MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pzriprnglem12 Structured version   Visualization version   GIF version

Theorem pzriprnglem12 21402
Description: Lemma 12 for pzriprng 21407: 𝑄 has a ring unity. (Contributed by AV, 23-Mar-2025.)
Hypotheses
Ref Expression
pzriprng.r 𝑅 = (ℤring ×sring)
pzriprng.i 𝐼 = (ℤ × {0})
pzriprng.j 𝐽 = (𝑅s 𝐼)
pzriprng.1 1 = (1r𝐽)
pzriprng.g = (𝑅 ~QG 𝐼)
pzriprng.q 𝑄 = (𝑅 /s )
Assertion
Ref Expression
pzriprnglem12 (𝑋 ∈ (Base‘𝑄) → (((ℤ × {1})(.r𝑄)𝑋) = 𝑋 ∧ (𝑋(.r𝑄)(ℤ × {1})) = 𝑋))

Proof of Theorem pzriprnglem12
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 pzriprng.r . . . . 5 𝑅 = (ℤring ×sring)
2 pzriprng.i . . . . 5 𝐼 = (ℤ × {0})
3 pzriprng.j . . . . 5 𝐽 = (𝑅s 𝐼)
4 pzriprng.1 . . . . 5 1 = (1r𝐽)
5 pzriprng.g . . . . 5 = (𝑅 ~QG 𝐼)
6 pzriprng.q . . . . 5 𝑄 = (𝑅 /s )
71, 2, 3, 4, 5, 6pzriprnglem11 21401 . . . 4 (Base‘𝑄) = 𝑦 ∈ ℤ {(ℤ × {𝑦})}
87eleq2i 2820 . . 3 (𝑋 ∈ (Base‘𝑄) ↔ 𝑋 𝑦 ∈ ℤ {(ℤ × {𝑦})})
9 eliun 4959 . . 3 (𝑋 𝑦 ∈ ℤ {(ℤ × {𝑦})} ↔ ∃𝑦 ∈ ℤ 𝑋 ∈ {(ℤ × {𝑦})})
108, 9bitri 275 . 2 (𝑋 ∈ (Base‘𝑄) ↔ ∃𝑦 ∈ ℤ 𝑋 ∈ {(ℤ × {𝑦})})
11 elsni 4606 . . . 4 (𝑋 ∈ {(ℤ × {𝑦})} → 𝑋 = (ℤ × {𝑦}))
12 1z 12563 . . . . . . . 8 1 ∈ ℤ
131, 2, 3, 4, 5pzriprnglem10 21400 . . . . . . . 8 ((1 ∈ ℤ ∧ 𝑦 ∈ ℤ) → [⟨1, 𝑦⟩] = (ℤ × {𝑦}))
1412, 13mpan 690 . . . . . . 7 (𝑦 ∈ ℤ → [⟨1, 𝑦⟩] = (ℤ × {𝑦}))
1514eqcomd 2735 . . . . . 6 (𝑦 ∈ ℤ → (ℤ × {𝑦}) = [⟨1, 𝑦⟩] )
1615eqeq2d 2740 . . . . 5 (𝑦 ∈ ℤ → (𝑋 = (ℤ × {𝑦}) ↔ 𝑋 = [⟨1, 𝑦⟩] ))
171pzriprnglem1 21391 . . . . . . . . . 10 𝑅 ∈ Rng
1817a1i 11 . . . . . . . . 9 (𝑦 ∈ ℤ → 𝑅 ∈ Rng)
191, 2, 3pzriprnglem8 21398 . . . . . . . . . 10 𝐼 ∈ (2Ideal‘𝑅)
2019a1i 11 . . . . . . . . 9 (𝑦 ∈ ℤ → 𝐼 ∈ (2Ideal‘𝑅))
211, 2pzriprnglem4 21394 . . . . . . . . . 10 𝐼 ∈ (SubGrp‘𝑅)
2221a1i 11 . . . . . . . . 9 (𝑦 ∈ ℤ → 𝐼 ∈ (SubGrp‘𝑅))
2312a1i 11 . . . . . . . . . 10 (𝑦 ∈ ℤ → 1 ∈ ℤ)
2423, 23opelxpd 5677 . . . . . . . . 9 (𝑦 ∈ ℤ → ⟨1, 1⟩ ∈ (ℤ × ℤ))
25 id 22 . . . . . . . . . 10 (𝑦 ∈ ℤ → 𝑦 ∈ ℤ)
2623, 25opelxpd 5677 . . . . . . . . 9 (𝑦 ∈ ℤ → ⟨1, 𝑦⟩ ∈ (ℤ × ℤ))
271pzriprnglem2 21392 . . . . . . . . . . 11 (Base‘𝑅) = (ℤ × ℤ)
2827eqcomi 2738 . . . . . . . . . 10 (ℤ × ℤ) = (Base‘𝑅)
29 eqid 2729 . . . . . . . . . 10 (.r𝑅) = (.r𝑅)
30 eqid 2729 . . . . . . . . . 10 (.r𝑄) = (.r𝑄)
