Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  stirlinglem14 Structured version   Visualization version   GIF version

Theorem stirlinglem14 46078
Description: The sequence 𝐴 converges to a positive real. This proves that the Stirling's formula converges to the factorial, up to a constant. In another theorem, using Wallis' formula for π& , such constant is exactly determined, thus proving the Stirling's formula. (Contributed by Glauco Siliprandi, 29-Jun-2017.)
Hypotheses
Ref Expression
stirlinglem14.1 𝐴 = (𝑛 ∈ ℕ ↦ ((!‘𝑛) / ((√‘(2 · 𝑛)) · ((𝑛 / e)↑𝑛))))
stirlinglem14.2 𝐵 = (𝑛 ∈ ℕ ↦ (log‘(𝐴𝑛)))
Assertion
Ref Expression
stirlinglem14 𝑐 ∈ ℝ+ 𝐴𝑐
Distinct variable group:   𝐴,𝑐
Allowed substitution hints:   𝐴(𝑛)   𝐵(𝑛,𝑐)

Proof of Theorem stirlinglem14
Dummy variables 𝑑 𝑘 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 stirlinglem14.1 . . 3 𝐴 = (𝑛 ∈ ℕ ↦ ((!‘𝑛) / ((√‘(2 · 𝑛)) · ((𝑛 / e)↑𝑛))))
2 stirlinglem14.2 . . 3 𝐵 = (𝑛 ∈ ℕ ↦ (log‘(𝐴𝑛)))
31, 2stirlinglem13 46077 . 2 𝑑 ∈ ℝ 𝐵𝑑
4 simpl 482 . . . . 5 ((𝑑 ∈ ℝ ∧ 𝐵𝑑) → 𝑑 ∈ ℝ)
54rpefcld 16014 . . . 4 ((𝑑 ∈ ℝ ∧ 𝐵𝑑) → (exp‘𝑑) ∈ ℝ+)
6 nnuz 12778 . . . . . 6 ℕ = (ℤ‘1)
7 1zzd 12506 . . . . . 6 ((𝑑 ∈ ℝ ∧ 𝐵𝑑) → 1 ∈ ℤ)
8 efcn 26351 . . . . . . 7 exp ∈ (ℂ–cn→ℂ)
98a1i 11 . . . . . 6 ((𝑑 ∈ ℝ ∧ 𝐵𝑑) → exp ∈ (ℂ–cn→ℂ))
10 nnnn0 12391 . . . . . . . . . . . . 13 (𝑛 ∈ ℕ → 𝑛 ∈ ℕ0)
11 faccl 14190 . . . . . . . . . . . . 13 (𝑛 ∈ ℕ0 → (!‘𝑛) ∈ ℕ)
12 nncn 12136 . . . . . . . . . . . . 13 ((!‘𝑛) ∈ ℕ → (!‘𝑛) ∈ ℂ)
1310, 11, 123syl 18 . . . . . . . . . . . 12 (𝑛 ∈ ℕ → (!‘𝑛) ∈ ℂ)
14 2cnd 12206 . . . . . . . . . . . . . . 15 (𝑛 ∈ ℕ → 2 ∈ ℂ)
15 nncn 12136 . . . . . . . . . . . . . . 15 (𝑛 ∈ ℕ → 𝑛 ∈ ℂ)
1614, 15mulcld 11135 . . . . . . . . . . . . . 14 (𝑛 ∈ ℕ → (2 · 𝑛) ∈ ℂ)
1716sqrtcld 15347 . . . . . . . . . . . . 13 (𝑛 ∈ ℕ → (√‘(2 · 𝑛)) ∈ ℂ)
18 epr 16117 . . . . . . . . . . . . . . . . 17 e ∈ ℝ+
19 rpcn 12904 . . . . . . . . . . . . . . . . 17 (e ∈ ℝ+ → e ∈ ℂ)
2018, 19ax-mp 5 . . . . . . . . . . . . . . . 16 e ∈ ℂ
2120a1i 11 . . . . . . . . . . . . . . 15 (𝑛 ∈ ℕ → e ∈ ℂ)
22 0re 11117 . . . . . . . . . . . . . . . . 17 0 ∈ ℝ
