Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  stirlinglem14 Structured version   Visualization version   GIF version

Theorem stirlinglem14 46102
Description: The sequence 𝐴 converges to a positive real. This proves that the Stirling's formula converges to the factorial, up to a constant. In another theorem, using Wallis' formula for π& , such constant is exactly determined, thus proving the Stirling's formula. (Contributed by Glauco Siliprandi, 29-Jun-2017.)
Hypotheses
Ref Expression
stirlinglem14.1 𝐴 = (𝑛 ∈ ℕ ↦ ((!‘𝑛) / ((√‘(2 · 𝑛)) · ((𝑛 / e)↑𝑛))))
stirlinglem14.2 𝐵 = (𝑛 ∈ ℕ ↦ (log‘(𝐴𝑛)))
Assertion
Ref Expression
stirlinglem14 𝑐 ∈ ℝ+ 𝐴𝑐
Distinct variable group:   𝐴,𝑐
Allowed substitution hints:   𝐴(𝑛)   𝐵(𝑛,𝑐)

Proof of Theorem stirlinglem14
Dummy variables 𝑑 𝑘 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 stirlinglem14.1 . . 3 𝐴 = (𝑛 ∈ ℕ ↦ ((!‘𝑛) / ((√‘(2 · 𝑛)) · ((𝑛 / e)↑𝑛))))
2 stirlinglem14.2 . . 3 𝐵 = (𝑛 ∈ ℕ ↦ (log‘(𝐴𝑛)))
31, 2stirlinglem13 46101 . 2 𝑑 ∈ ℝ 𝐵𝑑
4 simpl 482 . . . . 5 ((𝑑 ∈ ℝ ∧ 𝐵𝑑) → 𝑑 ∈ ℝ)
54rpefcld 16141 . . . 4 ((𝑑 ∈ ℝ ∧ 𝐵𝑑) → (exp‘𝑑) ∈ ℝ+)
6 nnuz 12921 . . . . . 6 ℕ = (ℤ‘1)
7 1zzd 12648 . . . . . 6 ((𝑑 ∈ ℝ ∧ 𝐵𝑑) → 1 ∈ ℤ)
8 efcn 26487 . . . . . . 7 exp ∈ (ℂ–cn→ℂ)
98a1i 11 . . . . . 6 ((𝑑 ∈ ℝ ∧ 𝐵𝑑) → exp ∈ (ℂ–cn→ℂ))
10 nnnn0 12533 . . . . . . . . . . . . 13 (𝑛 ∈ ℕ → 𝑛 ∈ ℕ0)
11 faccl 14322 . . . . . . . . . . . . 13 (𝑛 ∈ ℕ0 → (!‘𝑛) ∈ ℕ)
12 nncn 12274 . . . . . . . . . . . . 13 ((!‘𝑛) ∈ ℕ → (!‘𝑛) ∈ ℂ)
1310, 11, 123syl 18 . . . . . . . . . . . 12 (𝑛 ∈ ℕ → (!‘𝑛) ∈ ℂ)
14 2cnd 12344 . . . . . . . . . . . . . . 15 (𝑛 ∈ ℕ → 2 ∈ ℂ)
15 nncn 12274 . . . . . . . . . . . . . . 15 (𝑛 ∈ ℕ → 𝑛 ∈ ℂ)
1614, 15mulcld 11281 . . . . . . . . . . . . . 14 (𝑛 ∈ ℕ → (2 · 𝑛) ∈ ℂ)
1716sqrtcld 15476 . . . . . . . . . . . . 13 (𝑛 ∈ ℕ → (√‘(2 · 𝑛)) ∈ ℂ)
18 epr 16244 . . . . . . . . . . . . . . . . 17 e ∈ ℝ+
19 rpcn 13045 . . . . . . . . . . . . . . . . 17 (e ∈ ℝ+ → e ∈ ℂ)
2018, 19ax-mp 5 . . . . . . . . . . . . . . . 16 e ∈ ℂ
2120a1i 11 . . . . . . . . . . . . . . 15 (𝑛 ∈ ℕ → e ∈ ℂ)
22 0re 11263 . . . . . . . . . . . . . . . . 17 0 ∈ ℝ
