Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  stirlinglem14 Structured version   Visualization version   GIF version

Theorem stirlinglem14 43170
Description: The sequence 𝐴 converges to a positive real. This proves that the Stirling's formula converges to the factorial, up to a constant. In another theorem, using Wallis' formula for π& , such constant is exactly determined, thus proving the Stirling's formula. (Contributed by Glauco Siliprandi, 29-Jun-2017.)
Hypotheses
Ref Expression
stirlinglem14.1 𝐴 = (𝑛 ∈ ℕ ↦ ((!‘𝑛) / ((√‘(2 · 𝑛)) · ((𝑛 / e)↑𝑛))))
stirlinglem14.2 𝐵 = (𝑛 ∈ ℕ ↦ (log‘(𝐴𝑛)))
Assertion
Ref Expression
stirlinglem14 𝑐 ∈ ℝ+ 𝐴𝑐
Distinct variable group:   𝐴,𝑐
Allowed substitution hints:   𝐴(𝑛)   𝐵(𝑛,𝑐)

Proof of Theorem stirlinglem14
Dummy variables 𝑑 𝑘 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 stirlinglem14.1 . . 3 𝐴 = (𝑛 ∈ ℕ ↦ ((!‘𝑛) / ((√‘(2 · 𝑛)) · ((𝑛 / e)↑𝑛))))
2 stirlinglem14.2 . . 3 𝐵 = (𝑛 ∈ ℕ ↦ (log‘(𝐴𝑛)))
31, 2stirlinglem13 43169 . 2 𝑑 ∈ ℝ 𝐵𝑑
4 simpl 486 . . . . 5 ((𝑑 ∈ ℝ ∧ 𝐵𝑑) → 𝑑 ∈ ℝ)
54rpefcld 15550 . . . 4 ((𝑑 ∈ ℝ ∧ 𝐵𝑑) → (exp‘𝑑) ∈ ℝ+)
6 nnuz 12363 . . . . . 6 ℕ = (ℤ‘1)
7 1zzd 12094 . . . . . 6 ((𝑑 ∈ ℝ ∧ 𝐵𝑑) → 1 ∈ ℤ)
8 efcn 25190 . . . . . . 7 exp ∈ (ℂ–cn→ℂ)
98a1i 11 . . . . . 6 ((𝑑 ∈ ℝ ∧ 𝐵𝑑) → exp ∈ (ℂ–cn→ℂ))
10 nnnn0 11983 . . . . . . . . . . . . 13 (𝑛 ∈ ℕ → 𝑛 ∈ ℕ0)
11 faccl 13735 . . . . . . . . . . . . 13 (𝑛 ∈ ℕ0 → (!‘𝑛) ∈ ℕ)
12 nncn 11724 . . . . . . . . . . . . 13 ((!‘𝑛) ∈ ℕ → (!‘𝑛) ∈ ℂ)
1310, 11, 123syl 18 . . . . . . . . . . . 12 (𝑛 ∈ ℕ → (!‘𝑛) ∈ ℂ)
14 2cnd 11794 . . . . . . . . . . . . . . 15 (𝑛 ∈ ℕ → 2 ∈ ℂ)
15 nncn 11724 . . . . . . . . . . . . . . 15 (𝑛 ∈ ℕ → 𝑛 ∈ ℂ)
1614, 15mulcld 10739 . . . . . . . . . . . . . 14 (𝑛 ∈ ℕ → (2 · 𝑛) ∈ ℂ)
1716sqrtcld 14887 . . . . . . . . . . . . 13 (𝑛 ∈ ℕ → (√‘(2 · 𝑛)) ∈ ℂ)
18 epr 15653 . . . . . . . . . . . . . . . . 17 e ∈ ℝ+
19 rpcn 12482 . . . . . . . . . . . . . . . . 17 (e ∈ ℝ+ → e ∈ ℂ)
2018, 19ax-mp 5 . . . . . . . . . . . . . . . 16 e ∈ ℂ
2120a1i 11 . . . . . . . . . . . . . . 15 (𝑛 ∈ ℕ → e ∈ ℂ)
22 0re 10721 . . . . . . . . . . . . . . . . 17 0 ∈ ℝ
23 epos 15652 . . . . . . . . . . . . . . . . 17 0 < e