23 epos 16116 . . . . . . . . . . . . . . . . 17 0 < e
2422, 23gtneii 11228 . . . . . . . . . . . . . . . 16 e ≠ 0
2524a1i 11 . . . . . . . . . . . . . . 15 (𝑛 ∈ ℕ → e ≠ 0)
2615, 21, 25divcld 11900 . . . . . . . . . . . . . 14 (𝑛 ∈ ℕ → (𝑛 / e) ∈ ℂ)
2726, 10expcld 14053 . . . . . . . . . . . . 13 (𝑛 ∈ ℕ → ((𝑛 / e)↑𝑛) ∈ ℂ)
2817, 27mulcld 11135 . . . . . . . . . . . 12 (𝑛 ∈ ℕ → ((√‘(2 · 𝑛)) · ((𝑛 / e)↑𝑛)) ∈ ℂ)
29 2rp 12898 . . . . . . . . . . . . . . . . 17 2 ∈ ℝ+
3029a1i 11 . . . . . . . . . . . . . . . 16 (𝑛 ∈ ℕ → 2 ∈ ℝ+)
31 nnrp 12905 . . . . . . . . . . . . . . . 16 (𝑛 ∈ ℕ → 𝑛 ∈ ℝ+)
3230, 31rpmulcld 12953 . . . . . . . . . . . . . . 15 (𝑛 ∈ ℕ → (2 · 𝑛) ∈ ℝ+)
3332sqrtgt0d 15320 . . . . . . . . . . . . . 14 (𝑛 ∈ ℕ → 0 < (√‘(2 · 𝑛)))
3433gt0ne0d 11684 . . . . . . . . . . . . 13 (𝑛 ∈ ℕ → (√‘(2 · 𝑛)) ≠ 0)
35 nnne0 12162 . . . . . . . . . . . . . . 15 (𝑛 ∈ ℕ → 𝑛 ≠ 0)
3615, 21, 35, 25divne0d 11916 . . . . . . . . . . . . . 14 (𝑛 ∈ ℕ → (𝑛 / e) ≠ 0)
37 nnz 12492 . . . . . . . . . . . . . 14 (𝑛 ∈ ℕ → 𝑛 ∈ ℤ)
3826, 36, 37expne0d 14059 . . . . . . . . . . . . 13 (𝑛 ∈ ℕ → ((𝑛 / e)↑𝑛) ≠ 0)
3917, 27, 34, 38mulne0d 11772 . . . . . . . . . . . 12 (𝑛 ∈ ℕ → ((√‘(2 · 𝑛)) · ((𝑛 / e)↑𝑛)) ≠ 0)
4013, 28, 39divcld 11900 . . . . . . . . . . 11 (𝑛 ∈ ℕ → ((!‘𝑛) / ((√‘(2 · 𝑛)) · ((𝑛 / e)↑𝑛))) ∈ ℂ)
411fvmpt2 6941 . . . . . . . . . . 11 ((𝑛 ∈ ℕ ∧ ((!‘𝑛) / ((√‘(2 · 𝑛)) · ((𝑛 / e)↑𝑛))) ∈ ℂ) → (𝐴𝑛) = ((!‘𝑛) / ((√‘(2 · 𝑛)) · ((𝑛 / e)↑𝑛))))
4240, 41mpdan 687 . . . . . . . . . 10 (𝑛 ∈ ℕ → (𝐴𝑛) = ((!‘𝑛) / ((√‘(2 · 𝑛)) · ((𝑛 / e)↑𝑛))))
4342, 40eqeltrd 2828 . . . . . . . . 9 (𝑛 ∈ ℕ → (𝐴𝑛) ∈ ℂ)
44 nnne0 12162 . . . . . . . . . . . 12 ((!‘𝑛) ∈ ℕ → (!‘𝑛) ≠ 0)
4510, 11, 443syl 18 . . . . . . . . . . 11 (𝑛 ∈ ℕ → (!‘𝑛) ≠ 0)
4613, 28, 45, 39divne0d 11916 . . . . . . . . . 10 (𝑛 ∈ ℕ → ((!‘𝑛) / ((√‘(2 · 𝑛)) · ((𝑛 / e)↑𝑛))) ≠ 0)
4742, 46eqnetrd 2992 . . . . . . . . 9 (𝑛 ∈ ℕ → (𝐴𝑛) ≠ 0)
4843, 47logcld 26477 . . . . . . . 8 (𝑛 ∈ ℕ → (log‘(𝐴𝑛)) ∈ ℂ)
492, 48fmpti 7046 . . . . . . 7 𝐵:ℕ⟶ℂ
5049a1i 11 . . . . . 6 ((𝑑 ∈ ℝ ∧ 𝐵𝑑) → 𝐵:ℕ⟶ℂ)
51 simpr 484 . . . . . 6 ((𝑑 ∈ ℝ ∧ 𝐵𝑑) → 𝐵𝑑)
