MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mpoexg Structured version   Visualization version   GIF version

Theorem mpoexg 8100
Description: Existence of an operation class abstraction (special case). (Contributed by FL, 17-May-2010.) (Revised by Mario Carneiro, 1-Sep-2015.)
Hypothesis
Ref Expression
mpoexg.1 𝐹 = (𝑥𝐴, 𝑦𝐵𝐶)
Assertion
Ref Expression
mpoexg ((𝐴𝑅𝐵𝑆) → 𝐹 ∈ V)
Distinct variable groups:   𝑥,𝐴,𝑦   𝑦,𝐵,𝑥
Allowed substitution hints:   𝐶(𝑥,𝑦)   𝑅(𝑥,𝑦)   𝑆(𝑥,𝑦)   𝐹(𝑥,𝑦)

Proof of Theorem mpoexg
StepHypRef Expression
1 elex 3499 . . 3 (𝐵𝑆𝐵 ∈ V)
2 elex 3499 . . . 4 (𝐵 ∈ V → 𝐵 ∈ V)
32ralrimivw 3148 . . 3 (𝐵 ∈ V → ∀𝑥𝐴 𝐵 ∈ V)
41, 3syl 17 . 2 (𝐵𝑆 → ∀𝑥𝐴 𝐵 ∈ V)
5 mpoexg.1 . . 3 𝐹 = (𝑥𝐴, 𝑦𝐵𝐶)
65mpoexxg 8099 . 2 ((𝐴𝑅 ∧ ∀𝑥𝐴 𝐵 ∈ V) → 𝐹 ∈ V)
74, 6sylan2 593 1 ((𝐴𝑅𝐵𝑆) → 𝐹 ∈ V)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1537  wcel 2106  wral 3059  Vcvv 3478  cmpo 7433
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-10 2139  ax-11 2155  ax-12 2175  ax-ext 2706  ax-rep 5285  ax-sep 5302  ax-nul 5312  ax-pow 5371  ax-pr 5438  ax-un 7754
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-nf 1781  df-sb 2063  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2727  df-clel 2814  df-nfc 2890  df-ne 2939  df-ral 3060  df-rex 3069  df-reu 3379  df-rab 3434  df-v 3480  df-sbc 3792  df-csb 3909  df-dif 3966  df-un 3968  df-in 3970  df-ss 3980  df-nul 4340  df-if 4532  df-pw 4607  df-sn 4632  df-pr 4634  df-op 4638  df-uni 4913  df-iun 4998  df-br 5149  df-opab 5211  df-mpt 5232  df-id 5583  df-xp 5695  df-rel 5696  df-cnv 5697  df-co 5698  df-dm 5699  df-rn 5700  df-res 5701  df-ima 5702  df-iota 6516  df-fun 6565  df-fn 6566  df-f 6567  df-f1 6568  df-fo 6569  df-f1o 6570  df-fv 6571  df-oprab 7435  df-mpo 7436  df-1st 8013  df-2nd 8014
This theorem is referenced by:  mpoexga  8101  rmodislmod  20945  rmodislmodOLD  20946  ssltmul1  28188  ssltmul2  28189  rlocaddval  33255  rlocmulval  33256  eulerpartgbij  34354  hspval  46565  digfval  48447
  Copyright terms: Public domain W3C validator