2422, 23gtneii 10830 . . . . . . . . . . . . . . . 16 e ≠ 0
2524a1i 11 . . . . . . . . . . . . . . 15 (𝑛 ∈ ℕ → e ≠ 0)
2615, 21, 25divcld 11494 . . . . . . . . . . . . . 14 (𝑛 ∈ ℕ → (𝑛 / e) ∈ ℂ)
2726, 10expcld 13602 . . . . . . . . . . . . 13 (𝑛 ∈ ℕ → ((𝑛 / e)↑𝑛) ∈ ℂ)
2817, 27mulcld 10739 . . . . . . . . . . . 12 (𝑛 ∈ ℕ → ((√‘(2 · 𝑛)) · ((𝑛 / e)↑𝑛)) ∈ ℂ)
29 2rp 12477 . . . . . . . . . . . . . . . . 17 2 ∈ ℝ+
3029a1i 11 . . . . . . . . . . . . . . . 16 (𝑛 ∈ ℕ → 2 ∈ ℝ+)
31 nnrp 12483 . . . . . . . . . . . . . . . 16 (𝑛 ∈ ℕ → 𝑛 ∈ ℝ+)
3230, 31rpmulcld 12530 . . . . . . . . . . . . . . 15 (𝑛 ∈ ℕ → (2 · 𝑛) ∈ ℝ+)
3332sqrtgt0d 14862 . . . . . . . . . . . . . 14 (𝑛 ∈ ℕ → 0 < (√‘(2 · 𝑛)))
3433gt0ne0d 11282 . . . . . . . . . . . . 13 (𝑛 ∈ ℕ → (√‘(2 · 𝑛)) ≠ 0)
35 nnne0 11750 . . . . . . . . . . . . . . 15 (𝑛 ∈ ℕ → 𝑛 ≠ 0)
3615, 21, 35, 25divne0d 11510 . . . . . . . . . . . . . 14 (𝑛 ∈ ℕ → (𝑛 / e) ≠ 0)
37 nnz 12085 . . . . . . . . . . . . . 14 (𝑛 ∈ ℕ → 𝑛 ∈ ℤ)
3826, 36, 37expne0d 13608 . . . . . . . . . . . . 13 (𝑛 ∈ ℕ → ((𝑛 / e)↑𝑛) ≠ 0)
3917, 27, 34, 38mulne0d 11370 . . . . . . . . . . . 12 (𝑛 ∈ ℕ → ((√‘(2 · 𝑛)) · ((𝑛 / e)↑𝑛)) ≠ 0)
4013, 28, 39divcld 11494 . . . . . . . . . . 11 (𝑛 ∈ ℕ → ((!‘𝑛) / ((√‘(2 · 𝑛)) · ((𝑛 / e)↑𝑛))) ∈ ℂ)
411fvmpt2 6786 . . . . . . . . . . 11 ((𝑛 ∈ ℕ ∧ ((!‘𝑛) / ((√‘(2 · 𝑛)) · ((𝑛 / e)↑𝑛))) ∈ ℂ) → (𝐴𝑛) = ((!‘𝑛) / ((√‘(2 · 𝑛)) · ((𝑛 / e)↑𝑛))))
4240, 41mpdan 687 . . . . . . . . . 10 (𝑛 ∈ ℕ → (𝐴𝑛) = ((!‘𝑛) / ((√‘(2 · 𝑛)) · ((𝑛 / e)↑𝑛))))
4342, 40eqeltrd 2833 . . . . . . . . 9 (𝑛 ∈ ℕ → (𝐴𝑛) ∈ ℂ)
44 nnne0 11750 . . . . . . . . . . . 12 ((!‘𝑛) ∈ ℕ → (!‘𝑛) ≠ 0)
4510, 11, 443syl 18 . . . . . . . . . . 11 (𝑛 ∈ ℕ → (!‘𝑛) ≠ 0)
4613, 28, 45, 39divne0d 11510 . . . . . . . . . 10 (𝑛 ∈ ℕ → ((!‘𝑛) / ((√‘(2 · 𝑛)) · ((𝑛 / e)↑𝑛))) ≠ 0)
4742, 46eqnetrd 3001 . . . . . . . . 9 (𝑛 ∈ ℕ → (𝐴𝑛) ≠ 0)
4843, 47logcld 25314 . . . . . . . 8 (𝑛 ∈ ℕ → (log‘(𝐴𝑛)) ∈ ℂ)
492, 48fmpti 6886 . . . . . . 7 𝐵:ℕ⟶ℂ
5049a1i 11 . . . . . 6 ((𝑑 ∈ ℝ ∧ 𝐵𝑑) → 𝐵:ℕ⟶ℂ)
51 simpr 488 . . . . . 6 ((𝑑 ∈ ℝ ∧ 𝐵𝑑) → 𝐵𝑑)
524recnd 10747 . . . . . 6 ((𝑑 ∈ ℝ ∧ 𝐵𝑑) → 𝑑 ∈ ℂ)
536, 7, 9, 50, 51, 52climcncf 23652 . . . . 5 ((𝑑 ∈ ℝ ∧ 𝐵𝑑) → (exp ∘ 𝐵) ⇝ (exp‘𝑑))