524recnd 11143 . . . . . 6 ((𝑑 ∈ ℝ ∧ 𝐵𝑑) → 𝑑 ∈ ℂ)
536, 7, 9, 50, 51, 52climcncf 24791 . . . . 5 ((𝑑 ∈ ℝ ∧ 𝐵𝑑) → (exp ∘ 𝐵) ⇝ (exp‘𝑑))
548elexi 3459 . . . . . . . . 9 exp ∈ V
55 nnex 12134 . . . . . . . . . . 11 ℕ ∈ V
5655mptex 7159 . . . . . . . . . 10 (𝑛 ∈ ℕ ↦ (log‘(𝐴𝑛))) ∈ V
572, 56eqeltri 2824 . . . . . . . . 9 𝐵 ∈ V
5854, 57coex 7863 . . . . . . . 8 (exp ∘ 𝐵) ∈ V
5958a1i 11 . . . . . . 7 (⊤ → (exp ∘ 𝐵) ∈ V)
6055mptex 7159 . . . . . . . . 9 (𝑛 ∈ ℕ ↦ ((!‘𝑛) / ((√‘(2 · 𝑛)) · ((𝑛 / e)↑𝑛)))) ∈ V
611, 60eqeltri 2824 . . . . . . . 8 𝐴 ∈ V
6261a1i 11 . . . . . . 7 (⊤ → 𝐴 ∈ V)
63 1zzd 12506 . . . . . . 7 (⊤ → 1 ∈ ℤ)
642funmpt2 6521 . . . . . . . . . 10 Fun 𝐵
65 id 22 . . . . . . . . . . 11 (𝑘 ∈ ℕ → 𝑘 ∈ ℕ)
66 rabid2 3428 . . . . . . . . . . . . 13 (ℕ = {𝑛 ∈ ℕ ∣ (log‘(𝐴𝑛)) ∈ V} ↔ ∀𝑛 ∈ ℕ (log‘(𝐴𝑛)) ∈ V)
671stirlinglem2 46066 . . . . . . . . . . . . . 14 (𝑛 ∈ ℕ → (𝐴𝑛) ∈ ℝ+)
68 relogcl 26482 . . . . . . . . . . . . . 14 ((𝐴𝑛) ∈ ℝ+ → (log‘(𝐴𝑛)) ∈ ℝ)
69 elex 3457 . . . . . . . . . . . . . 14 ((log‘(𝐴𝑛)) ∈ ℝ → (log‘(𝐴𝑛)) ∈ V)
7067, 68, 693syl 18 . . . . . . . . . . . . 13 (𝑛 ∈ ℕ → (log‘(𝐴𝑛)) ∈ V)
7166, 70mprgbir 3051 . . . . . . . . . . . 12 ℕ = {𝑛 ∈ ℕ ∣ (log‘(𝐴𝑛)) ∈ V}
722dmmpt 6189 . . . . . . . . . . . 12 dom 𝐵 = {𝑛 ∈ ℕ ∣ (log‘(𝐴𝑛)) ∈ V}
7371, 72eqtr4i 2755 . . . . . . . . . . 11 ℕ = dom 𝐵
7465, 73eleqtrdi 2838 . . . . . . . . . 10 (𝑘 ∈ ℕ → 𝑘 ∈ dom 𝐵)
75 fvco 6921 . . . . . . . . . 10 ((Fun 𝐵𝑘 ∈ dom 𝐵) → ((exp ∘ 𝐵)‘𝑘) = (exp‘(𝐵𝑘)))
7664, 74, 75sylancr 587 . . . . . . . . 9 (𝑘 ∈ ℕ → ((exp ∘ 𝐵)‘𝑘) = (exp‘(𝐵𝑘)))
771a1i 11 . . . . . . . . . . . . . 14 (𝑘 ∈ ℕ → 𝐴 = (𝑛 ∈ ℕ ↦ ((!‘𝑛) / ((√‘(2 · 𝑛)) · ((𝑛 / e)↑𝑛)))))
78 simpr 484 . . . . . . . . . . . . . . . 16 ((𝑘 ∈ ℕ ∧ 𝑛 = 𝑘) → 𝑛 = 𝑘)
7978fveq2d 6826 . . . . . . . . . . . . . . 15 ((𝑘 ∈ ℕ ∧ 𝑛 = 𝑘) → (!‘𝑛) = (!‘𝑘))
8078oveq2d 7365 . . . . . . . . . . . . . . . . 17 ((𝑘 ∈ ℕ ∧ 𝑛 = 𝑘) → (2 · 𝑛) = (2 · 𝑘))
8180fveq2d 6826 . . . . . . . . . . . . . . . 16 ((𝑘 ∈ ℕ ∧ 𝑛 = 𝑘) → (√‘(2 · 𝑛)) = (√‘(2 · 𝑘)))
8278oveq1d 7364 . . . . . . . . . . . . . . . . 17 ((𝑘 ∈ ℕ ∧ 𝑛 = 𝑘) → (𝑛 / e) = (𝑘 / e))