315, 6, 28, 29, 30qusmulrng 21192 . . . . . . . . 9 (((𝑅 ∈ Rng ∧ 𝐼 ∈ (2Ideal‘𝑅) ∧ 𝐼 ∈ (SubGrp‘𝑅)) ∧ (⟨1, 1⟩ ∈ (ℤ × ℤ) ∧ ⟨1, 𝑦⟩ ∈ (ℤ × ℤ))) → ([⟨1, 1⟩] (.r𝑄)[⟨1, 𝑦⟩] ) = [(⟨1, 1⟩(.r𝑅)⟨1, 𝑦⟩)] )
3218, 20, 22, 24, 26, 31syl32anc 1380 . . . . . . . 8 (𝑦 ∈ ℤ → ([⟨1, 1⟩] (.r𝑄)[⟨1, 𝑦⟩] ) = [(⟨1, 1⟩(.r𝑅)⟨1, 𝑦⟩)] )
33 zringbas 21363 . . . . . . . . . . 11 ℤ = (Base‘ℤring)
34 zringring 21359 . . . . . . . . . . . 12 ring ∈ Ring
3534a1i 11 . . . . . . . . . . 11 (𝑦 ∈ ℤ → ℤring ∈ Ring)
3623, 23zmulcld 12644 . . . . . . . . . . 11 (𝑦 ∈ ℤ → (1 · 1) ∈ ℤ)
3723, 25zmulcld 12644 . . . . . . . . . . 11 (𝑦 ∈ ℤ → (1 · 𝑦) ∈ ℤ)
38 zringmulr 21367 . . . . . . . . . . 11 · = (.r‘ℤring)
391, 33, 33, 35, 35, 23, 23, 23, 25, 36, 37, 38, 38, 29xpsmul 17538 . . . . . . . . . 10 (𝑦 ∈ ℤ → (⟨1, 1⟩(.r𝑅)⟨1, 𝑦⟩) = ⟨(1 · 1), (1 · 𝑦)⟩)
40 1cnd 11169 . . . . . . . . . . . 12 (𝑦 ∈ ℤ → 1 ∈ ℂ)
4140mulridd 11191 . . . . . . . . . . 11 (𝑦 ∈ ℤ → (1 · 1) = 1)
42 zcn 12534 . . . . . . . . . . . 12 (𝑦 ∈ ℤ → 𝑦 ∈ ℂ)
4342mullidd 11192 . . . . . . . . . . 11 (𝑦 ∈ ℤ → (1 · 𝑦) = 𝑦)
4441, 43opeq12d 4845 . . . . . . . . . 10 (𝑦 ∈ ℤ → ⟨(1 · 1), (1 · 𝑦)⟩ = ⟨1, 𝑦⟩)
4539, 44eqtrd 2764 . . . . . . . . 9 (𝑦 ∈ ℤ → (⟨1, 1⟩(.r𝑅)⟨1, 𝑦⟩) = ⟨1, 𝑦⟩)
4645eceq1d 8711 . . . . . . . 8 (𝑦 ∈ ℤ → [(⟨1, 1⟩(.r𝑅)⟨1, 𝑦⟩)] = [⟨1, 𝑦⟩] )
4732, 46eqtrd 2764 . . . . . . 7 (𝑦 ∈ ℤ → ([⟨1, 1⟩] (.r𝑄)[⟨1, 𝑦⟩] ) = [⟨1, 𝑦⟩] )
485, 6, 28, 29, 30qusmulrng 21192 . . . . . . . . 9 (((𝑅 ∈ Rng ∧ 𝐼 ∈ (2Ideal‘𝑅) ∧ 𝐼 ∈ (SubGrp‘𝑅)) ∧ (⟨1, 𝑦⟩ ∈ (ℤ × ℤ) ∧ ⟨1, 1⟩ ∈ (ℤ × ℤ))) → ([⟨1, 𝑦⟩] (.r𝑄)[⟨1, 1⟩] ) = [(⟨1, 𝑦⟩(.r𝑅)⟨1, 1⟩)] )
4918, 20, 22, 26, 24, 48syl32anc 1380 . . . . . . . 8 (𝑦 ∈ ℤ → ([⟨1, 𝑦⟩] (.r𝑄)[⟨1, 1⟩] ) = [(⟨1, 𝑦⟩(.r𝑅)⟨1, 1⟩)] )
5025, 23zmulcld 12644 . . . . . . . . . . 11 (𝑦 ∈ ℤ → (𝑦 · 1) ∈ ℤ)
511, 33, 33, 35, 35, 23, 25, 23, 23, 36, 50, 38, 38, 29xpsmul 17538 . . . . . . . . . 10 (𝑦 ∈ ℤ → (⟨1, 𝑦⟩(.r𝑅)⟨1, 1⟩) = ⟨(1 · 1), (𝑦 · 1)⟩)
5242mulridd 11191 . . . . . . . . . . 11 (𝑦 ∈ ℤ → (𝑦 · 1) = 𝑦)
5341, 52opeq12d 4845 . . . . . . . . . 10 (𝑦 ∈ ℤ → ⟨(1 · 1), (𝑦 · 1)⟩ = ⟨1, 𝑦⟩)
5451, 53eqtrd 2764 . . . . . . . . 9 (𝑦 ∈ ℤ → (⟨1, 𝑦⟩(.r𝑅)⟨1, 1⟩) = ⟨1, 𝑦⟩)
5554eceq1d 8711 . . . . . . . 8 (𝑦 ∈ ℤ → [(⟨1, 𝑦⟩(.r𝑅)⟨1, 1⟩)] = [⟨1, 𝑦⟩] )
5649, 55eqtrd 2764 . . . . . . 7 (𝑦 ∈ ℤ → ([⟨1, 𝑦⟩] (.r𝑄)[⟨1, 1⟩] ) = [⟨1, 𝑦⟩] )