548elexi 3417 . . . . . . . . 9 exp ∈ V
55 nnex 11722 . . . . . . . . . . 11 ℕ ∈ V
5655mptex 6996 . . . . . . . . . 10 (𝑛 ∈ ℕ ↦ (log‘(𝐴𝑛))) ∈ V
572, 56eqeltri 2829 . . . . . . . . 9 𝐵 ∈ V
5854, 57coex 7661 . . . . . . . 8 (exp ∘ 𝐵) ∈ V
5958a1i 11 . . . . . . 7 (⊤ → (exp ∘ 𝐵) ∈ V)
6055mptex 6996 . . . . . . . . 9 (𝑛 ∈ ℕ ↦ ((!‘𝑛) / ((√‘(2 · 𝑛)) · ((𝑛 / e)↑𝑛)))) ∈ V
611, 60eqeltri 2829 . . . . . . . 8 𝐴 ∈ V
6261a1i 11 . . . . . . 7 (⊤ → 𝐴 ∈ V)
63 1zzd 12094 . . . . . . 7 (⊤ → 1 ∈ ℤ)
642funmpt2 6378 . . . . . . . . . 10 Fun 𝐵
65 id 22 . . . . . . . . . . 11 (𝑘 ∈ ℕ → 𝑘 ∈ ℕ)
66 rabid2 3284 . . . . . . . . . . . . 13 (ℕ = {𝑛 ∈ ℕ ∣ (log‘(𝐴𝑛)) ∈ V} ↔ ∀𝑛 ∈ ℕ (log‘(𝐴𝑛)) ∈ V)
671stirlinglem2 43158 . . . . . . . . . . . . . 14 (𝑛 ∈ ℕ → (𝐴𝑛) ∈ ℝ+)
68 relogcl 25319 . . . . . . . . . . . . . 14 ((𝐴𝑛) ∈ ℝ+ → (log‘(𝐴𝑛)) ∈ ℝ)
69 elex 3416 . . . . . . . . . . . . . 14 ((log‘(𝐴𝑛)) ∈ ℝ → (log‘(𝐴𝑛)) ∈ V)
7067, 68, 693syl 18 . . . . . . . . . . . . 13 (𝑛 ∈ ℕ → (log‘(𝐴𝑛)) ∈ V)
7166, 70mprgbir 3068 . . . . . . . . . . . 12 ℕ = {𝑛 ∈ ℕ ∣ (log‘(𝐴𝑛)) ∈ V}
722dmmpt 6072 . . . . . . . . . . . 12 dom 𝐵 = {𝑛 ∈ ℕ ∣ (log‘(𝐴𝑛)) ∈ V}
7371, 72eqtr4i 2764 . . . . . . . . . . 11 ℕ = dom 𝐵
7465, 73eleqtrdi 2843 . . . . . . . . . 10 (𝑘 ∈ ℕ → 𝑘 ∈ dom 𝐵)
75 fvco 6766 . . . . . . . . . 10 ((Fun 𝐵𝑘 ∈ dom 𝐵) → ((exp ∘ 𝐵)‘𝑘) = (exp‘(𝐵𝑘)))
7664, 74, 75sylancr 590 . . . . . . . . 9 (𝑘 ∈ ℕ → ((exp ∘ 𝐵)‘𝑘) = (exp‘(𝐵𝑘)))
771a1i 11 . . . . . . . . . . . . . 14 (𝑘 ∈ ℕ → 𝐴 = (𝑛 ∈ ℕ ↦ ((!‘𝑛) / ((√‘(2 · 𝑛)) · ((𝑛 / e)↑𝑛)))))
78 simpr 488 . . . . . . . . . . . . . . . 16 ((𝑘 ∈ ℕ ∧ 𝑛 = 𝑘) → 𝑛 = 𝑘)
7978fveq2d 6678 . . . . . . . . . . . . . . 15 ((𝑘 ∈ ℕ ∧ 𝑛 = 𝑘) → (!‘𝑛) = (!‘𝑘))
8078oveq2d 7186 . . . . . . . . . . . . . . . . 17 ((𝑘 ∈ ℕ ∧ 𝑛 = 𝑘) → (2 · 𝑛) = (2 · 𝑘))
8180fveq2d 6678 . . . . . . . . . . . . . . . 16 ((𝑘 ∈ ℕ ∧ 𝑛 = 𝑘) → (√‘(2 · 𝑛)) = (√‘(2 · 𝑘)))
8278oveq1d 7185 . . . . . . . . . . . . . . . . 17 ((𝑘 ∈ ℕ ∧ 𝑛 = 𝑘) → (𝑛 / e) = (𝑘 / e))
8382, 78oveq12d 7188 . . . . . . . . . . . . . . . 16 ((𝑘 ∈ ℕ ∧ 𝑛 = 𝑘) → ((𝑛 / e)↑𝑛) = ((𝑘 / e)↑𝑘))
8481, 83oveq12d 7188 . . . . . . . . . . . . . . 15 ((𝑘 ∈ ℕ ∧ 𝑛 = 𝑘) → ((√‘(2 · 𝑛)) · ((𝑛 / e)↑𝑛)) = ((√‘(2 · 𝑘)) · ((𝑘 / e)↑𝑘)))
