Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > elpi1i | Structured version Visualization version GIF version |
Description: The elements of the fundamental group. (Contributed by Jeff Madsen, 19-Jun-2010.) (Revised by Mario Carneiro, 10-Jul-2015.) |
Ref | Expression |
---|---|
elpi1.g | ⊢ 𝐺 = (𝐽 π1 𝑌) |
elpi1.b | ⊢ 𝐵 = (Base‘𝐺) |
elpi1.1 | ⊢ (𝜑 → 𝐽 ∈ (TopOn‘𝑋)) |
elpi1.2 | ⊢ (𝜑 → 𝑌 ∈ 𝑋) |
elpi1i.3 | ⊢ (𝜑 → 𝐹 ∈ (II Cn 𝐽)) |
elpi1i.4 | ⊢ (𝜑 → (𝐹‘0) = 𝑌) |
elpi1i.5 | ⊢ (𝜑 → (𝐹‘1) = 𝑌) |
Ref | Expression |
---|---|
elpi1i | ⊢ (𝜑 → [𝐹]( ≃ph‘𝐽) ∈ 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elpi1i.3 | . . 3 ⊢ (𝜑 → 𝐹 ∈ (II Cn 𝐽)) | |
2 | elpi1i.4 | . . 3 ⊢ (𝜑 → (𝐹‘0) = 𝑌) | |
3 | elpi1i.5 | . . 3 ⊢ (𝜑 → (𝐹‘1) = 𝑌) | |
4 | eceq1 8452 | . . . . . . 7 ⊢ (𝑓 = 𝐹 → [𝑓]( ≃ph‘𝐽) = [𝐹]( ≃ph‘𝐽)) | |
5 | 4 | eqcomd 2745 | . . . . . 6 ⊢ (𝑓 = 𝐹 → [𝐹]( ≃ph‘𝐽) = [𝑓]( ≃ph‘𝐽)) |
6 | 5 | biantrud 535 | . . . . 5 ⊢ (𝑓 = 𝐹 → (((𝑓‘0) = 𝑌 ∧ (𝑓‘1) = 𝑌) ↔ (((𝑓‘0) = 𝑌 ∧ (𝑓‘1) = 𝑌) ∧ [𝐹]( ≃ph‘𝐽) = [𝑓]( ≃ph‘𝐽)))) |
7 | fveq1 6737 | . . . . . . 7 ⊢ (𝑓 = 𝐹 → (𝑓‘0) = (𝐹‘0)) | |
8 | 7 | eqeq1d 2741 | . . . . . 6 ⊢ (𝑓 = 𝐹 → ((𝑓‘0) = 𝑌 ↔ (𝐹‘0) = 𝑌)) |
9 | fveq1 6737 | . . . . . . 7 ⊢ (𝑓 = 𝐹 → (𝑓‘1) = (𝐹‘1)) | |
10 | 9 | eqeq1d 2741 | . . . . . 6 ⊢ (𝑓 = 𝐹 → ((𝑓‘1) = 𝑌 ↔ (𝐹‘1) = 𝑌)) |
11 | 8, 10 | anbi12d 634 | . . . . 5 ⊢ (𝑓 = 𝐹 → (((𝑓‘0) = 𝑌 ∧ (𝑓‘1) = 𝑌) ↔ ((𝐹‘0) = 𝑌 ∧ (𝐹‘1) = 𝑌))) |
12 | 6, 11 | bitr3d 284 | . . . 4 ⊢ (𝑓 = 𝐹 → ((((𝑓‘0) = 𝑌 ∧ (𝑓‘1) = 𝑌) ∧ [𝐹]( ≃ph‘𝐽) = [𝑓]( ≃ph‘𝐽)) ↔ ((𝐹‘0) = 𝑌 ∧ (𝐹‘1) = 𝑌))) |
13 | 12 | rspcev 3552 | . . 3 ⊢ ((𝐹 ∈ (II Cn 𝐽) ∧ ((𝐹‘0) = 𝑌 ∧ (𝐹‘1) = 𝑌)) → ∃𝑓 ∈ (II Cn 𝐽)(((𝑓‘0) = 𝑌 ∧ (𝑓‘1) = 𝑌) ∧ [𝐹]( ≃ph‘𝐽) = [𝑓]( ≃ph‘𝐽))) |
14 | 1, 2, 3, 13 | syl12anc 837 | . 2 ⊢ (𝜑 → ∃𝑓 ∈ (II Cn 𝐽)(((𝑓‘0) = 𝑌 ∧ (𝑓‘1) = 𝑌) ∧ [𝐹]( ≃ph‘𝐽) = [𝑓]( ≃ph‘𝐽))) |
15 | elpi1.g | . . 3 ⊢ 𝐺 = (𝐽 π1 𝑌) | |
16 | elpi1.b | . . 3 ⊢ 𝐵 = (Base‘𝐺) | |
17 | elpi1.1 | . . 3 ⊢ (𝜑 → 𝐽 ∈ (TopOn‘𝑋)) | |
18 | elpi1.2 | . . 3 ⊢ (𝜑 → 𝑌 ∈ 𝑋) | |
19 | 15, 16, 17, 18 | elpi1 23973 | . 2 ⊢ (𝜑 → ([𝐹]( ≃ph‘𝐽) ∈ 𝐵 ↔ ∃𝑓 ∈ (II Cn 𝐽)(((𝑓‘0) = 𝑌 ∧ (𝑓‘1) = 𝑌) ∧ [𝐹]( ≃ph‘𝐽) = [𝑓]( ≃ph‘𝐽)))) |
20 | 14, 19 | mpbird 260 | 1 ⊢ (𝜑 → [𝐹]( ≃ph‘𝐽) ∈ 𝐵) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 399 = wceq 1543 ∈ wcel 2112 ∃wrex 3065 ‘cfv 6400 (class class class)co 7234 [cec 8412 0cc0 10758 1c1 10759 Basecbs 16792 TopOnctopon 21838 Cn ccn 22152 IIcii 23803 ≃phcphtpc 23897 π1 cpi1 23931 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1803 ax-4 1817 ax-5 1918 ax-6 1976 ax-7 2016 ax-8 2114 ax-9 2122 ax-10 2143 ax-11 2160 ax-12 2177 ax-ext 2710 ax-rep 5195 ax-sep 5208 ax-nul 5215 ax-pow 5274 ax-pr 5338 ax-un 7544 ax-cnex 10814 ax-resscn 10815 ax-1cn 10816 ax-icn 10817 ax-addcl 10818 ax-addrcl 10819 ax-mulcl 10820 ax-mulrcl 10821 ax-mulcom 10822 ax-addass 10823 ax-mulass 10824 ax-distr 10825 ax-i2m1 10826 ax-1ne0 10827 ax-1rid 10828 ax-rnegex 10829 ax-rrecex 