5747, 56jca 511 . . . . . 6 (𝑦 ∈ ℤ → (([⟨1, 1⟩] (.r𝑄)[⟨1, 𝑦⟩] ) = [⟨1, 𝑦⟩] ∧ ([⟨1, 𝑦⟩] (.r𝑄)[⟨1, 1⟩] ) = [⟨1, 𝑦⟩] ))
581, 2, 3, 4, 5pzriprnglem10 21400 . . . . . . . . . . . 12 ((1 ∈ ℤ ∧ 1 ∈ ℤ) → [⟨1, 1⟩] = (ℤ × {1}))
5912, 12, 58mp2an 692 . . . . . . . . . . 11 [⟨1, 1⟩] = (ℤ × {1})
6059eqcomi 2738 . . . . . . . . . 10 (ℤ × {1}) = [⟨1, 1⟩]
6160a1i 11 . . . . . . . . 9 (𝑋 = [⟨1, 𝑦⟩] → (ℤ × {1}) = [⟨1, 1⟩] )
62 id 22 . . . . . . . . 9 (𝑋 = [⟨1, 𝑦⟩] 𝑋 = [⟨1, 𝑦⟩] )
6361, 62oveq12d 7405 . . . . . . . 8 (𝑋 = [⟨1, 𝑦⟩] → ((ℤ × {1})(.r𝑄)𝑋) = ([⟨1, 1⟩] (.r𝑄)[⟨1, 𝑦⟩] ))
6463, 62eqeq12d 2745 . . . . . . 7 (𝑋 = [⟨1, 𝑦⟩] → (((ℤ × {1})(.r𝑄)𝑋) = 𝑋 ↔ ([⟨1, 1⟩] (.r𝑄)[⟨1, 𝑦⟩] ) = [⟨1, 𝑦⟩] ))
6562, 61oveq12d 7405 . . . . . . . 8 (𝑋 = [⟨1, 𝑦⟩] → (𝑋(.r𝑄)(ℤ × {1})) = ([⟨1, 𝑦⟩] (.r𝑄)[⟨1, 1⟩] ))
6665, 62eqeq12d 2745 . . . . . . 7 (𝑋 = [⟨1, 𝑦⟩] → ((𝑋(.r𝑄)(ℤ × {1})) = 𝑋 ↔ ([⟨1, 𝑦⟩] (.r𝑄)[⟨1, 1⟩] ) = [⟨1, 𝑦⟩] ))
6764, 66anbi12d 632 . . . . . 6 (𝑋 = [⟨1, 𝑦⟩] → ((((ℤ × {1})(.r𝑄)𝑋) = 𝑋 ∧ (𝑋(.r𝑄)(ℤ × {1})) = 𝑋) ↔ (([⟨1, 1⟩] (.r𝑄)[⟨1, 𝑦⟩] ) = [⟨1, 𝑦⟩] ∧ ([⟨1, 𝑦⟩] (.r𝑄)[⟨1, 1⟩] ) = [⟨1, 𝑦⟩] )))
6857, 67syl5ibrcom 247 . . . . 5 (𝑦 ∈ ℤ → (𝑋 = [⟨1, 𝑦⟩] → (((ℤ × {1})(.r𝑄)𝑋) = 𝑋 ∧ (𝑋(.r𝑄)(ℤ × {1})) = 𝑋)))
6916, 68sylbid 240 . . . 4 (𝑦 ∈ ℤ → (𝑋 = (ℤ × {𝑦}) → (((ℤ × {1})(.r𝑄)𝑋) = 𝑋 ∧ (𝑋(.r𝑄)(ℤ × {1})) = 𝑋)))
7011, 69syl5 34 . . 3 (𝑦 ∈ ℤ → (𝑋 ∈ {(ℤ × {𝑦})} → (((ℤ × {1})(.r𝑄)𝑋) = 𝑋 ∧ (𝑋(.r𝑄)(ℤ × {1})) = 𝑋)))
7170rexlimiv 3127 . 2 (∃𝑦 ∈ ℤ 𝑋 ∈ {(ℤ × {𝑦})} → (((ℤ × {1})(.r𝑄)𝑋) = 𝑋 ∧ (𝑋(.r𝑄)(ℤ × {1})) = 𝑋))
7210, 71sylbi 217 1 (𝑋 ∈ (Base‘𝑄) → (((ℤ × {1})(.r𝑄)𝑋) = 𝑋 ∧ (𝑋(.r𝑄)(ℤ × {1})) = 𝑋))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2109  wrex 3053  {csn 4589  cop 4595   ciun 4955   × cxp 5636  cfv 6511  (class class class)co 7387  [cec 8669  0cc0 11068  1c1 11069   · cmul 11073  cz 12529  Basecbs 17179  s cress 17200  .rcmulr 17221   /s cqus 17468   ×s cxps 17469  SubGrpcsubg 19052   ~QG cqg 19054  Rngcrng 20061  1rcur 20090  Ringcrg 20142  2Idealc2idl 21159  ringczring 21356
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5234  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387  ax-un 7711  ax-cnex 11124  ax-resscn 11125  ax-1cn 11126  ax-icn 11127  ax-addcl 11128  ax-addrcl 11129  ax-mulcl 11130  ax-mulrcl 11131  ax-mulcom 11132  ax-addass 11133  ax-mulass 11134  ax-distr 11135  ax-i2m1 11136  ax-1ne0 11137  ax-1rid 11138  ax-rnegex 11139  ax-rrecex 11140  ax-cnre 11141  ax-pre-lttri 11142  ax-pre-lttrn 11143  ax-pre-ltadd 11144  ax-pre-mulgt0 11145  ax-addf 11147  ax-mulf 11148