8579, 84oveq12d 7188 . . . . . . . . . . . . . 14 ((𝑘 ∈ ℕ ∧ 𝑛 = 𝑘) → ((!‘𝑛) / ((√‘(2 · 𝑛)) · ((𝑛 / e)↑𝑛))) = ((!‘𝑘) / ((√‘(2 · 𝑘)) · ((𝑘 / e)↑𝑘))))
86 nnnn0 11983 . . . . . . . . . . . . . . . 16 (𝑘 ∈ ℕ → 𝑘 ∈ ℕ0)
87 faccl 13735 . . . . . . . . . . . . . . . 16 (𝑘 ∈ ℕ0 → (!‘𝑘) ∈ ℕ)
88 nncn 11724 . . . . . . . . . . . . . . . 16 ((!‘𝑘) ∈ ℕ → (!‘𝑘) ∈ ℂ)
8986, 87, 883syl 18 . . . . . . . . . . . . . . 15 (𝑘 ∈ ℕ → (!‘𝑘) ∈ ℂ)
90 2cnd 11794 . . . . . . . . . . . . . . . . . 18 (𝑘 ∈ ℕ → 2 ∈ ℂ)
91 nncn 11724 . . . . . . . . . . . . . . . . . 18 (𝑘 ∈ ℕ → 𝑘 ∈ ℂ)
9290, 91mulcld 10739 . . . . . . . . . . . . . . . . 17 (𝑘 ∈ ℕ → (2 · 𝑘) ∈ ℂ)
9392sqrtcld 14887 . . . . . . . . . . . . . . . 16 (𝑘 ∈ ℕ → (√‘(2 · 𝑘)) ∈ ℂ)
9420a1i 11 . . . . . . . . . . . . . . . . . 18 (𝑘 ∈ ℕ → e ∈ ℂ)
9524a1i 11 . . . . . . . . . . . . . . . . . 18 (𝑘 ∈ ℕ → e ≠ 0)
9691, 94, 95divcld 11494 . . . . . . . . . . . . . . . . 17 (𝑘 ∈ ℕ → (𝑘 / e) ∈ ℂ)
9796, 86expcld 13602 . . . . . . . . . . . . . . . 16 (𝑘 ∈ ℕ → ((𝑘 / e)↑𝑘) ∈ ℂ)
9893, 97mulcld 10739 . . . . . . . . . . . . . . 15 (𝑘 ∈ ℕ → ((√‘(2 · 𝑘)) · ((𝑘 / e)↑𝑘)) ∈ ℂ)
9929a1i 11 . . . . . . . . . . . . . . . . . . 19 (𝑘 ∈ ℕ → 2 ∈ ℝ+)
100 nnrp 12483 . . . . . . . . . . . . . . . . . . 19 (𝑘 ∈ ℕ → 𝑘 ∈ ℝ+)
10199, 100rpmulcld 12530 . . . . . . . . . . . . . . . . . 18 (𝑘 ∈ ℕ → (2 · 𝑘) ∈ ℝ+)
102101sqrtgt0d 14862 . . . . . . . . . . . . . . . . 17 (𝑘 ∈ ℕ → 0 < (√‘(2 · 𝑘)))
103102gt0ne0d 11282 . . . . . . . . . . . . . . . 16 (𝑘 ∈ ℕ → (√‘(2 · 𝑘)) ≠ 0)
104 nnne0 11750 . . . . . . . . . . . . . . . . . 18 (𝑘 ∈ ℕ → 𝑘 ≠ 0)
10591, 94, 104, 95divne0d 11510 . . . . . . . . . . . . . . . . 17 (𝑘 ∈ ℕ → (𝑘 / e) ≠ 0)
106 nnz 12085 . . . . . . . . . . . . . . . . 17 (𝑘 ∈ ℕ → 𝑘 ∈ ℤ)
10796, 105, 106expne0d 13608 . . . . . . . . . . . . . . . 16 (𝑘 ∈ ℕ → ((𝑘 / e)↑𝑘) ≠ 0)
10893, 97, 103, 107mulne0d 11370 . . . . . . . . . . . . . . 15 (𝑘 ∈ ℕ → ((√‘(2 · 𝑘)) · ((𝑘 / e)↑𝑘)) ≠ 0)
10989, 98, 108divcld 11494 . . . . . . . . . . . . . 14 (𝑘 ∈ ℕ → ((!‘𝑘) / ((√‘(2 · 𝑘)) · ((𝑘 / e)↑𝑘))) ∈ ℂ)
11077, 85, 65, 109fvmptd 6782 . . . . . . . . . . . . 13 (𝑘 ∈ ℕ → (𝐴𝑘) = ((!‘𝑘) / ((√‘(2 · 𝑘)) · ((𝑘 / e)↑𝑘))))