8382, 78oveq12d 7367 . . . . . . . . . . . . . . . 16 ((𝑘 ∈ ℕ ∧ 𝑛 = 𝑘) → ((𝑛 / e)↑𝑛) = ((𝑘 / e)↑𝑘))
8481, 83oveq12d 7367 . . . . . . . . . . . . . . 15 ((𝑘 ∈ ℕ ∧ 𝑛 = 𝑘) → ((√‘(2 · 𝑛)) · ((𝑛 / e)↑𝑛)) = ((√‘(2 · 𝑘)) · ((𝑘 / e)↑𝑘)))
8579, 84oveq12d 7367 . . . . . . . . . . . . . 14 ((𝑘 ∈ ℕ ∧ 𝑛 = 𝑘) → ((!‘𝑛) / ((√‘(2 · 𝑛)) · ((𝑛 / e)↑𝑛))) = ((!‘𝑘) / ((√‘(2 · 𝑘)) · ((𝑘 / e)↑𝑘))))
86 nnnn0 12391 . . . . . . . . . . . . . . . 16 (𝑘 ∈ ℕ → 𝑘 ∈ ℕ0)
87 faccl 14190 . . . . . . . . . . . . . . . 16 (𝑘 ∈ ℕ0 → (!‘𝑘) ∈ ℕ)
88 nncn 12136 . . . . . . . . . . . . . . . 16 ((!‘𝑘) ∈ ℕ → (!‘𝑘) ∈ ℂ)
8986, 87, 883syl 18 . . . . . . . . . . . . . . 15 (𝑘 ∈ ℕ → (!‘𝑘) ∈ ℂ)
90 2cnd 12206 . . . . . . . . . . . . . . . . . 18 (𝑘 ∈ ℕ → 2 ∈ ℂ)
91 nncn 12136 . . . . . . . . . . . . . . . . . 18 (𝑘 ∈ ℕ → 𝑘 ∈ ℂ)
9290, 91mulcld 11135 . . . . . . . . . . . . . . . . 17 (𝑘 ∈ ℕ → (2 · 𝑘) ∈ ℂ)
9392sqrtcld 15347 . . . . . . . . . . . . . . . 16 (𝑘 ∈ ℕ → (√‘(2 · 𝑘)) ∈ ℂ)
9420a1i 11 . . . . . . . . . . . . . . . . . 18 (𝑘 ∈ ℕ → e ∈ ℂ)
9524a1i 11 . . . . . . . . . . . . . . . . . 18 (𝑘 ∈ ℕ → e ≠ 0)
9691, 94, 95divcld 11900 . . . . . . . . . . . . . . . . 17 (𝑘 ∈ ℕ → (𝑘 / e) ∈ ℂ)
9796, 86expcld 14053 . . . . . . . . . . . . . . . 16 (𝑘 ∈ ℕ → ((𝑘 / e)↑𝑘) ∈ ℂ)
9893, 97mulcld 11135 . . . . . . . . . . . . . . 15 (𝑘 ∈ ℕ → ((√‘(2 · 𝑘)) · ((𝑘 / e)↑𝑘)) ∈ ℂ)
9929a1i 11 . . . . . . . . . . . . . . . . . . 19 (𝑘 ∈ ℕ → 2 ∈ ℝ+)
100 nnrp 12905 . . . . . . . . . . . . . . . . . . 19 (𝑘 ∈ ℕ → 𝑘 ∈ ℝ+)
10199, 100rpmulcld 12953 . . . . . . . . . . . . . . . . . 18 (𝑘 ∈ ℕ → (2 · 𝑘) ∈ ℝ+)
102101sqrtgt0d 15320 . . . . . . . . . . . . . . . . 17 (𝑘 ∈ ℕ → 0 < (√‘(2 · 𝑘)))
103102gt0ne0d 11684 . . . . . . . . . . . . . . . 16 (𝑘 ∈ ℕ → (√‘(2 · 𝑘)) ≠ 0)
104 nnne0 12162 . . . . . . . . . . . . . . . . . 18 (𝑘 ∈ ℕ → 𝑘 ≠ 0)
10591, 94, 104, 95divne0d 11916 . . . . . . . . . . . . . . . . 17 (𝑘 ∈ ℕ → (𝑘 / e) ≠ 0)
106 nnz 12492 . . . . . . . . . . . . . . . . 17 (𝑘 ∈ ℕ → 𝑘 ∈ ℤ)
10796, 105, 106expne0d 14059 . . . . . . . . . . . . . . . 16 (𝑘 ∈ ℕ → ((𝑘 / e)↑𝑘) ≠ 0)
10893, 97, 103, 107mulne0d 11772 . . . . . . . . . . . . . . 15 (𝑘 ∈ ℕ → ((√‘(2 · 𝑘)) · ((𝑘 / e)↑𝑘)) ≠ 0)
