|   | Mathbox for Alexander van der Vekens | < Previous  
      Next > Nearby theorems | |
| Mirrors > Home > MPE Home > Th. List > Mathboxes > digval | Structured version Visualization version GIF version | ||
| Description: The 𝐾 th digit of a nonnegative real number 𝑅 in the positional system with base 𝐵. (Contributed by AV, 23-May-2020.) | 
| Ref | Expression | 
|---|---|
| digval | ⊢ ((𝐵 ∈ ℕ ∧ 𝐾 ∈ ℤ ∧ 𝑅 ∈ (0[,)+∞)) → (𝐾(digit‘𝐵)𝑅) = ((⌊‘((𝐵↑-𝐾) · 𝑅)) mod 𝐵)) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | digfval 48518 | . . 3 ⊢ (𝐵 ∈ ℕ → (digit‘𝐵) = (𝑘 ∈ ℤ, 𝑟 ∈ (0[,)+∞) ↦ ((⌊‘((𝐵↑-𝑘) · 𝑟)) mod 𝐵))) | |
| 2 | 1 | 3ad2ant1 1134 | . 2 ⊢ ((𝐵 ∈ ℕ ∧ 𝐾 ∈ ℤ ∧ 𝑅 ∈ (0[,)+∞)) → (digit‘𝐵) = (𝑘 ∈ ℤ, 𝑟 ∈ (0[,)+∞) ↦ ((⌊‘((𝐵↑-𝑘) · 𝑟)) mod 𝐵))) | 
| 3 | negeq 11500 | . . . . . . . 8 ⊢ (𝑘 = 𝐾 → -𝑘 = -𝐾) | |
| 4 | 3 | oveq2d 7447 | . . . . . . 7 ⊢ (𝑘 = 𝐾 → (𝐵↑-𝑘) = (𝐵↑-𝐾)) | 
| 5 | 4 | adantr 480 | . . . . . 6 ⊢ ((𝑘 = 𝐾 ∧ 𝑟 = 𝑅) → (𝐵↑-𝑘) = (𝐵↑-𝐾)) | 
| 6 | simpr 484 | . . . . . 6 ⊢ ((𝑘 = 𝐾 ∧ 𝑟 = 𝑅) → 𝑟 = 𝑅) | |
| 7 | 5, 6 | oveq12d 7449 | . . . . 5 ⊢ ((𝑘 = 𝐾 ∧ 𝑟 = 𝑅) → ((𝐵↑-𝑘) · 𝑟) = ((𝐵↑-𝐾) · 𝑅)) | 
| 8 | 7 | fveq2d 6910 | . . . 4 ⊢ ((𝑘 = 𝐾 ∧ 𝑟 = 𝑅) → (⌊‘((𝐵↑-𝑘) · 𝑟)) = (⌊‘((𝐵↑-𝐾) · 𝑅))) | 
| 9 | 8 | oveq1d 7446 | . . 3 ⊢ ((𝑘 = 𝐾 ∧ 𝑟 = 𝑅) → ((⌊‘((𝐵↑-𝑘) · 𝑟)) mod 𝐵) = ((⌊‘((𝐵↑-𝐾) · 𝑅)) mod 𝐵)) | 
| 10 | 9 | adantl 481 | . 2 ⊢ (((𝐵 ∈ ℕ ∧ 𝐾 ∈ ℤ ∧ 𝑅 ∈ (0[,)+∞)) ∧ (𝑘 = 𝐾 ∧ 𝑟 = 𝑅)) → ((⌊‘((𝐵↑-𝑘) · 𝑟)) mod 𝐵) = ((⌊‘((𝐵↑-𝐾) · 𝑅)) mod 𝐵)) | 
| 11 | simp2 1138 | . 2 ⊢ ((𝐵 ∈ ℕ ∧ 𝐾 ∈ ℤ ∧ 𝑅 ∈ (0[,)+∞)) → 𝐾 ∈ ℤ) | |
| 12 | simp3 1139 | . 2 ⊢ ((𝐵 ∈ ℕ ∧ 𝐾 ∈ ℤ ∧ 𝑅 ∈ (0[,)+∞)) → 𝑅 ∈ (0[,)+∞)) | |
| 13 | ovexd 7466 | . 2 ⊢ ((𝐵 ∈ ℕ ∧ 𝐾 ∈ ℤ ∧ 𝑅 ∈ (0[,)+∞)) → ((⌊‘((𝐵↑-𝐾) · 𝑅)) mod 𝐵) ∈ V) | |
| 14 | 2, 10, 11, 12, 13 | ovmpod 7585 | 1 ⊢ ((𝐵 ∈ ℕ ∧ 𝐾 ∈ ℤ ∧ 𝑅 ∈ (0[,)+∞)) → (𝐾(digit‘𝐵)𝑅) = ((⌊‘((𝐵↑-𝐾) · 𝑅)) mod 𝐵)) | 
| Colors of variables: wff setvar class | 
| Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1087 = wceq 1540 ∈ wcel 2108 Vcvv 3480 ‘cfv 6561 (class class class)co 7431 ∈ cmpo 7433 0cc0 11155 · cmul 11160 +∞cpnf 11292 -cneg 11493 ℕcn 12266 ℤcz 12613 [,)cico 13389 ⌊cfl 13830 mod cmo 13909 ↑cexp 14102 digitcdig 48516 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2708 ax-rep 5279 ax-sep 5296 ax-nul 5306 ax-pow 5365 ax-pr 5432 ax-un 7755 ax-cnex 11211 ax-resscn 11212 | 
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 849 df-3or 1088 df-3an 1089 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2729 df-clel 2816 df-nfc 2892 df-ne 2941 df-ral 3062 df-rex 3071 df-reu 3381 df-rab 3437 df-v 3482 df-sbc 3789 df-csb 3900 df-dif 3954 df-un 3956 df-in 3958 df-ss 3968 df-nul 4334 df-if 4526 df-pw 4602 df-sn 4627 df-pr 4629 df-op 4633 df-uni 4908 df-iun 4993 df-br 5144 df-opab 5206 df-mpt 5226 df-id 5578 df-xp 5691 df-rel 5692 df-cnv 5693 df-co 5694 df-dm 5695 df-rn 5696 df-res 5697 df-ima 5698 df-iota 6514 df-fun 6563 df-fn 6564 df-f 6565 df-f1 6566 df-fo 6567 df-f1o 6568 df-fv 6569 df-ov 7434 df-oprab 7435 df-mpo 7436 df-1st 8014 df-2nd 8015 df-neg 11495 df-z 12614 df-dig 48517 | 
| This theorem is referenced by: digvalnn0 48520 nn0digval 48521 dignn0fr 48522 dig0 48527 dig2nn0 48532 | 
| Copyright terms: Public domain | W3C validator |