π th digit of a nonnegative real number π in the positional system with base π΅. (Contributed by AV, 23-May-2020.) |
Ref | Expression |
---|---|
digfval | β’ (π΅ β β β (digitβπ΅) = (π β β€, π β (0[,)+β) β¦ ((ββ((π΅β-π) Β· π)) mod π΅))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-dig 47781 | . 2 β’ digit = (π β β β¦ (π β β€, π β (0[,)+β) β¦ ((ββ((πβ-π) Β· π)) mod π))) | |
2 | oveq1 7424 | . . . . 5 β’ (π = π΅ β (πβ-π) = (π΅β-π)) | |
3 | 2 | fvoveq1d 7439 | . . . 4 β’ (π = π΅ β (ββ((πβ-π) Β· π)) = (ββ((π΅β-π) Β· π))) |
4 | id 22 | . . . 4 β’ (π = π΅ β π = π΅) | |
5 | 3, 4 | oveq12d 7435 | . . 3 β’ (π = π΅ β ((ββ((πβ-π) Β· π)) mod π) = ((ββ((π΅β-π) Β· π)) mod π΅)) |
6 | 5 | mpoeq3dv 7497 | . 2 β’ (π = π΅ β (π β β€, π β (0[,)+β) β¦ ((ββ((πβ-π) Β· π)) mod π)) = (π β β€, π β (0[,)+β) β¦ ((ββ((π΅β-π) Β· π)) mod π΅))) |
7 | id 22 | . 2 β’ (π΅ β β β π΅ β β) | |
8 | zex 12597 | . . . 4 β’ β€ β V | |
9 | ovex 7450 | . . . 4 β’ (0[,)+β) β V | |
10 | 8, 9 | pm3.2i 469 | . . 3 β’ (β€ β V β§ (0[,)+β) β V) |
11 | eqid 2725 | . . . 4 β’ (π β β€, π β (0[,)+β) β¦ ((ββ((π΅β-π) Β· π)) mod π΅)) = (π β β€, π β (0[,)+β) β¦ ((ββ((π΅β-π) Β· π)) mod π΅)) | |
12 | 11 | mpoexg 8079 | . . 3 β’ ((β€ β V β§ (0[,)+β) β V) β (π β β€, π β (0[,)+β) β¦ ((ββ((π΅β-π) Β· π)) mod π΅)) β V) |
13 | 10, 12 | mp1i 13 | . 2 β’ (π΅ β β β (π β β€, π β (0[,)+β) β¦ ((ββ((π΅β-π) Β· π)) mod π΅)) β V) |
14 | 1, 6, 7, 13 | fvmptd3 7025 | 1 β’ (π΅ β β β (digitβπ΅) = (π β β€, π β (0[,)+β) β¦ ((ββ((π΅β-π) Β· π)) mod π΅))) |
Colors of variables: wff setvar class |
Syntax hints: β wi 4 β§ wa 394 = wceq 1533 β wcel 2098 Vcvv 3463 βcfv 6547 (class class class)co 7417 β cmpo 7419 0cc0 11138 Β· cmul 11143 +βcpnf 11275 -cneg 11475 βcn 12242 β€cz 12588 [,)cico 13358 βcfl 13787 mod cmo 13866 βcexp 14058 digitcdig 47780 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2166 ax-ext 2696 ax-rep 5285 ax-sep 5299 ax-nul 5306 ax-pow 5364 ax-pr 5428 ax-un 7739 ax-cnex 11194 ax-resscn 11195 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3or 1085 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2528 df-eu 2557 df-clab 2703 df-cleq 2717 df-clel 2802 df-nfc 2877 df-ne 2931 df-ral 3052 df-rex 3061 df-reu 3365 df-rab 3420 df-v 3465 df-sbc 3775 df-csb 3891 df-dif 3948 df-un 3950 df-in 3952 df-ss 3962 df-nul 4324 df-if 4530 df-pw 4605 df-sn 4630 df-pr 4632 df-op 4636 df-uni 4909 df-iun 4998 df-br 5149 df-opab 5211 df-mpt 5232 df-id 5575 df-xp 5683 df-rel 5684 df-cnv 5685 df-co 5686 df-dm 5687 df-rn 5688 df-res 5689 df-ima 5690 df-iota 6499 df-fun 6549 df-fn 6550 df-f 6551 df-f1 6552 df-fo 6553 df-f1o 6554 df-fv 6555 df-ov 7420 df-oprab 7421 df-mpo 7422 df-1st 7992 df-2nd 7993 df-neg 11477 df-z 12589 df-dig 47781 |
This theorem is referenced by: digval 47783 |
Copyright terms: Public domain | W3C validator |