10830 ax-cnre 10831 ax-pre-lttri 10832 ax-pre-lttrn 10833 ax-pre-ltadd 10834 ax-pre-mulgt0 10835 ax-pre-sup 10836 ax-mulf 10838 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 848 df-3or 1090 df-3an 1091 df-tru 1546 df-fal 1556 df-ex 1788 df-nf 1792 df-sb 2073 df-mo 2541 df-eu 2570 df-clab 2717 df-cleq 2731 df-clel 2818 df-nfc 2889 df-ne 2944 df-nel 3050 df-ral 3069 df-rex 3070 df-reu 3071 df-rmo 3072 df-rab 3073 df-v 3425 df-sbc 3712 df-csb 3829 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-pss 3902 df-nul 4254 df-if 4456 df-pw 4531 df-sn 4558 df-pr 4560 df-tp 4562 df-op 4564 df-uni 4836 df-int 4876 df-iun 4922 df-iin 4923 df-br 5070 df-opab 5132 df-mpt 5152 df-tr 5178 df-id 5471 df-eprel 5477 df-po 5485 df-so 5486 df-fr 5526 df-se 5527 df-we 5528 df-xp 5574 df-rel 5575 df-cnv 5576 df-co 5577 df-dm 5578 df-rn 5579 df-res 5580 df-ima 5581 df-pred 6178 df-ord 6236 df-on 6237 df-lim 6238 df-suc 6239 df-iota 6358 df-fun 6402 df-fn 6403 df-f 6404 df-f1 6405 df-fo 6406 df-f1o 6407 df-fv 6408 df-isom 6409 df-riota 7191 df-ov 7237 df-oprab 7238 df-mpo 7239 df-of 7490 df-om 7666 df-1st 7782 df-2nd 7783 df-supp 7927 df-wrecs 8070 df-recs 8131 df-rdg 8169 df-1o 8225 df-2o 8226 df-er 8414 df-ec 8416 df-qs 8420 df-map 8533 df-ixp 8602 df-en 8650 df-dom 8651 df-sdom 8652 df-fin 8653 df-fsupp 9015 df-fi 9056 df-sup 9087 df-inf 9088 df-oi 9155 df-card 9584 df-pnf 10898 df-mnf 10899 df-xr 10900 df-ltxr 10901 df-le 10902 df-sub 11093 df-neg 11094 df-div 11519 df-nn 11860 df-2 11922 df-3 11923 df-4 11924 df-5 11925 df-6 11926 df-7 11927 df-8 11928 df-9 11929 df-n0 12120 df-z 12206 df-dec 12323 df-uz 12468 df-q 12574 df-rp 12616 df-xneg 12733 df-xadd 12734 df-xmul 12735 df-ioo 12968 df-icc 12971 df-fz 13125 df-fzo 13268 df-seq 13606 df-exp 13667 df-hash 13929 df-cj 14694 df-re 14695 df-im 14696 df-sqrt 14830 df-abs 14831 df-struct 16732 df-sets 16749 df-slot 16767 df-ndx 16777 df-base 16793 df-ress 16817 df-plusg 16847 df-mulr 16848 df-starv 16849 df-sca 16850 df-vsca 16851 df-ip 16852 df-tset 16853 df-ple 16854 df-ds 16856 df-unif 16857 df-hom 16858 df-cco 16859 df-rest 16959 df-topn 16960 df-0g 16978 df-gsum 16979 df-topgen 16980 df-pt 16981 df-prds 16984 df-xrs 17039 df-qtop 17044 df-imas 17045 df-qus 17046 df-xps 17047 df-mre 17121 df-mrc 17122 df-acs 17124 df-mgm 18146 df-sgrp 18195 df-mnd 18206 df-submnd 18251 df-mulg 18521 df-cntz 18743 df-cmn 19204 df-psmet 20387 df-xmet 20388 df-met 20389 df-bl 20390 df-mopn 20391 df-cnfld 20396 df-top 21822 df-topon 21839 df-topsp 21861 df-bases 21874 df-cld 21947 df-cn 22155 df-cnp 22156 df-tx 22490 df-hmeo 22683 df-xms 23249 df-ms 23250 df-tms 23251 df-ii 23805 df-htpy 23898 df-phtpy 23899 df-phtpc 23920 df-om1 23934 df-pi1 23936 |
This theorem is referenced by: pi1inv 23980 pi1xfrf 23981 pi1cof 23987 sconnpi1 32944 |
Copyright terms: Public domain | W3C validator |