10989, 98, 108divcld 11900 . . . . . . . . . . . . . 14 (𝑘 ∈ ℕ → ((!‘𝑘) / ((√‘(2 · 𝑘)) · ((𝑘 / e)↑𝑘))) ∈ ℂ)
11077, 85, 65, 109fvmptd 6937 . . . . . . . . . . . . 13 (𝑘 ∈ ℕ → (𝐴𝑘) = ((!‘𝑘) / ((√‘(2 · 𝑘)) · ((𝑘 / e)↑𝑘))))
111110, 109eqeltrd 2828 . . . . . . . . . . . 12 (𝑘 ∈ ℕ → (𝐴𝑘) ∈ ℂ)
112 nnne0 12162 . . . . . . . . . . . . . . 15 ((!‘𝑘) ∈ ℕ → (!‘𝑘) ≠ 0)
11386, 87, 1123syl 18 . . . . . . . . . . . . . 14 (𝑘 ∈ ℕ → (!‘𝑘) ≠ 0)
11489, 98, 113, 108divne0d 11916 . . . . . . . . . . . . 13 (𝑘 ∈ ℕ → ((!‘𝑘) / ((√‘(2 · 𝑘)) · ((𝑘 / e)↑𝑘))) ≠ 0)
115110, 114eqnetrd 2992 . . . . . . . . . . . 12 (𝑘 ∈ ℕ → (𝐴𝑘) ≠ 0)
116111, 115logcld 26477 . . . . . . . . . . 11 (𝑘 ∈ ℕ → (log‘(𝐴𝑘)) ∈ ℂ)
117 nfcv 2891 . . . . . . . . . . . 12 𝑛𝑘
118 nfcv 2891 . . . . . . . . . . . . 13 𝑛log
119 nfmpt1 5191 . . . . . . . . . . . . . . 15 𝑛(𝑛 ∈ ℕ ↦ ((!‘𝑛) / ((√‘(2 · 𝑛)) · ((𝑛 / e)↑𝑛))))
1201, 119nfcxfr 2889 . . . . . . . . . . . . . 14 𝑛𝐴
121120, 117nffv 6832 . . . . . . . . . . . . 13 𝑛(𝐴𝑘)
122118, 121nffv 6832 . . . . . . . . . . . 12 𝑛(log‘(𝐴𝑘))
123 2fveq3 6827 . . . . . . . . . . . 12 (𝑛 = 𝑘 → (log‘(𝐴𝑛)) = (log‘(𝐴𝑘)))
124117, 122, 123, 2fvmptf 6951 . . . . . . . . . . 11 ((𝑘 ∈ ℕ ∧ (log‘(𝐴𝑘)) ∈ ℂ) → (𝐵𝑘) = (log‘(𝐴𝑘)))
125116, 124mpdan 687 . . . . . . . . . 10 (𝑘 ∈ ℕ → (𝐵𝑘) = (log‘(𝐴𝑘)))
126125fveq2d 6826 . . . . . . . . 9 (𝑘 ∈ ℕ → (exp‘(𝐵𝑘)) = (exp‘(log‘(𝐴𝑘))))
127 eflog 26483 . . . . . . . . . 10 (((𝐴𝑘) ∈ ℂ ∧ (𝐴𝑘) ≠ 0) → (exp‘(log‘(𝐴𝑘))) = (𝐴𝑘))
128111, 115, 127syl2anc 584 . . . . . . . . 9 (𝑘 ∈ ℕ → (exp‘(log‘(𝐴𝑘))) = (𝐴𝑘))
12976, 126, 1283eqtrd 2768 . . . . . . . 8 (𝑘 ∈ ℕ → ((exp ∘ 𝐵)‘𝑘) = (𝐴𝑘))
130129adantl 481 . . . . . . 7 ((⊤ ∧ 𝑘 ∈ ℕ) → ((exp ∘ 𝐵)‘𝑘) = (𝐴𝑘))
1316, 59, 62, 63, 130climeq 15474 . . . . . 6 (⊤ → ((exp ∘ 𝐵) ⇝ (exp‘𝑑) ↔ 𝐴 ⇝ (exp‘𝑑)))
132131mptru 1547 . . . . 5 ((exp ∘ 𝐵) ⇝ (exp‘𝑑) ↔ 𝐴 ⇝ (exp‘𝑑))
13353, 132sylib 218 . . . 4 ((𝑑 ∈ ℝ ∧ 𝐵𝑑) → 𝐴 ⇝ (exp‘𝑑))
134 breq2 5096 . . . . 5 (𝑐 = (exp‘𝑑) → (𝐴𝑐𝐴 ⇝ (exp‘𝑑)))
135134rspcev 3577 . . . 4 (((exp‘𝑑) ∈ ℝ+𝐴 ⇝ (exp‘𝑑)) → ∃𝑐 ∈ ℝ+ 𝐴𝑐)
1365, 133, 135syl2anc 584 . . 3 ((𝑑 ∈ ℝ ∧ 𝐵𝑑) → ∃𝑐 ∈ ℝ+ 𝐴𝑐)