23 epos 16243 . . . . . . . . . . . . . . . . 17 0 < e
2422, 23gtneii 11373 . . . . . . . . . . . . . . . 16 e ≠ 0
2524a1i 11 . . . . . . . . . . . . . . 15 (𝑛 ∈ ℕ → e ≠ 0)
2615, 21, 25divcld 12043 . . . . . . . . . . . . . 14 (𝑛 ∈ ℕ → (𝑛 / e) ∈ ℂ)
2726, 10expcld 14186 . . . . . . . . . . . . 13 (𝑛 ∈ ℕ → ((𝑛 / e)↑𝑛) ∈ ℂ)
2817, 27mulcld 11281 . . . . . . . . . . . 12 (𝑛 ∈ ℕ → ((√‘(2 · 𝑛)) · ((𝑛 / e)↑𝑛)) ∈ ℂ)
29 2rp 13039 . . . . . . . . . . . . . . . . 17 2 ∈ ℝ+
3029a1i 11 . . . . . . . . . . . . . . . 16 (𝑛 ∈ ℕ → 2 ∈ ℝ+)
31 nnrp 13046 . . . . . . . . . . . . . . . 16 (𝑛 ∈ ℕ → 𝑛 ∈ ℝ+)
3230, 31rpmulcld 13093 . . . . . . . . . . . . . . 15 (𝑛 ∈ ℕ → (2 · 𝑛) ∈ ℝ+)
3332sqrtgt0d 15451 . . . . . . . . . . . . . 14 (𝑛 ∈ ℕ → 0 < (√‘(2 · 𝑛)))
3433gt0ne0d 11827 . . . . . . . . . . . . 13 (𝑛 ∈ ℕ → (√‘(2 · 𝑛)) ≠ 0)
35 nnne0 12300 . . . . . . . . . . . . . . 15 (𝑛 ∈ ℕ → 𝑛 ≠ 0)
3615, 21, 35, 25divne0d 12059 . . . . . . . . . . . . . 14 (𝑛 ∈ ℕ → (𝑛 / e) ≠ 0)
37 nnz 12634 . . . . . . . . . . . . . 14 (𝑛 ∈ ℕ → 𝑛 ∈ ℤ)
3826, 36, 37expne0d 14192 . . . . . . . . . . . . 13 (𝑛 ∈ ℕ → ((𝑛 / e)↑𝑛) ≠ 0)
3917, 27, 34, 38mulne0d 11915 . . . . . . . . . . . 12 (𝑛 ∈ ℕ → ((√‘(2 · 𝑛)) · ((𝑛 / e)↑𝑛)) ≠ 0)
4013, 28, 39divcld 12043 . . . . . . . . . . 11 (𝑛 ∈ ℕ → ((!‘𝑛) / ((√‘(2 · 𝑛)) · ((𝑛 / e)↑𝑛))) ∈ ℂ)
411fvmpt2 7027 . . . . . . . . . . 11 ((𝑛 ∈ ℕ ∧ ((!‘𝑛) / ((√‘(2 · 𝑛)) · ((𝑛 / e)↑𝑛))) ∈ ℂ) → (𝐴𝑛) = ((!‘𝑛) / ((√‘(2 · 𝑛)) · ((𝑛 / e)↑𝑛))))
4240, 41mpdan 687 . . . . . . . . . 10 (𝑛 ∈ ℕ → (𝐴𝑛) = ((!‘𝑛) / ((√‘(2 · 𝑛)) · ((𝑛 / e)↑𝑛))))
4342, 40eqeltrd 2841 . . . . . . . . 9 (𝑛 ∈ ℕ → (𝐴𝑛) ∈ ℂ)
44 nnne0 12300 . . . . . . . . . . . 12 ((!‘𝑛) ∈ ℕ → (!‘𝑛) ≠ 0)
4510, 11, 443syl 18 . . . . . . . . . . 11 (𝑛 ∈ ℕ → (!‘𝑛) ≠ 0)
4613, 28, 45, 39divne0d 12059 . . . . . . . . . 10 (𝑛 ∈ ℕ → ((!‘𝑛) / ((√‘(2 · 𝑛)) · ((𝑛 / e)↑𝑛))) ≠ 0)
4742, 46eqnetrd 3008 . . . . . . . . 9 (𝑛 ∈ ℕ → (𝐴𝑛) ≠ 0)
4843, 47logcld 26612 . . . . . . . 8 (𝑛 ∈ ℕ → (log‘(𝐴𝑛)) ∈ ℂ)
492, 48fmpti 7132 . . . . . . 7 𝐵:ℕ⟶ℂ
5049a1i 11 . . . . . 6 ((𝑑 ∈ ℝ ∧ 𝐵𝑑) → 𝐵:ℕ⟶ℂ)
51 simpr 484 . . . . . 6 ((𝑑 ∈ ℝ ∧ 𝐵𝑑) → 𝐵𝑑)
524recnd 11289 . . . . . 6 ((𝑑 ∈ ℝ ∧ 𝐵𝑑) → 𝑑 ∈ ℂ)