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3354  df-reu 3355  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-pss 3934  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-tp 4594  df-op 4596  df-uni 4872  df-iun 4957  df-br 5108  df-opab 5170  df-mpt 5189  df-tr 5215  df-id 5533  df-eprel 5538  df-po 5546  df-so 5547  df-fr 5591  df-we 5593  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-pred 6274  df-ord 6335  df-on 6336  df-lim 6337  df-suc 6338  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fo 6517  df-f1o 6518  df-fv 6519  df-riota 7344  df-ov 7390  df-oprab 7391  df-mpo 7392  df-om 7843  df-1st 7968  df-2nd 7969  df-tpos 8205  df-frecs 8260  df-wrecs 8291  df-recs 8340  df-rdg 8378  df-1o 8434  df-2o 8435  df-er 8671  df-ec 8673  df-qs 8677  df-map 8801  df-ixp 8871  df-en 8919  df-dom 8920  df-sdom 8921  df-fin 8922  df-sup 9393  df-inf 9394  df-pnf 11210  df-mnf 11211  df-xr 11212  df-ltxr 11213  df-le 11214  df-sub 11407  df-neg 11408  df-nn 12187  df-2 12249  df-3 12250  df-4 12251  df-5 12252  df-6 12253  df-7 12254  df-8 12255  df-9 12256  df-n0 12443  df-z 12530  df-dec 12650  df-uz 12794  df-fz 13469  df-struct 17117  df-sets 17134  df-slot 17152  df-ndx 17164  df-base 17180  df-ress 17201  df-plusg 17233  df-mulr 17234  df-starv 17235  df-sca 17236  df-vsca 17237  df-ip 17238  df-tset 17239  df-ple 17240  df-ds 17242  df-unif 17243  df-hom 17244  df-cco 17245  df-0g 17404  df-prds 17410  df-imas 17471  df-qus 17472  df-xps 17473  df-mgm 18567  df-sgrp 18646  df-mnd 18662  df-grp 18868  df-minusg 18869  df-sbg 18870  df-subg 19055  df-eqg 19057  df-cmn 19712  df-abl 19713  df-mgp 20050  df-rng 20062  df-ur 20091  df-ring 20144  df-cring 20145  df-oppr 20246  df-subrng 20455  df-subrg 20479  df-lss 20838  df-sra 21080  df-rgmod 21081  df-lidl 21118  df-2idl 21160  df-cnfld 21265  df-zring 21357
This theorem is referenced by:  pzriprnglem13  21403  pzriprnglem14  21404
  Copyright terms: Public domain W3C validator