Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  digval Structured version   Visualization version   GIF version

Theorem digval 45944
Description: The 𝐾 th digit of a nonnegative real number 𝑅 in the positional system with base 𝐵. (Contributed by AV, 23-May-2020.)
Assertion
Ref Expression
digval ((𝐵 ∈ ℕ ∧ 𝐾 ∈ ℤ ∧ 𝑅 ∈ (0[,)+∞)) → (𝐾(digit‘𝐵)𝑅) = ((⌊‘((𝐵↑-𝐾) · 𝑅)) mod 𝐵))

Proof of Theorem digval
Dummy variables 𝑘 𝑟 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 digfval 45943 . . 3 (𝐵 ∈ ℕ → (digit‘𝐵) = (𝑘 ∈ ℤ, 𝑟 ∈ (0[,)+∞) ↦ ((⌊‘((𝐵↑-𝑘) · 𝑟)) mod 𝐵)))
213ad2ant1 1132 . 2 ((𝐵 ∈ ℕ ∧ 𝐾 ∈ ℤ ∧ 𝑅 ∈ (0[,)+∞)) → (digit‘𝐵) = (𝑘 ∈ ℤ, 𝑟 ∈ (0[,)+∞) ↦ ((⌊‘((𝐵↑-𝑘) · 𝑟)) mod 𝐵)))
3 negeq 11213 . . . . . . . 8 (𝑘 = 𝐾 → -𝑘 = -𝐾)
43oveq2d 7291 . . . . . . 7 (𝑘 = 𝐾 → (𝐵↑-𝑘) = (𝐵↑-𝐾))
54adantr 481 . . . . . 6 ((𝑘 = 𝐾𝑟 = 𝑅) → (𝐵↑-𝑘) = (𝐵↑-𝐾))
6 simpr 485 . . . . . 6 ((𝑘 = 𝐾𝑟 = 𝑅) → 𝑟 = 𝑅)
75, 6oveq12d 7293 . . . . 5 ((𝑘 = 𝐾𝑟 = 𝑅) → ((𝐵↑-𝑘) · 𝑟) = ((𝐵↑-𝐾) · 𝑅))
87fveq2d 6778 . . . 4 ((𝑘 = 𝐾𝑟 = 𝑅) → (⌊‘((𝐵↑-𝑘) · 𝑟)) = (⌊‘((𝐵↑-𝐾) · 𝑅)))
98oveq1d 7290 . . 3 ((𝑘 = 𝐾𝑟 = 𝑅) → ((⌊‘((𝐵↑-𝑘) · 𝑟)) mod 𝐵) = ((⌊‘((𝐵↑-𝐾) · 𝑅)) mod 𝐵))
109adantl 482 . 2 (((𝐵 ∈ ℕ ∧ 𝐾 ∈ ℤ ∧ 𝑅 ∈ (0[,)+∞)) ∧ (𝑘 = 𝐾𝑟 = 𝑅)) → ((⌊‘((𝐵↑-𝑘) · 𝑟)) mod 𝐵) = ((⌊‘((𝐵↑-𝐾) · 𝑅)) mod 𝐵))
11 simp2 1136 . 2 ((𝐵 ∈ ℕ ∧ 𝐾 ∈ ℤ ∧ 𝑅 ∈ (0[,)+∞)) → 𝐾 ∈ ℤ)
12 simp3 1137 . 2 ((𝐵 ∈ ℕ ∧ 𝐾 ∈ ℤ ∧ 𝑅 ∈ (0[,)+∞)) → 𝑅 ∈ (0[,)+∞))
13 ovexd 7310 . 2 ((𝐵 ∈ ℕ ∧ 𝐾 ∈ ℤ ∧ 𝑅 ∈ (0[,)+∞)) → ((⌊‘((𝐵↑-𝐾) · 𝑅)) mod 𝐵) ∈ V)
142, 10, 11, 12, 13ovmpod 7425 1 ((𝐵 ∈ ℕ ∧ 𝐾 ∈ ℤ ∧ 𝑅 ∈ (0[,)+∞)) → (𝐾(digit‘𝐵)𝑅) = ((⌊‘((𝐵↑-𝐾) · 𝑅)) mod 𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396  w3a 1086   = wceq 1539  wcel 2106  Vcvv 3432  cfv 6433  (class class class)co 7275  cmpo 7277  0cc0 10871   · cmul 10876  +∞cpnf 11006  -cneg 11206  cn 11973  cz 12319  [,)cico 13081  cfl 13510   mod cmo 13589  cexp 13782  digitcdig 45941
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-rep 5209  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7588  ax-cnex 10927  ax-resscn 10928
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-ral 3069  df-rex 3070  df-reu 3072  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-iun 4926  df-br 5075  df-opab 5137  df-mpt 5158  df-id 5489  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-fo 6439  df-f1o 6440  df-fv 6441  df-ov 7278  df-oprab 7279  df-mpo 7280  df-1st 7831  df-2nd 7832  df-neg 11208  df-z 12320  df-dig 45942
This theorem is referenced by:  digvalnn0  45945  nn0digval  45946  dignn0fr  45947  dig0  45952  dig2nn0  45957
  Copyright terms: Public domain W3C validator