| Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > digval | Structured version Visualization version GIF version | ||
| Description: The 𝐾 th digit of a nonnegative real number 𝑅 in the positional system with base 𝐵. (Contributed by AV, 23-May-2020.) |
| Ref | Expression |
|---|---|
| digval | ⊢ ((𝐵 ∈ ℕ ∧ 𝐾 ∈ ℤ ∧ 𝑅 ∈ (0[,)+∞)) → (𝐾(digit‘𝐵)𝑅) = ((⌊‘((𝐵↑-𝐾) · 𝑅)) mod 𝐵)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | digfval 48583 | . . 3 ⊢ (𝐵 ∈ ℕ → (digit‘𝐵) = (𝑘 ∈ ℤ, 𝑟 ∈ (0[,)+∞) ↦ ((⌊‘((𝐵↑-𝑘) · 𝑟)) mod 𝐵))) | |
| 2 | 1 | 3ad2ant1 1133 | . 2 ⊢ ((𝐵 ∈ ℕ ∧ 𝐾 ∈ ℤ ∧ 𝑅 ∈ (0[,)+∞)) → (digit‘𝐵) = (𝑘 ∈ ℤ, 𝑟 ∈ (0[,)+∞) ↦ ((⌊‘((𝐵↑-𝑘) · 𝑟)) mod 𝐵))) |
| 3 | negeq 11373 | . . . . . . . 8 ⊢ (𝑘 = 𝐾 → -𝑘 = -𝐾) | |
| 4 | 3 | oveq2d 7369 | . . . . . . 7 ⊢ (𝑘 = 𝐾 → (𝐵↑-𝑘) = (𝐵↑-𝐾)) |
| 5 | 4 | adantr 480 | . . . . . 6 ⊢ ((𝑘 = 𝐾 ∧ 𝑟 = 𝑅) → (𝐵↑-𝑘) = (𝐵↑-𝐾)) |
| 6 | simpr 484 | . . . . . 6 ⊢ ((𝑘 = 𝐾 ∧ 𝑟 = 𝑅) → 𝑟 = 𝑅) | |
| 7 | 5, 6 | oveq12d 7371 | . . . . 5 ⊢ ((𝑘 = 𝐾 ∧ 𝑟 = 𝑅) → ((𝐵↑-𝑘) · 𝑟) = ((𝐵↑-𝐾) · 𝑅)) |
| 8 | 7 | fveq2d 6830 | . . . 4 ⊢ ((𝑘 = 𝐾 ∧ 𝑟 = 𝑅) → (⌊‘((𝐵↑-𝑘) · 𝑟)) = (⌊‘((𝐵↑-𝐾) · 𝑅))) |
| 9 | 8 | oveq1d 7368 | . . 3 ⊢ ((𝑘 = 𝐾 ∧ 𝑟 = 𝑅) → ((⌊‘((𝐵↑-𝑘) · 𝑟)) mod 𝐵) = ((⌊‘((𝐵↑-𝐾) · 𝑅)) mod 𝐵)) |
| 10 | 9 | adantl 481 | . 2 ⊢ (((𝐵 ∈ ℕ ∧ 𝐾 ∈ ℤ ∧ 𝑅 ∈ (0[,)+∞)) ∧ (𝑘 = 𝐾 ∧ 𝑟 = 𝑅)) → ((⌊‘((𝐵↑-𝑘) · 𝑟)) mod 𝐵) = ((⌊‘((𝐵↑-𝐾) · 𝑅)) mod 𝐵)) |
| 11 | simp2 1137 | . 2 ⊢ ((𝐵 ∈ ℕ ∧ 𝐾 ∈ ℤ ∧ 𝑅 ∈ (0[,)+∞)) → 𝐾 ∈ ℤ) | |
| 12 | simp3 1138 | . 2 ⊢ ((𝐵 ∈ ℕ ∧ 𝐾 ∈ ℤ ∧ 𝑅 ∈ (0[,)+∞)) → 𝑅 ∈ (0[,)+∞)) | |
| 13 | ovexd 7388 | . 2 ⊢ ((𝐵 ∈ ℕ ∧ 𝐾 ∈ ℤ ∧ 𝑅 ∈ (0[,)+∞)) → ((⌊‘((𝐵↑-𝐾) · 𝑅)) mod 𝐵) ∈ V) | |
| 14 | 2, 10, 11, 12, 13 | ovmpod 7505 | 1 ⊢ ((𝐵 ∈ ℕ ∧ 𝐾 ∈ ℤ ∧ 𝑅 ∈ (0[,)+∞)) → (𝐾(digit‘𝐵)𝑅) = ((⌊‘((𝐵↑-𝐾) · 𝑅)) mod 𝐵)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 = wceq 1540 ∈ wcel 2109 Vcvv 3438 ‘cfv 6486 (class class class)co 7353 ∈ cmpo 7355 0cc0 11028 · cmul 11033 +∞cpnf 11165 -cneg 11366 ℕcn 12146 ℤcz 12489 [,)cico 13268 ⌊cfl 13712 mod cmo 13791 ↑cexp 13986 digitcdig 48581 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5221 ax-sep 5238 ax-nul 5248 ax-pow 5307 ax-pr 5374 ax-un 7675 ax-cnex 11084 ax-resscn 11085 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-reu 3346 df-rab 3397 df-v 3440 df-sbc 3745 df-csb 3854 df-dif 3908 df-un 3910 df-in 3912 df-ss 3922 df-nul 4287 df-if 4479 df-pw 4555 df-sn 4580 df-pr 4582 df-op 4586 df-uni 4862 df-iun 4946 df-br 5096 df-opab 5158 df-mpt 5177 df-id 5518 df-xp 5629 df-rel 5630 df-cnv 5631 df-co 5632 df-dm 5633 df-rn 5634 df-res 5635 df-ima 5636 df-iota 6442 df-fun 6488 df-fn 6489 df-f 6490 df-f1 6491 df-fo 6492 df-f1o 6493 df-fv 6494 df-ov 7356 df-oprab 7357 df-mpo 7358 df-1st 7931 df-2nd 7932 df-neg 11368 df-z 12490 df-dig 48582 |
| This theorem is referenced by: digvalnn0 48585 nn0digval 48586 dignn0fr 48587 dig0 48592 dig2nn0 48597 |
| Copyright terms: Public domain | W3C validator |