![]() |
Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > digval | Structured version Visualization version GIF version |
Description: The πΎ th digit of a nonnegative real number π in the positional system with base π΅. (Contributed by AV, 23-May-2020.) |
Ref | Expression |
---|---|
digval | β’ ((π΅ β β β§ πΎ β β€ β§ π β (0[,)+β)) β (πΎ(digitβπ΅)π ) = ((ββ((π΅β-πΎ) Β· π )) mod π΅)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | digfval 47371 | . . 3 β’ (π΅ β β β (digitβπ΅) = (π β β€, π β (0[,)+β) β¦ ((ββ((π΅β-π) Β· π)) mod π΅))) | |
2 | 1 | 3ad2ant1 1133 | . 2 β’ ((π΅ β β β§ πΎ β β€ β§ π β (0[,)+β)) β (digitβπ΅) = (π β β€, π β (0[,)+β) β¦ ((ββ((π΅β-π) Β· π)) mod π΅))) |
3 | negeq 11456 | . . . . . . . 8 β’ (π = πΎ β -π = -πΎ) | |
4 | 3 | oveq2d 7427 | . . . . . . 7 β’ (π = πΎ β (π΅β-π) = (π΅β-πΎ)) |
5 | 4 | adantr 481 | . . . . . 6 β’ ((π = πΎ β§ π = π ) β (π΅β-π) = (π΅β-πΎ)) |
6 | simpr 485 | . . . . . 6 β’ ((π = πΎ β§ π = π ) β π = π ) | |
7 | 5, 6 | oveq12d 7429 | . . . . 5 β’ ((π = πΎ β§ π = π ) β ((π΅β-π) Β· π) = ((π΅β-πΎ) Β· π )) |
8 | 7 | fveq2d 6895 | . . . 4 β’ ((π = πΎ β§ π = π ) β (ββ((π΅β-π) Β· π)) = (ββ((π΅β-πΎ) Β· π ))) |
9 | 8 | oveq1d 7426 | . . 3 β’ ((π = πΎ β§ π = π ) β ((ββ((π΅β-π) Β· π)) mod π΅) = ((ββ((π΅β-πΎ) Β· π )) mod π΅)) |
10 | 9 | adantl 482 | . 2 β’ (((π΅ β β β§ πΎ β β€ β§ π β (0[,)+β)) β§ (π = πΎ β§ π = π )) β ((ββ((π΅β-π) Β· π)) mod π΅) = ((ββ((π΅β-πΎ) Β· π )) mod π΅)) |
11 | simp2 1137 | . 2 β’ ((π΅ β β β§ πΎ β β€ β§ π β (0[,)+β)) β πΎ β β€) | |
12 | simp3 1138 | . 2 β’ ((π΅ β β β§ πΎ β β€ β§ π β (0[,)+β)) β π β (0[,)+β)) | |
13 | ovexd 7446 | . 2 β’ ((π΅ β β β§ πΎ β β€ β§ π β (0[,)+β)) β ((ββ((π΅β-πΎ) Β· π )) mod π΅) β V) | |
14 | 2, 10, 11, 12, 13 | ovmpod 7562 | 1 β’ ((π΅ β β β§ πΎ β β€ β§ π β (0[,)+β)) β (πΎ(digitβπ΅)π ) = ((ββ((π΅β-πΎ) Β· π )) mod π΅)) |
Colors of variables: wff setvar class |
Syntax hints: β wi 4 β§ wa 396 β§ w3a 1087 = wceq 1541 β wcel 2106 Vcvv 3474 βcfv 6543 (class class class)co 7411 β cmpo 7413 0cc0 11112 Β· cmul 11117 +βcpnf 11249 -cneg 11449 βcn 12216 β€cz 12562 [,)cico 13330 βcfl 13759 mod cmo 13838 βcexp 14031 digitcdig 47369 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2703 ax-rep 5285 ax-sep 5299 ax-nul 5306 ax-pow 5363 ax-pr 5427 ax-un 7727 ax-cnex 11168 ax-resscn 11169 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3or 1088 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2534 df-eu 2563 df-clab 2710 df-cleq 2724 df-clel 2810 df-nfc 2885 df-ne 2941 df-ral 3062 df-rex 3071 df-reu 3377 df-rab 3433 df-v 3476 df-sbc 3778 df-csb 3894 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-nul 4323 df-if 4529 df-pw 4604 df-sn 4629 df-pr 4631 df-op 4635 df-uni 4909 df-iun 4999 df-br 5149 df-opab 5211 df-mpt 5232 df-id 5574 df-xp 5682 df-rel 5683 df-cnv 5684 df-co 5685 df-dm 5686 df-rn 5687 df-res 5688 df-ima 5689 df-iota 6495 df-fun 6545 df-fn 6546 df-f 6547 df-f1 6548 df-fo 6549 df-f1o 6550 df-fv 6551 df-ov 7414 df-oprab 7415 df-mpo 7416 df-1st 7977 df-2nd 7978 df-neg 11451 df-z 12563 df-dig 47370 |
This theorem is referenced by: digvalnn0 47373 nn0digval 47374 dignn0fr 47375 dig0 47380 dig2nn0 47385 |
Copyright terms: Public domain | W3C validator |