137136rexlimiva 3122 . 2 (∃𝑑 ∈ ℝ 𝐵𝑑 → ∃𝑐 ∈ ℝ+ 𝐴𝑐)
1383, 137ax-mp 5 1 𝑐 ∈ ℝ+ 𝐴𝑐
Colors of variables: wff setvar class
Syntax hints:  wb 206  wa 395   = wceq 1540  wtru 1541  wcel 2109  wne 2925  wrex 3053  {crab 3394  Vcvv 3436   class class class wbr 5092  cmpt 5173  dom cdm 5619  ccom 5623  Fun wfun 6476  wf 6478  cfv 6482  (class class class)co 7349  cc 11007  cr 11008  0cc0 11009  1c1 11010   · cmul 11014   / cdiv 11777  cn 12128  2c2 12183  0cn0 12384  +crp 12893  cexp 13968  !cfa 14180  csqrt 15140  cli 15391  expce 15968  eceu 15969  cnccncf 24767  logclog 26461
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5218  ax-sep 5235  ax-nul 5245  ax-pow 5304  ax-pr 5371  ax-un 7671  ax-inf2 9537  ax-cnex 11065  ax-resscn 11066  ax-1cn 11067  ax-icn 11068  ax-addcl 11069  ax-addrcl 11070  ax-mulcl 11071  ax-mulrcl 11072  ax-mulcom 11073  ax-addass 11074  ax-mulass 11075  ax-distr 11076  ax-i2m1 11077  ax-1ne0 11078  ax-1rid 11079  ax-rnegex 11080  ax-rrecex 11081  ax-cnre 11082  ax-pre-lttri 11083  ax-pre-lttrn 11084  ax-pre-ltadd 11085  ax-pre-mulgt0 11086  ax-pre-sup 11087  ax-addf 11088
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3343  df-reu 3344  df-rab 3395  df-v 3438  df-sbc 3743  df-csb 3852  df-dif 3906  df-un 3908  df-in 3910  df-ss 3920  df-pss 3923  df-nul 4285  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-tp 4582  df-op 4584  df-uni 4859  df-int 4897  df-iun 4943  df-iin 4944  df-br 5093  df-opab 5155  df-mpt 5174  df-tr 5200  df-id 5514  df-eprel 5519  df-po 5527  df-so 5528  df-fr 5572  df-se 5573  df-we 5574  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-pred 6249  df-ord 6310  df-on 6311  df-lim 6312  df-suc 6313  df-iota 6438  df-fun 6484  df-fn 6485  df-f 6486  df-f1 6487  df-fo 6488  df-f1o 6489  df-fv 6490  df-isom 6491  df-riota 7306  df-ov 7352  df-oprab 7353  df-mpo 7354  df-of 7613  df-om 7800  df-1st 7924  df-2nd 7925  df-supp 8094  df-frecs 8214  df-wrecs 8245  df-recs 8294  df-rdg 8332  df-1o 8388  df-2o 8389  df-oadd 8392  df-er 8625  df-map 8755  df-pm 8756  df-ixp 8825  df-en 8873  df-dom 8874  