536, 7, 9, 50, 51, 52climcncf 24926 . . . . 5 ((𝑑 ∈ ℝ ∧ 𝐵𝑑) → (exp ∘ 𝐵) ⇝ (exp‘𝑑))
548elexi 3503 . . . . . . . . 9 exp ∈ V
55 nnex 12272 . . . . . . . . . . 11 ℕ ∈ V
5655mptex 7243 . . . . . . . . . 10 (𝑛 ∈ ℕ ↦ (log‘(𝐴𝑛))) ∈ V
572, 56eqeltri 2837 . . . . . . . . 9 𝐵 ∈ V
5854, 57coex 7952 . . . . . . . 8 (exp ∘ 𝐵) ∈ V
5958a1i 11 . . . . . . 7 (⊤ → (exp ∘ 𝐵) ∈ V)
6055mptex 7243 . . . . . . . . 9 (𝑛 ∈ ℕ ↦ ((!‘𝑛) / ((√‘(2 · 𝑛)) · ((𝑛 / e)↑𝑛)))) ∈ V
611, 60eqeltri 2837 . . . . . . . 8 𝐴 ∈ V
6261a1i 11 . . . . . . 7 (⊤ → 𝐴 ∈ V)
63 1zzd 12648 . . . . . . 7 (⊤ → 1 ∈ ℤ)
642funmpt2 6605 . . . . . . . . . 10 Fun 𝐵
65 id 22 . . . . . . . . . . 11 (𝑘 ∈ ℕ → 𝑘 ∈ ℕ)
66 rabid2 3470 . . . . . . . . . . . . 13 (ℕ = {𝑛 ∈ ℕ ∣ (log‘(𝐴𝑛)) ∈ V} ↔ ∀𝑛 ∈ ℕ (log‘(𝐴𝑛)) ∈ V)
671stirlinglem2 46090 . . . . . . . . . . . . . 14 (𝑛 ∈ ℕ → (𝐴𝑛) ∈ ℝ+)
68 relogcl 26617 . . . . . . . . . . . . . 14 ((𝐴𝑛) ∈ ℝ+ → (log‘(𝐴𝑛)) ∈ ℝ)
69 elex 3501 . . . . . . . . . . . . . 14 ((log‘(𝐴𝑛)) ∈ ℝ → (log‘(𝐴𝑛)) ∈ V)
7067, 68, 693syl 18 . . . . . . . . . . . . 13 (𝑛 ∈ ℕ → (log‘(𝐴𝑛)) ∈ V)
7166, 70mprgbir 3068 . . . . . . . . . . . 12 ℕ = {𝑛 ∈ ℕ ∣ (log‘(𝐴𝑛)) ∈ V}
722dmmpt 6260 . . . . . . . . . . . 12 dom 𝐵 = {𝑛 ∈ ℕ ∣ (log‘(𝐴𝑛)) ∈ V}
7371, 72eqtr4i 2768 . . . . . . . . . . 11 ℕ = dom 𝐵
7465, 73eleqtrdi 2851 . . . . . . . . . 10 (𝑘 ∈ ℕ → 𝑘 ∈ dom 𝐵)
75 fvco 7007 . . . . . . . . . 10 ((Fun 𝐵𝑘 ∈ dom 𝐵) → ((exp ∘ 𝐵)‘𝑘) = (exp‘(𝐵𝑘)))
7664, 74, 75sylancr 587 . . . . . . . . 9 (𝑘 ∈ ℕ → ((exp ∘ 𝐵)‘𝑘) = (exp‘(𝐵𝑘)))
771a1i 11 . . . . . . . . . . . . . 14 (𝑘 ∈ ℕ → 𝐴 = (𝑛 ∈ ℕ ↦ ((!‘𝑛) / ((√‘(2 · 𝑛)) · ((𝑛 / e)↑𝑛)))))
78 simpr 484 . . . . . . . . . . . . . . . 16 ((𝑘 ∈ ℕ ∧ 𝑛 = 𝑘) → 𝑛 = 𝑘)
7978fveq2d 6910 . . . . . . . . . . . . . . 15 ((𝑘 ∈ ℕ ∧ 𝑛 = 𝑘) → (!‘𝑛) = (!‘𝑘))
8078oveq2d 7447 . . . . . . . . . . . . . . . . 17 ((𝑘 ∈ ℕ ∧ 𝑛 = 𝑘) → (2 · 𝑛) = (2 · 𝑘))
8180fveq2d 6910 . . . . . . . . . . . . . . . 16 ((𝑘 ∈ ℕ ∧ 𝑛 = 𝑘) → (√‘(2 · 𝑛)) = (√‘(2 · 𝑘)))
8278oveq1d 7446 . . . . . . . . . . . . . . . . 17 ((𝑘 ∈ ℕ ∧ 𝑛 = 𝑘) → (𝑛 / e) = (𝑘 / e))
8382, 78oveq12d 7449 . . . . . . . . . . . . . . . 16 ((𝑘 ∈ ℕ ∧ 𝑛 = 𝑘) → ((𝑛 / e)↑𝑛) = ((𝑘 / e)↑𝑘))