111110, 109eqeltrd 2833 . . . . . . . . . . . 12 (𝑘 ∈ ℕ → (𝐴𝑘) ∈ ℂ)
112 nnne0 11750 . . . . . . . . . . . . . . 15 ((!‘𝑘) ∈ ℕ → (!‘𝑘) ≠ 0)
11386, 87, 1123syl 18 . . . . . . . . . . . . . 14 (𝑘 ∈ ℕ → (!‘𝑘) ≠ 0)
11489, 98, 113, 108divne0d 11510 . . . . . . . . . . . . 13 (𝑘 ∈ ℕ → ((!‘𝑘) / ((√‘(2 · 𝑘)) · ((𝑘 / e)↑𝑘))) ≠ 0)
115110, 114eqnetrd 3001 . . . . . . . . . . . 12 (𝑘 ∈ ℕ → (𝐴𝑘) ≠ 0)
116111, 115logcld 25314 . . . . . . . . . . 11 (𝑘 ∈ ℕ → (log‘(𝐴𝑘)) ∈ ℂ)
117 nfcv 2899 . . . . . . . . . . . 12 𝑛𝑘
118 nfcv 2899 . . . . . . . . . . . . 13 𝑛log
119 nfmpt1 5128 . . . . . . . . . . . . . . 15 𝑛(𝑛 ∈ ℕ ↦ ((!‘𝑛) / ((√‘(2 · 𝑛)) · ((𝑛 / e)↑𝑛))))
1201, 119nfcxfr 2897 . . . . . . . . . . . . . 14 𝑛𝐴
121120, 117nffv 6684 . . . . . . . . . . . . 13 𝑛(𝐴𝑘)
122118, 121nffv 6684 . . . . . . . . . . . 12 𝑛(log‘(𝐴𝑘))
123 2fveq3 6679 . . . . . . . . . . . 12 (𝑛 = 𝑘 → (log‘(𝐴𝑛)) = (log‘(𝐴𝑘)))
124117, 122, 123, 2fvmptf 6796 . . . . . . . . . . 11 ((𝑘 ∈ ℕ ∧ (log‘(𝐴𝑘)) ∈ ℂ) → (𝐵𝑘) = (log‘(𝐴𝑘)))
125116, 124mpdan 687 . . . . . . . . . 10 (𝑘 ∈ ℕ → (𝐵𝑘) = (log‘(𝐴𝑘)))
126125fveq2d 6678 . . . . . . . . 9 (𝑘 ∈ ℕ → (exp‘(𝐵𝑘)) = (exp‘(log‘(𝐴𝑘))))
127 eflog 25320 . . . . . . . . . 10 (((𝐴𝑘) ∈ ℂ ∧ (𝐴𝑘) ≠ 0) → (exp‘(log‘(𝐴𝑘))) = (𝐴𝑘))
128111, 115, 127syl2anc 587 . . . . . . . . 9 (𝑘 ∈ ℕ → (exp‘(log‘(𝐴𝑘))) = (𝐴𝑘))
12976, 126, 1283eqtrd 2777 . . . . . . . 8 (𝑘 ∈ ℕ → ((exp ∘ 𝐵)‘𝑘) = (𝐴𝑘))
130129adantl 485 . . . . . . 7 ((⊤ ∧ 𝑘 ∈ ℕ) → ((exp ∘ 𝐵)‘𝑘) = (𝐴𝑘))
1316, 59, 62, 63, 130climeq 15014 . . . . . 6 (⊤ → ((exp ∘ 𝐵) ⇝ (exp‘𝑑) ↔ 𝐴 ⇝ (exp‘𝑑)))
132131mptru 1549 . . . . 5 ((exp ∘ 𝐵) ⇝ (exp‘𝑑) ↔ 𝐴 ⇝ (exp‘𝑑))
13353, 132sylib 221 . . . 4 ((𝑑 ∈ ℝ ∧ 𝐵𝑑) → 𝐴 ⇝ (exp‘𝑑))
134 breq2 5034 . . . . 5 (𝑐 = (exp‘𝑑) → (𝐴𝑐𝐴 ⇝ (exp‘𝑑)))
135134rspcev 3526 . . . 4 (((exp‘𝑑) ∈ ℝ+𝐴 ⇝ (exp‘𝑑)) → ∃𝑐 ∈ ℝ+ 𝐴𝑐)
1365, 133, 135syl2anc 587 . . 3 ((𝑑 ∈ ℝ ∧ 𝐵𝑑) → ∃𝑐 ∈ ℝ+ 𝐴𝑐)
137136rexlimiva 3191 . 2 (∃𝑑 ∈ ℝ 𝐵𝑑 → ∃𝑐 ∈ ℝ+ 𝐴𝑐)
1383, 137ax-mp 5 1 𝑐 ∈ ℝ+ 𝐴𝑐
Colors of variables: wff setvar class