df-sdom 8875  df-fin 8876  df-fsupp 9252  df-fi 9301  df-sup 9332  df-inf 9333  df-oi 9402  df-card 9835  df-pnf 11151  df-mnf 11152  df-xr 11153  df-ltxr 11154  df-le 11155  df-sub 11349  df-neg 11350  df-div 11778  df-nn 12129  df-2 12191  df-3 12192  df-4 12193  df-5 12194  df-6 12195  df-7 12196  df-8 12197  df-9 12198  df-n0 12385  df-xnn0 12458  df-z 12472  df-dec 12592  df-uz 12736  df-q 12850  df-rp 12894  df-xneg 13014  df-xadd 13015  df-xmul 13016  df-ioo 13252  df-ioc 13253  df-ico 13254  df-icc 13255  df-fz 13411  df-fzo 13558  df-fl 13696  df-mod 13774  df-seq 13909  df-exp 13969  df-fac 14181  df-bc 14210  df-hash 14238  df-shft 14974  df-cj 15006  df-re 15007  df-im 15008  df-sqrt 15142  df-abs 15143  df-limsup 15378  df-clim 15395  df-rlim 15396  df-sum 15594  df-ef 15974  df-e 15975  df-sin 15976  df-cos 15977  df-tan 15978  df-pi 15979  df-dvds 16164  df-struct 17058  df-sets 17075  df-slot 17093  df-ndx 17105  df-base 17121  df-ress 17142  df-plusg 17174  df-mulr 17175  df-starv 17176  df-sca 17177  df-vsca 17178  df-ip 17179  df-tset 17180  df-ple 17181  df-ds 17183  df-unif 17184  df-hom 17185  df-cco 17186  df-rest 17326  df-topn 17327  df-0g 17345  df-gsum 17346  df-topgen 17347  df-pt 17348  df-prds 17351  df-xrs 17406  df-qtop 17411  df-imas 17412  df-xps 17414  df-mre 17488  df-mrc 17489  df-acs 17491  df-mgm 18514  df-sgrp 18593  df-mnd 18609  df-submnd 18658  df-mulg 18947  df-cntz 19196  df-cmn 19661  df-psmet 21253  df-xmet 21254  df-met 21255  df-bl 21256  df-mopn 21257  df-fbas 21258  df-fg 21259  df-cnfld 21262  df-top 22779  df-topon 22796  df-topsp 22818  df-bases 22831  df-cld 22904  df-ntr 22905  df-cls 22906  df-nei 22983  df-lp 23021  df-perf 23022  df-cn 23112  df-cnp 23113  df-haus 23200  df-cmp 23272  df-tx 23447  df-hmeo 23640  df-fil 23731  df-fm 23823  df-flim 23824  df-flf 23825  df-xms 24206  df-ms 24207  df-tms 24208  df-cncf 24769  df-limc 25765  df-dv 25766  df-ulm 26284  df-log 26463  df-cxp 26464
This theorem is referenced by:  stirling  46080
  Copyright terms: Public domain W3C validator