8481, 83oveq12d 7449 . . . . . . . . . . . . . . 15 ((𝑘 ∈ ℕ ∧ 𝑛 = 𝑘) → ((√‘(2 · 𝑛)) · ((𝑛 / e)↑𝑛)) = ((√‘(2 · 𝑘)) · ((𝑘 / e)↑𝑘)))
8579, 84oveq12d 7449 . . . . . . . . . . . . . 14 ((𝑘 ∈ ℕ ∧ 𝑛 = 𝑘) → ((!‘𝑛) / ((√‘(2 · 𝑛)) · ((𝑛 / e)↑𝑛))) = ((!‘𝑘) / ((√‘(2 · 𝑘)) · ((𝑘 / e)↑𝑘))))
86 nnnn0 12533 . . . . . . . . . . . . . . . 16 (𝑘 ∈ ℕ → 𝑘 ∈ ℕ0)
87 faccl 14322 . . . . . . . . . . . . . . . 16 (𝑘 ∈ ℕ0 → (!‘𝑘) ∈ ℕ)
88 nncn 12274 . . . . . . . . . . . . . . . 16 ((!‘𝑘) ∈ ℕ → (!‘𝑘) ∈ ℂ)
8986, 87, 883syl 18 . . . . . . . . . . . . . . 15 (𝑘 ∈ ℕ → (!‘𝑘) ∈ ℂ)
90 2cnd 12344 . . . . . . . . . . . . . . . . . 18 (𝑘 ∈ ℕ → 2 ∈ ℂ)
91 nncn 12274 . . . . . . . . . . . . . . . . . 18 (𝑘 ∈ ℕ → 𝑘 ∈ ℂ)
9290, 91mulcld 11281 . . . . . . . . . . . . . . . . 17 (𝑘 ∈ ℕ → (2 · 𝑘) ∈ ℂ)
9392sqrtcld 15476 . . . . . . . . . . . . . . . 16 (𝑘 ∈ ℕ → (√‘(2 · 𝑘)) ∈ ℂ)
9420a1i 11 . . . . . . . . . . . . . . . . . 18 (𝑘 ∈ ℕ → e ∈ ℂ)
9524a1i 11 . . . . . . . . . . . . . . . . . 18 (𝑘 ∈ ℕ → e ≠ 0)
9691, 94, 95divcld 12043 . . . . . . . . . . . . . . . . 17 (𝑘 ∈ ℕ → (𝑘 / e) ∈ ℂ)
9796, 86expcld 14186 . . . . . . . . . . . . . . . 16 (𝑘 ∈ ℕ → ((𝑘 / e)↑𝑘) ∈ ℂ)
9893, 97mulcld 11281 . . . . . . . . . . . . . . 15 (𝑘 ∈ ℕ → ((√‘(2 · 𝑘)) · ((𝑘 / e)↑𝑘)) ∈ ℂ)
9929a1i 11 . . . . . . . . . . . . . . . . . . 19 (𝑘 ∈ ℕ → 2 ∈ ℝ+)
100 nnrp 13046 . . . . . . . . . . . . . . . . . . 19 (𝑘 ∈ ℕ → 𝑘 ∈ ℝ+)
10199, 100rpmulcld 13093 . . . . . . . . . . . . . . . . . 18 (𝑘 ∈ ℕ → (2 · 𝑘) ∈ ℝ+)
102101sqrtgt0d 15451 . . . . . . . . . . . . . . . . 17 (𝑘 ∈ ℕ → 0 < (√‘(2 · 𝑘)))
103102gt0ne0d 11827 . . . . . . . . . . . . . . . 16 (𝑘 ∈ ℕ → (√‘(2 · 𝑘)) ≠ 0)
104 nnne0 12300 . . . . . . . . . . . . . . . . . 18 (𝑘 ∈ ℕ → 𝑘 ≠ 0)
10591, 94, 104, 95divne0d 12059 . . . . . . . . . . . . . . . . 17 (𝑘 ∈ ℕ → (𝑘 / e) ≠ 0)
106 nnz 12634 . . . . . . . . . . . . . . . . 17 (𝑘 ∈ ℕ → 𝑘 ∈ ℤ)
10796, 105, 106expne0d 14192 . . . . . . . . . . . . . . . 16 (𝑘 ∈ ℕ → ((𝑘 / e)↑𝑘) ≠ 0)
10893, 97, 103, 107mulne0d 11915 . . . . . . . . . . . . . . 15 (𝑘 ∈ ℕ → ((√‘(2 · 𝑘)) · ((𝑘 / e)↑𝑘)) ≠ 0)
10989, 98, 108divcld 12043 . . . . . . . . . . . . . 14 (𝑘 ∈ ℕ → ((!‘𝑘) / ((√‘(2 · 𝑘)) · ((𝑘 / e)↑𝑘))) ∈ ℂ)