Syntax hints:  wb 209  wa 399   = wceq 1542  wtru 1543  wcel 2114  wne 2934  wrex 3054  {crab 3057  Vcvv 3398   class class class wbr 5030  cmpt 5110  dom cdm 5525  ccom 5529  Fun wfun 6333  wf 6335  cfv 6339  (class class class)co 7170  cc 10613  cr 10614  0cc0 10615  1c1 10616   · cmul 10620   / cdiv 11375  cn 11716  2c2 11771  0cn0 11976  +crp 12472  cexp 13521  !cfa 13725  csqrt 14682  cli 14931  expce 15507  eceu 15508  cnccncf 23628  logclog 25298
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1802  ax-4 1816  ax-5 1917  ax-6 1975  ax-7 2020  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2162  ax-12 2179  ax-ext 2710  ax-rep 5154  ax-sep 5167  ax-nul 5174  ax-pow 5232  ax-pr 5296  ax-un 7479  ax-inf2 9177  ax-cnex 10671  ax-resscn 10672  ax-1cn 10673  ax-icn 10674  ax-addcl 10675  ax-addrcl 10676  ax-mulcl 10677  ax-mulrcl 10678  ax-mulcom 10679  ax-addass 10680  ax-mulass 10681  ax-distr 10682  ax-i2m1 10683  ax-1ne0 10684  ax-1rid 10685  ax-rnegex 10686  ax-rrecex 10687  ax-cnre 10688  ax-pre-lttri 10689  ax-pre-lttrn 10690  ax-pre-ltadd 10691  ax-pre-mulgt0 10692  ax-pre-sup 10693  ax-addf 10694  ax-mulf 10695
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 847  df-3or 1089  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1787  df-nf 1791  df-sb 2075  df-mo 2540  df-eu 2570  df-clab 2717  df-cleq 2730  df-clel 2811  df-nfc 2881  df-ne 2935  df-nel 3039  df-ral 3058  df-rex 3059  df-reu 3060  df-rmo 3061  df-rab 3062  df-v 3400  df-sbc 3681  df-csb 3791  df-dif 3846  df-un 3848  df-in 3850  df-ss 3860  df-pss 3862  df-nul 4212  df-if 4415  df-pw 4490  df-sn 4517  df-pr 4519  df-tp 4521  df-op 4523  df-uni 4797  df-int 4837  df-iun 4883  df-iin 4884  df-br 5031  df-opab 5093  df-mpt 5111  df-tr 5137  df-id 5429  df-eprel 5434  df-po 5442  df-so 5443  df-fr 5483  df-se 5484  df-we 5485  df-xp 5531  df-rel 5532  df-cnv 5533  df-co 5534  df-dm 5535  df-rn 5536  df-res 5537  df-ima 5538  df-pred 6129  df-ord 6175  df-on 6176  df-lim 6177  df-suc 6178  df-iota 6297  df-fun 6341  df-fn 6342  df-f 6343  df-f1 6344  df-fo 6345  df-f1o 6346  df-fv 6347  df-isom 6348  df-riota 7127  df-ov 7173  df-oprab 7174  df-mpo 7175  df-of 7425  df-om 7600  df-1st 7714  df-2nd 7715  df-supp 7857  df-wrecs 7976  df-recs 8037  df-rdg 8075  df-1o 8131  df-2o 8132  df-oadd 8135  df-er 8320  