| Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > digval | Structured version Visualization version GIF version | ||
| Description: The 𝐾 th digit of a nonnegative real number 𝑅 in the positional system with base 𝐵. (Contributed by AV, 23-May-2020.) |
| Ref | Expression |
|---|---|
| digval | ⊢ ((𝐵 ∈ ℕ ∧ 𝐾 ∈ ℤ ∧ 𝑅 ∈ (0[,)+∞)) → (𝐾(digit‘𝐵)𝑅) = ((⌊‘((𝐵↑-𝐾) · 𝑅)) mod 𝐵)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | digfval 48628 | . . 3 ⊢ (𝐵 ∈ ℕ → (digit‘𝐵) = (𝑘 ∈ ℤ, 𝑟 ∈ (0[,)+∞) ↦ ((⌊‘((𝐵↑-𝑘) · 𝑟)) mod 𝐵))) | |
| 2 | 1 | 3ad2ant1 1133 | . 2 ⊢ ((𝐵 ∈ ℕ ∧ 𝐾 ∈ ℤ ∧ 𝑅 ∈ (0[,)+∞)) → (digit‘𝐵) = (𝑘 ∈ ℤ, 𝑟 ∈ (0[,)+∞) ↦ ((⌊‘((𝐵↑-𝑘) · 𝑟)) mod 𝐵))) |
| 3 | negeq 11349 | . . . . . . . 8 ⊢ (𝑘 = 𝐾 → -𝑘 = -𝐾) | |
| 4 | 3 | oveq2d 7362 | . . . . . . 7 ⊢ (𝑘 = 𝐾 → (𝐵↑-𝑘) = (𝐵↑-𝐾)) |
| 5 | 4 | adantr 480 | . . . . . 6 ⊢ ((𝑘 = 𝐾 ∧ 𝑟 = 𝑅) → (𝐵↑-𝑘) = (𝐵↑-𝐾)) |
| 6 | simpr 484 | . . . . . 6 ⊢ ((𝑘 = 𝐾 ∧ 𝑟 = 𝑅) → 𝑟 = 𝑅) | |
| 7 | 5, 6 | oveq12d 7364 | . . . . 5 ⊢ ((𝑘 = 𝐾 ∧ 𝑟 = 𝑅) → ((𝐵↑-𝑘) · 𝑟) = ((𝐵↑-𝐾) · 𝑅)) |
| 8 | 7 | fveq2d 6826 | . . . 4 ⊢ ((𝑘 = 𝐾 ∧ 𝑟 = 𝑅) → (⌊‘((𝐵↑-𝑘) · 𝑟)) = (⌊‘((𝐵↑-𝐾) · 𝑅))) |
| 9 | 8 | oveq1d 7361 | . . 3 ⊢ ((𝑘 = 𝐾 ∧ 𝑟 = 𝑅) → ((⌊‘((𝐵↑-𝑘) · 𝑟)) mod 𝐵) = ((⌊‘((𝐵↑-𝐾) · 𝑅)) mod 𝐵)) |
| 10 | 9 | adantl 481 | . 2 ⊢ (((𝐵 ∈ ℕ ∧ 𝐾 ∈ ℤ ∧ 𝑅 ∈ (0[,)+∞)) ∧ (𝑘 = 𝐾 ∧ 𝑟 = 𝑅)) → ((⌊‘((𝐵↑-𝑘) · 𝑟)) mod 𝐵) = ((⌊‘((𝐵↑-𝐾) · 𝑅)) mod 𝐵)) |
| 11 | simp2 1137 | . 2 ⊢ ((𝐵 ∈ ℕ ∧ 𝐾 ∈ ℤ ∧ 𝑅 ∈ (0[,)+∞)) → 𝐾 ∈ ℤ) | |
| 12 | simp3 1138 | . 2 ⊢ ((𝐵 ∈ ℕ ∧ 𝐾 ∈ ℤ ∧ 𝑅 ∈ (0[,)+∞)) → 𝑅 ∈ (0[,)+∞)) | |
| 13 | ovexd 7381 | . 2 ⊢ ((𝐵 ∈ ℕ ∧ 𝐾 ∈ ℤ ∧ 𝑅 ∈ (0[,)+∞)) → ((⌊‘((𝐵↑-𝐾) · 𝑅)) mod 𝐵) ∈ V) | |
| 14 | 2, 10, 11, 12, 13 | ovmpod 7498 | 1 ⊢ ((𝐵 ∈ ℕ ∧ 𝐾 ∈ ℤ ∧ 𝑅 ∈ (0[,)+∞)) → (𝐾(digit‘𝐵)𝑅) = ((⌊‘((𝐵↑-𝐾) · 𝑅)) mod 𝐵)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 = wceq 1541 ∈ wcel 2111 Vcvv 3436 ‘cfv 6481 (class class class)co 7346 ∈ cmpo 7348 0cc0 11003 · cmul 11008 +∞cpnf 11140 -cneg 11342 ℕcn 12122 ℤcz 12465 [,)cico 13244 ⌊cfl 13691 mod cmo 13770 ↑cexp 13965 digitcdig 48626 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-rep 5217 ax-sep 5234 ax-nul 5244 ax-pow 5303 ax-pr 5370 ax-un 7668 ax-cnex 11059 ax-resscn 11060 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-ral 3048 df-rex 3057 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3742 df-csb 3851 df-dif 3905 df-un 3907 df-in 3909 df-ss 3919 df-nul 4284 df-if 4476 df-pw 4552 df-sn 4577 df-pr 4579 df-op 4583 df-uni 4860 df-iun 4943 df-br 5092 df-opab 5154 df-mpt 5173 df-id 5511 df-xp 5622 df-rel 5623 df-cnv 5624 df-co 5625 df-dm 5626 df-rn 5627 df-res 5628 df-ima 5629 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-f1 6486 df-fo 6487 df-f1o 6488 df-fv 6489 df-ov 7349 df-oprab 7350 df-mpo 7351 df-1st 7921 df-2nd 7922 df-neg 11344 df-z 12466 df-dig 48627 |
| This theorem is referenced by: digvalnn0 48630 nn0digval 48631 dignn0fr 48632 dig0 48637 dig2nn0 48642 |
| Copyright terms: Public domain | W3C validator |