11077, 85, 65, 109fvmptd 7023 . . . . . . . . . . . . 13 (𝑘 ∈ ℕ → (𝐴𝑘) = ((!‘𝑘) / ((√‘(2 · 𝑘)) · ((𝑘 / e)↑𝑘))))
111110, 109eqeltrd 2841 . . . . . . . . . . . 12 (𝑘 ∈ ℕ → (𝐴𝑘) ∈ ℂ)
112 nnne0 12300 . . . . . . . . . . . . . . 15 ((!‘𝑘) ∈ ℕ → (!‘𝑘) ≠ 0)
11386, 87, 1123syl 18 . . . . . . . . . . . . . 14 (𝑘 ∈ ℕ → (!‘𝑘) ≠ 0)
11489, 98, 113, 108divne0d 12059 . . . . . . . . . . . . 13 (𝑘 ∈ ℕ → ((!‘𝑘) / ((√‘(2 · 𝑘)) · ((𝑘 / e)↑𝑘))) ≠ 0)
115110, 114eqnetrd 3008 . . . . . . . . . . . 12 (𝑘 ∈ ℕ → (𝐴𝑘) ≠ 0)
116111, 115logcld 26612 . . . . . . . . . . 11 (𝑘 ∈ ℕ → (log‘(𝐴𝑘)) ∈ ℂ)
117 nfcv 2905 . . . . . . . . . . . 12 𝑛𝑘
118 nfcv 2905 . . . . . . . . . . . . 13 𝑛log
119 nfmpt1 5250 . . . . . . . . . . . . . . 15 𝑛(𝑛 ∈ ℕ ↦ ((!‘𝑛) / ((√‘(2 · 𝑛)) · ((𝑛 / e)↑𝑛))))
1201, 119nfcxfr 2903 . . . . . . . . . . . . . 14 𝑛𝐴
121120, 117nffv 6916 . . . . . . . . . . . . 13 𝑛(𝐴𝑘)
122118, 121nffv 6916 . . . . . . . . . . . 12 𝑛(log‘(𝐴𝑘))
123 2fveq3 6911 . . . . . . . . . . . 12 (𝑛 = 𝑘 → (log‘(𝐴𝑛)) = (log‘(𝐴𝑘)))
124117, 122, 123, 2fvmptf 7037 . . . . . . . . . . 11 ((𝑘 ∈ ℕ ∧ (log‘(𝐴𝑘)) ∈ ℂ) → (𝐵𝑘) = (log‘(𝐴𝑘)))
125116, 124mpdan 687 . . . . . . . . . 10 (𝑘 ∈ ℕ → (𝐵𝑘) = (log‘(𝐴𝑘)))
126125fveq2d 6910 . . . . . . . . 9 (𝑘 ∈ ℕ → (exp‘(𝐵𝑘)) = (exp‘(log‘(𝐴𝑘))))
127 eflog 26618 . . . . . . . . . 10 (((𝐴𝑘) ∈ ℂ ∧ (𝐴𝑘) ≠ 0) → (exp‘(log‘(𝐴𝑘))) = (𝐴𝑘))
128111, 115, 127syl2anc 584 . . . . . . . . 9 (𝑘 ∈ ℕ → (exp‘(log‘(𝐴𝑘))) = (𝐴𝑘))
12976, 126, 1283eqtrd 2781 . . . . . . . 8 (𝑘 ∈ ℕ → ((exp ∘ 𝐵)‘𝑘) = (𝐴𝑘))
130129adantl 481 . . . . . . 7 ((⊤ ∧ 𝑘 ∈ ℕ) → ((exp ∘ 𝐵)‘𝑘) = (𝐴𝑘))
1316, 59, 62, 63, 130climeq 15603 . . . . . 6 (⊤ → ((exp ∘ 𝐵) ⇝ (exp‘𝑑) ↔ 𝐴 ⇝ (exp‘𝑑)))
132131mptru 1547 . . . . 5 ((exp ∘ 𝐵) ⇝ (exp‘𝑑) ↔ 𝐴 ⇝ (exp‘𝑑))
13353, 132sylib 218 . . . 4 ((𝑑 ∈ ℝ ∧ 𝐵𝑑) → 𝐴 ⇝ (exp‘𝑑))
134 breq2 5147 . . . . 5 (𝑐 = (exp‘𝑑) → (𝐴𝑐𝐴 ⇝ (exp‘𝑑)))
135134rspcev 3622 . . . 4 (((exp‘𝑑) ∈ ℝ+𝐴 ⇝ (exp‘𝑑)) → ∃𝑐 ∈ ℝ+ 𝐴𝑐)
1365, 133, 135syl2anc 584 . . 3 ((𝑑 ∈ ℝ ∧ 𝐵𝑑) → ∃𝑐 ∈ ℝ+ 𝐴𝑐)
137136rexlimiva 3147 . 2 (∃𝑑 ∈ ℝ 𝐵𝑑 → ∃𝑐 ∈ ℝ+ 𝐴𝑐)
1383, 137ax-mp 5 1 𝑐 ∈ ℝ+ 𝐴𝑐
Colors of variables: wff setvar class
