![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > mpoexg | Structured version Visualization version GIF version |
Description: Existence of an operation class abstraction (special case). (Contributed by FL, 17-May-2010.) (Revised by Mario Carneiro, 1-Sep-2015.) |
Ref | Expression |
---|---|
mpoexg.1 | ⊢ 𝐹 = (𝑥 ∈ 𝐴, 𝑦 ∈ 𝐵 ↦ 𝐶) |
Ref | Expression |
---|---|
mpoexg | ⊢ ((𝐴 ∈ 𝑅 ∧ 𝐵 ∈ 𝑆) → 𝐹 ∈ V) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elex 3492 | . . 3 ⊢ (𝐵 ∈ 𝑆 → 𝐵 ∈ V) | |
2 | elex 3492 | . . . 4 ⊢ (𝐵 ∈ V → 𝐵 ∈ V) | |
3 | 2 | ralrimivw 3150 | . . 3 ⊢ (𝐵 ∈ V → ∀𝑥 ∈ 𝐴 𝐵 ∈ V) |
4 | 1, 3 | syl 17 | . 2 ⊢ (𝐵 ∈ 𝑆 → ∀𝑥 ∈ 𝐴 𝐵 ∈ V) |
5 | mpoexg.1 | . . 3 ⊢ 𝐹 = (𝑥 ∈ 𝐴, 𝑦 ∈ 𝐵 ↦ 𝐶) | |
6 | 5 | mpoexxg 8058 | . 2 ⊢ ((𝐴 ∈ 𝑅 ∧ ∀𝑥 ∈ 𝐴 𝐵 ∈ V) → 𝐹 ∈ V) |
7 | 4, 6 | sylan2 593 | 1 ⊢ ((𝐴 ∈ 𝑅 ∧ 𝐵 ∈ 𝑆) → 𝐹 ∈ V) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 = wceq 1541 ∈ wcel 2106 ∀wral 3061 Vcvv 3474 ∈ cmpo 7407 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2703 ax-rep 5284 ax-sep 5298 ax-nul 5305 ax-pow 5362 ax-pr 5426 ax-un 7721 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2534 df-eu 2563 df-clab 2710 df-cleq 2724 df-clel 2810 df-nfc 2885 df-ne 2941 df-ral 3062 df-rex 3071 df-reu 3377 df-rab 3433 df-v 3476 df-sbc 3777 df-csb 3893 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-nul 4322 df-if 4528 df-pw 4603 df-sn 4628 df-pr 4630 df-op 4634 df-uni 4908 df-iun 4998 df-br 5148 df-opab 5210 df-mpt 5231 df-id 5573 df-xp 5681 df-rel 5682 df-cnv 5683 df-co 5684 df-dm 5685 df-rn 5686 df-res 5687 df-ima 5688 df-iota 6492 df-fun 6542 df-fn 6543 df-f 6544 df-f1 6545 df-fo 6546 df-f1o 6547 df-fv 6548 df-oprab 7409 df-mpo 7410 df-1st 7971 df-2nd 7972 |
This theorem is referenced by: mpoexga 8060 rmodislmod 20532 rmodislmodOLD 20533 ssltmul1 27591 ssltmul2 27592 eulerpartgbij 33359 hspval 45311 digfval 47236 |
Copyright terms: Public domain | W3C validator |