MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mpoexg Structured version   Visualization version   GIF version

Theorem mpoexg 8010
Description: Existence of an operation class abstraction (special case). (Contributed by FL, 17-May-2010.) (Revised by Mario Carneiro, 1-Sep-2015.)
Hypothesis
Ref Expression
mpoexg.1 𝐹 = (𝑥𝐴, 𝑦𝐵𝐶)
Assertion
Ref Expression
mpoexg ((𝐴𝑅𝐵𝑆) → 𝐹 ∈ V)
Distinct variable groups:   𝑥,𝐴,𝑦   𝑦,𝐵,𝑥
Allowed substitution hints:   𝐶(𝑥,𝑦)   𝑅(𝑥,𝑦)   𝑆(𝑥,𝑦)   𝐹(𝑥,𝑦)

Proof of Theorem mpoexg
StepHypRef Expression
1 elex 3464 . . 3 (𝐵𝑆𝐵 ∈ V)
2 elex 3464 . . . 4 (𝐵 ∈ V → 𝐵 ∈ V)
32ralrimivw 3148 . . 3 (𝐵 ∈ V → ∀𝑥𝐴 𝐵 ∈ V)
41, 3syl 17 . 2 (𝐵𝑆 → ∀𝑥𝐴 𝐵 ∈ V)
5 mpoexg.1 . . 3 𝐹 = (𝑥𝐴, 𝑦𝐵𝐶)
65mpoexxg 8009 . 2 ((𝐴𝑅 ∧ ∀𝑥𝐴 𝐵 ∈ V) → 𝐹 ∈ V)
74, 6sylan2 594 1 ((𝐴𝑅𝐵𝑆) → 𝐹 ∈ V)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 397   = wceq 1542  wcel 2107  wral 3065  Vcvv 3446  cmpo 7360
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2155  ax-12 2172  ax-ext 2708  ax-rep 5243  ax-sep 5257  ax-nul 5264  ax-pow 5321  ax-pr 5385  ax-un 7673
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-nf 1787  df-sb 2069  df-mo 2539  df-eu 2568  df-clab 2715  df-cleq 2729  df-clel 2815  df-nfc 2890  df-ne 2945  df-ral 3066  df-rex 3075  df-reu 3355  df-rab 3409  df-v 3448  df-sbc 3741  df-csb 3857  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-nul 4284  df-if 4488  df-pw 4563  df-sn 4588  df-pr 4590  df-op 4594  df-uni 4867  df-iun 4957  df-br 5107  df-opab 5169  df-mpt 5190  df-id 5532  df-xp 5640  df-rel 5641  df-cnv 5642  df-co 5643  df-dm 5644  df-rn 5645  df-res 5646  df-ima 5647  df-iota 6449  df-fun 6499  df-fn 6500  df-f 6501  df-f1 6502  df-fo 6503  df-f1o 6504  df-fv 6505  df-oprab 7362  df-mpo 7363  df-1st 7922  df-2nd 7923
This theorem is referenced by:  mpoexga  8011  rmodislmod  20393  rmodislmodOLD  20394  eulerpartgbij  32975  hspval  44857  digfval  46690
  Copyright terms: Public domain W3C validator