Syntax hints:  wb 206  wa 395   = wceq 1540  wtru 1541  wcel 2108  wne 2940  wrex 3070  {crab 3436  Vcvv 3480   class class class wbr 5143  cmpt 5225  dom cdm 5685  ccom 5689  Fun wfun 6555  wf 6557  cfv 6561  (class class class)co 7431  cc 11153  cr 11154  0cc0 11155  1c1 11156   · cmul 11160   / cdiv 11920  cn 12266  2c2 12321  0cn0 12526  +crp 13034  cexp 14102  !cfa 14312  csqrt 15272  cli 15520  expce 16097  eceu 16098  cnccncf 24902  logclog 26596
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2708  ax-rep 5279  ax-sep 5296  ax-nul 5306  ax-pow 5365  ax-pr 5432  ax-un 7755  ax-inf2 9681  ax-cnex 11211  ax-resscn 11212  ax-1cn 11213  ax-icn 11214  ax-addcl 11215  ax-addrcl 11216  ax-mulcl 11217  ax-mulrcl 11218  ax-mulcom 11219  ax-addass 11220  ax-mulass 11221  ax-distr 11222  ax-i2m1 11223  ax-1ne0 11224  ax-1rid 11225  ax-rnegex 11226  ax-rrecex 11227  ax-cnre 11228  ax-pre-lttri 11229  ax-pre-lttrn 11230  ax-pre-ltadd 11231  ax-pre-mulgt0 11232  ax-pre-sup 11233  ax-addf 11234
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3or 1088  df-3an 1089  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2892  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-rmo 3380  df-reu 3381  df-rab 3437  df-v 3482  df-sbc 3789  df-csb 3900  df-dif 3954  df-un 3956  df-in 3958  df-ss 3968  df-pss 3971  df-nul 4334  df-if 4526  df-pw 4602  df-sn 4627  df-pr 4629  df-tp 4631  df-op 4633  df-uni 4908  df-int 4947  df-iun 4993  df-iin 4994  df-br 5144  df-opab 5206  df-mpt 5226  df-tr 5260  df-id 5578  df-eprel 5584  df-po 5592  df-so 5593  df-fr 5637  df-se 5638  df-we 5639  df-xp 5691  df-rel 5692  df-cnv 5693  df-co 5694  df-dm 5695  df-rn 5696  df-res 5697  df-ima 5698  df-pred 6321  df-ord 6387  df-on 6388  df-lim 6389  df-suc 6390  df-iota 6514  df-fun 6563  df-fn 6564  df-f 6565  df-f1 6566  df-fo 6567  df-f1o 6568  df-fv 6569  df-isom 6570  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-of 7697  df-om 7888  df-1st 8014  df-2nd 8015  df-supp 8186  df-frecs 8306  df-wrecs 8337  df-recs 8411  df-rdg 8450  df-1o 8506  df-2o 8507  df-oadd 8510  df-er 8745  df-map 8868  df-pm 8869  df-ixp 