| Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > digfval | Structured version Visualization version GIF version | ||
| Description: Operation to obtain the 𝑘 th digit of a nonnegative real number 𝑟 in the positional system with base 𝐵. (Contributed by AV, 23-May-2020.) |
| Ref | Expression |
|---|---|
| digfval | ⊢ (𝐵 ∈ ℕ → (digit‘𝐵) = (𝑘 ∈ ℤ, 𝑟 ∈ (0[,)+∞) ↦ ((⌊‘((𝐵↑-𝑘) · 𝑟)) mod 𝐵))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-dig 48721 | . 2 ⊢ digit = (𝑏 ∈ ℕ ↦ (𝑘 ∈ ℤ, 𝑟 ∈ (0[,)+∞) ↦ ((⌊‘((𝑏↑-𝑘) · 𝑟)) mod 𝑏))) | |
| 2 | oveq1 7359 | . . . . 5 ⊢ (𝑏 = 𝐵 → (𝑏↑-𝑘) = (𝐵↑-𝑘)) | |
| 3 | 2 | fvoveq1d 7374 | . . . 4 ⊢ (𝑏 = 𝐵 → (⌊‘((𝑏↑-𝑘) · 𝑟)) = (⌊‘((𝐵↑-𝑘) · 𝑟))) |
| 4 | id 22 | . . . 4 ⊢ (𝑏 = 𝐵 → 𝑏 = 𝐵) | |
| 5 | 3, 4 | oveq12d 7370 | . . 3 ⊢ (𝑏 = 𝐵 → ((⌊‘((𝑏↑-𝑘) · 𝑟)) mod 𝑏) = ((⌊‘((𝐵↑-𝑘) · 𝑟)) mod 𝐵)) |
| 6 | 5 | mpoeq3dv 7431 | . 2 ⊢ (𝑏 = 𝐵 → (𝑘 ∈ ℤ, 𝑟 ∈ (0[,)+∞) ↦ ((⌊‘((𝑏↑-𝑘) · 𝑟)) mod 𝑏)) = (𝑘 ∈ ℤ, 𝑟 ∈ (0[,)+∞) ↦ ((⌊‘((𝐵↑-𝑘) · 𝑟)) mod 𝐵))) |
| 7 | id 22 | . 2 ⊢ (𝐵 ∈ ℕ → 𝐵 ∈ ℕ) | |
| 8 | zex 12484 | . . . 4 ⊢ ℤ ∈ V | |
| 9 | ovex 7385 | . . . 4 ⊢ (0[,)+∞) ∈ V | |
| 10 | 8, 9 | pm3.2i 470 | . . 3 ⊢ (ℤ ∈ V ∧ (0[,)+∞) ∈ V) |
| 11 | eqid 2733 | . . . 4 ⊢ (𝑘 ∈ ℤ, 𝑟 ∈ (0[,)+∞) ↦ ((⌊‘((𝐵↑-𝑘) · 𝑟)) mod 𝐵)) = (𝑘 ∈ ℤ, 𝑟 ∈ (0[,)+∞) ↦ ((⌊‘((𝐵↑-𝑘) · 𝑟)) mod 𝐵)) | |
| 12 | 11 | mpoexg 8014 | . . 3 ⊢ ((ℤ ∈ V ∧ (0[,)+∞) ∈ V) → (𝑘 ∈ ℤ, 𝑟 ∈ (0[,)+∞) ↦ ((⌊‘((𝐵↑-𝑘) · 𝑟)) mod 𝐵)) ∈ V) |
| 13 | 10, 12 | mp1i 13 | . 2 ⊢ (𝐵 ∈ ℕ → (𝑘 ∈ ℤ, 𝑟 ∈ (0[,)+∞) ↦ ((⌊‘((𝐵↑-𝑘) · 𝑟)) mod 𝐵)) ∈ V) |
| 14 | 1, 6, 7, 13 | fvmptd3 6958 | 1 ⊢ (𝐵 ∈ ℕ → (digit‘𝐵) = (𝑘 ∈ ℤ, 𝑟 ∈ (0[,)+∞) ↦ ((⌊‘((𝐵↑-𝑘) · 𝑟)) mod 𝐵))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1541 ∈ wcel 2113 Vcvv 3437 ‘cfv 6486 (class class class)co 7352 ∈ cmpo 7354 0cc0 11013 · cmul 11018 +∞cpnf 11150 -cneg 11352 ℕcn 12132 ℤcz 12475 [,)cico 13249 ⌊cfl 13696 mod cmo 13775 ↑cexp 13970 digitcdig 48720 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-10 2146 ax-11 2162 ax-12 2182 ax-ext 2705 ax-rep 5219 ax-sep 5236 ax-nul 5246 ax-pow 5305 ax-pr 5372 ax-un 7674 ax-cnex 11069 ax-resscn 11070 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2725 df-clel 2808 df-nfc 2882 df-ne 2930 df-ral 3049 df-rex 3058 df-reu 3348 df-rab 3397 df-v 3439 df-sbc 3738 df-csb 3847 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-nul 4283 df-if 4475 df-pw 4551 df-sn 4576 df-pr 4578 df-op 4582 df-uni 4859 df-iun 4943 df-br 5094 df-opab 5156 df-mpt 5175 df-id 5514 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-rn 5630 df-res 5631 df-ima 5632 df-iota 6442 df-fun 6488 df-fn 6489 df-f 6490 df-f1 6491 df-fo 6492 df-f1o 6493 df-fv 6494 df-ov 7355 df-oprab 7356 df-mpo 7357 df-1st 7927 df-2nd 7928 df-neg 11354 df-z 12476 df-dig 48721 |
| This theorem is referenced by: digval 48723 |
| Copyright terms: Public domain | W3C validator |