| Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > digfval | Structured version Visualization version GIF version | ||
| Description: Operation to obtain the 𝑘 th digit of a nonnegative real number 𝑟 in the positional system with base 𝐵. (Contributed by AV, 23-May-2020.) |
| Ref | Expression |
|---|---|
| digfval | ⊢ (𝐵 ∈ ℕ → (digit‘𝐵) = (𝑘 ∈ ℤ, 𝑟 ∈ (0[,)+∞) ↦ ((⌊‘((𝐵↑-𝑘) · 𝑟)) mod 𝐵))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-dig 48575 | . 2 ⊢ digit = (𝑏 ∈ ℕ ↦ (𝑘 ∈ ℤ, 𝑟 ∈ (0[,)+∞) ↦ ((⌊‘((𝑏↑-𝑘) · 𝑟)) mod 𝑏))) | |
| 2 | oveq1 7396 | . . . . 5 ⊢ (𝑏 = 𝐵 → (𝑏↑-𝑘) = (𝐵↑-𝑘)) | |
| 3 | 2 | fvoveq1d 7411 | . . . 4 ⊢ (𝑏 = 𝐵 → (⌊‘((𝑏↑-𝑘) · 𝑟)) = (⌊‘((𝐵↑-𝑘) · 𝑟))) |
| 4 | id 22 | . . . 4 ⊢ (𝑏 = 𝐵 → 𝑏 = 𝐵) | |
| 5 | 3, 4 | oveq12d 7407 | . . 3 ⊢ (𝑏 = 𝐵 → ((⌊‘((𝑏↑-𝑘) · 𝑟)) mod 𝑏) = ((⌊‘((𝐵↑-𝑘) · 𝑟)) mod 𝐵)) |
| 6 | 5 | mpoeq3dv 7470 | . 2 ⊢ (𝑏 = 𝐵 → (𝑘 ∈ ℤ, 𝑟 ∈ (0[,)+∞) ↦ ((⌊‘((𝑏↑-𝑘) · 𝑟)) mod 𝑏)) = (𝑘 ∈ ℤ, 𝑟 ∈ (0[,)+∞) ↦ ((⌊‘((𝐵↑-𝑘) · 𝑟)) mod 𝐵))) |
| 7 | id 22 | . 2 ⊢ (𝐵 ∈ ℕ → 𝐵 ∈ ℕ) | |
| 8 | zex 12544 | . . . 4 ⊢ ℤ ∈ V | |
| 9 | ovex 7422 | . . . 4 ⊢ (0[,)+∞) ∈ V | |
| 10 | 8, 9 | pm3.2i 470 | . . 3 ⊢ (ℤ ∈ V ∧ (0[,)+∞) ∈ V) |
| 11 | eqid 2730 | . . . 4 ⊢ (𝑘 ∈ ℤ, 𝑟 ∈ (0[,)+∞) ↦ ((⌊‘((𝐵↑-𝑘) · 𝑟)) mod 𝐵)) = (𝑘 ∈ ℤ, 𝑟 ∈ (0[,)+∞) ↦ ((⌊‘((𝐵↑-𝑘) · 𝑟)) mod 𝐵)) | |
| 12 | 11 | mpoexg 8057 | . . 3 ⊢ ((ℤ ∈ V ∧ (0[,)+∞) ∈ V) → (𝑘 ∈ ℤ, 𝑟 ∈ (0[,)+∞) ↦ ((⌊‘((𝐵↑-𝑘) · 𝑟)) mod 𝐵)) ∈ V) |
| 13 | 10, 12 | mp1i 13 | . 2 ⊢ (𝐵 ∈ ℕ → (𝑘 ∈ ℤ, 𝑟 ∈ (0[,)+∞) ↦ ((⌊‘((𝐵↑-𝑘) · 𝑟)) mod 𝐵)) ∈ V) |
| 14 | 1, 6, 7, 13 | fvmptd3 6993 | 1 ⊢ (𝐵 ∈ ℕ → (digit‘𝐵) = (𝑘 ∈ ℤ, 𝑟 ∈ (0[,)+∞) ↦ ((⌊‘((𝐵↑-𝑘) · 𝑟)) mod 𝐵))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2109 Vcvv 3450 ‘cfv 6513 (class class class)co 7389 ∈ cmpo 7391 0cc0 11074 · cmul 11079 +∞cpnf 11211 -cneg 11412 ℕcn 12187 ℤcz 12535 [,)cico 13314 ⌊cfl 13758 mod cmo 13837 ↑cexp 14032 digitcdig 48574 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-rep 5236 ax-sep 5253 ax-nul 5263 ax-pow 5322 ax-pr 5389 ax-un 7713 ax-cnex 11130 ax-resscn 11131 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-ral 3046 df-rex 3055 df-reu 3357 df-rab 3409 df-v 3452 df-sbc 3756 df-csb 3865 df-dif 3919 df-un 3921 df-in 3923 df-ss 3933 df-nul 4299 df-if 4491 df-pw 4567 df-sn 4592 df-pr 4594 df-op 4598 df-uni 4874 df-iun 4959 df-br 5110 df-opab 5172 df-mpt 5191 df-id 5535 df-xp 5646 df-rel 5647 df-cnv 5648 df-co 5649 df-dm 5650 df-rn 5651 df-res 5652 df-ima 5653 df-iota 6466 df-fun 6515 df-fn 6516 df-f 6517 df-f1 6518 df-fo 6519 df-f1o 6520 df-fv 6521 df-ov 7392 df-oprab 7393 df-mpo 7394 df-1st 7970 df-2nd 7971 df-neg 11414 df-z 12536 df-dig 48575 |
| This theorem is referenced by: digval 48577 |
| Copyright terms: Public domain | W3C validator |