8938  df-en 8986  df-dom 8987  df-sdom 8988  df-fin 8989  df-fsupp 9402  df-fi 9451  df-sup 9482  df-inf 9483  df-oi 9550  df-card 9979  df-pnf 11297  df-mnf 11298  df-xr 11299  df-ltxr 11300  df-le 11301  df-sub 11494  df-neg 11495  df-div 11921  df-nn 12267  df-2 12329  df-3 12330  df-4 12331  df-5 12332  df-6 12333  df-7 12334  df-8 12335  df-9 12336  df-n0 12527  df-xnn0 12600  df-z 12614  df-dec 12734  df-uz 12879  df-q 12991  df-rp 13035  df-xneg 13154  df-xadd 13155  df-xmul 13156  df-ioo 13391  df-ioc 13392  df-ico 13393  df-icc 13394  df-fz 13548  df-fzo 13695  df-fl 13832  df-mod 13910  df-seq 14043  df-exp 14103  df-fac 14313  df-bc 14342  df-hash 14370  df-shft 15106  df-cj 15138  df-re 15139  df-im 15140  df-sqrt 15274  df-abs 15275  df-limsup 15507  df-clim 15524  df-rlim 15525  df-sum 15723  df-ef 16103  df-e 16104  df-sin 16105  df-cos 16106  df-tan 16107  df-pi 16108  df-dvds 16291  df-struct 17184  df-sets 17201  df-slot 17219  df-ndx 17231  df-base 17248  df-ress 17275  df-plusg 17310  df-mulr 17311  df-starv 17312  df-sca 17313  df-vsca 17314  df-ip 17315  df-tset 17316  df-ple 17317  df-ds 17319  df-unif 17320  df-hom 17321  df-cco 17322  df-rest 17467  df-topn 17468  df-0g 17486  df-gsum 17487  df-topgen 17488  df-pt 17489  df-prds 17492  df-xrs 17547  df-qtop 17552  df-imas 17553  df-xps 17555  df-mre 17629  df-mrc 17630  df-acs 17632  df-mgm 18653  df-sgrp 18732  df-mnd 18748  df-submnd 18797  df-mulg 19086  df-cntz 19335  df-cmn 19800  df-psmet 21356  df-xmet 21357  df-met 21358  df-bl 21359  df-mopn 21360  df-fbas 21361  df-fg 21362  df-cnfld 21365  df-top 22900  df-topon 22917  df-topsp 22939  df-bases 22953  df-cld 23027  df-ntr 23028  df-cls 23029  df-nei 23106  df-lp 23144  df-perf 23145  df-cn 23235  df-cnp 23236  df-haus 23323  df-cmp 23395  df-tx 23570  df-hmeo 23763  df-fil 23854  df-fm 23946  df-flim 23947  df-flf 23948  df-xms 24330  df-ms 24331  df-tms 24332  df-cncf 24904  df-limc 25901  df-dv 25902  df-ulm 26420  df-log 26598  df-cxp 26599
This theorem is referenced by:  stirling  46104
  Copyright terms: Public domain W3C validator