df-map 8439  df-pm 8440  df-ixp 8508  df-en 8556  df-dom 8557  df-sdom 8558  df-fin 8559  df-fsupp 8907  df-fi 8948  df-sup 8979  df-inf 8980  df-oi 9047  df-card 9441  df-pnf 10755  df-mnf 10756  df-xr 10757  df-ltxr 10758  df-le 10759  df-sub 10950  df-neg 10951  df-div 11376  df-nn 11717  df-2 11779  df-3 11780  df-4 11781  df-5 11782  df-6 11783  df-7 11784  df-8 11785  df-9 11786  df-n0 11977  df-xnn0 12049  df-z 12063  df-dec 12180  df-uz 12325  df-q 12431  df-rp 12473  df-xneg 12590  df-xadd 12591  df-xmul 12592  df-ioo 12825  df-ioc 12826  df-ico 12827  df-icc 12828  df-fz 12982  df-fzo 13125  df-fl 13253  df-mod 13329  df-seq 13461  df-exp 13522  df-fac 13726  df-bc 13755  df-hash 13783  df-shft 14516  df-cj 14548  df-re 14549  df-im 14550  df-sqrt 14684  df-abs 14685  df-limsup 14918  df-clim 14935  df-rlim 14936  df-sum 15136  df-ef 15513  df-e 15514  df-sin 15515  df-cos 15516  df-tan 15517  df-pi 15518  df-dvds 15700  df-struct 16588  df-ndx 16589  df-slot 16590  df-base 16592  df-sets 16593  df-ress 16594  df-plusg 16681  df-mulr 16682  df-starv 16683  df-sca 16684  df-vsca 16685  df-ip 16686  df-tset 16687  df-ple 16688  df-ds 16690  df-unif 16691  df-hom 16692  df-cco 16693  df-rest 16799  df-topn 16800  df-0g 16818  df-gsum 16819  df-topgen 16820  df-pt 16821  df-prds 16824  df-xrs 16878  df-qtop 16883  df-imas 16884  df-xps 16886  df-mre 16960  df-mrc 16961  df-acs 16963  df-mgm 17968  df-sgrp 18017  df-mnd 18028  df-submnd 18073  df-mulg 18343  df-cntz 18565  df-cmn 19026  df-psmet 20209  df-xmet 20210  df-met 20211  df-bl 20212  df-mopn 20213  df-fbas 20214  df-fg 20215  df-cnfld 20218  df-top 21645  df-topon 21662  df-topsp 21684  df-bases 21697  df-cld 21770  df-ntr 21771  df-cls 21772  df-nei 21849  df-lp 21887  df-perf 21888  df-cn 21978  df-cnp 21979  df-haus 22066  df-cmp 22138  df-tx 22313  df-hmeo 22506  df-fil 22597  df-fm 22689  df-flim 22690  df-flf 22691  df-xms 23073  df-ms 23074  df-tms 23075  df-cncf 23630  df-limc 24618  df-dv 24619  df-ulm 25124  df-log 25300  df-cxp 25301
This theorem is referenced by:  stirling  43172
  Copyright terms: Public domain W3C validator