Step | Hyp | Ref
| Expression |
1 | | pzriprng.r |
. . . . 5
β’ π
= (β€ring
Γs β€ring) |
2 | | pzriprng.i |
. . . . 5
β’ πΌ = (β€ Γ
{0}) |
3 | | pzriprng.j |
. . . . 5
β’ π½ = (π
βΎs πΌ) |
4 | | pzriprng.1 |
. . . . 5
β’ 1 =
(1rβπ½) |
5 | | pzriprng.g |
. . . . 5
β’ βΌ =
(π
~QG
πΌ) |
6 | | pzriprng.q |
. . . . 5
β’ π = (π
/s βΌ ) |
7 | 1, 2, 3, 4, 5, 6 | pzriprnglem11 46815 |
. . . 4
β’
(Baseβπ) =
βͺ π¦ β β€ {(β€ Γ {π¦})} |
8 | 7 | eleq2i 2826 |
. . 3
β’ (π β (Baseβπ) β π β βͺ
π¦ β β€ {(β€
Γ {π¦})}) |
9 | | eliun 5002 |
. . 3
β’ (π β βͺ π¦ β β€ {(β€ Γ {π¦})} β βπ¦ β β€ π β {(β€ Γ {π¦})}) |
10 | 8, 9 | bitri 275 |
. 2
β’ (π β (Baseβπ) β βπ¦ β β€ π β {(β€ Γ {π¦})}) |
11 | | elsni 4646 |
. . . 4
β’ (π β {(β€ Γ {π¦})} β π = (β€ Γ {π¦})) |
12 | | 1z 12592 |
. . . . . . . 8
β’ 1 β
β€ |
13 | 1, 2, 3, 4, 5 | pzriprnglem10 46814 |
. . . . . . . 8
β’ ((1
β β€ β§ π¦
β β€) β [β¨1, π¦β©] βΌ = (β€ Γ
{π¦})) |
14 | 12, 13 | mpan 689 |
. . . . . . 7
β’ (π¦ β β€ β [β¨1,
π¦β©] βΌ = (β€ Γ
{π¦})) |
15 | 14 | eqcomd 2739 |
. . . . . 6
β’ (π¦ β β€ β (β€
Γ {π¦}) = [β¨1,
π¦β©] βΌ ) |
16 | 15 | eqeq2d 2744 |
. . . . 5
β’ (π¦ β β€ β (π = (β€ Γ {π¦}) β π = [β¨1, π¦β©] βΌ )) |
17 | 1 | pzriprnglem1 46805 |
. . . . . . . . . 10
β’ π
β Rng |
18 | 17 | a1i 11 |
. . . . . . . . 9
β’ (π¦ β β€ β π
β Rng) |
19 | 1, 2, 3 | pzriprnglem8 46812 |
. . . . . . . . . 10
β’ πΌ β (2Idealβπ
) |
20 | 19 | a1i 11 |
. . . . . . . . 9
β’ (π¦ β β€ β πΌ β (2Idealβπ
)) |
21 | 1, 2 | pzriprnglem4 46808 |
. . . . . . . . . 10
β’ πΌ β (SubGrpβπ
) |
22 | 21 | a1i 11 |
. . . . . . . . 9
β’ (π¦ β β€ β πΌ β (SubGrpβπ
)) |
23 | 12 | a1i 11 |
. . . . . . . . . 10
β’ (π¦ β β€ β 1 β
β€) |
24 | 23, 23 | opelxpd 5716 |
. . . . . . . . 9
β’ (π¦ β β€ β β¨1,
1β© β (β€ Γ β€)) |
25 | | id 22 |
. . . . . . . . . 10
β’ (π¦ β β€ β π¦ β
β€) |
26 | 23, 25 | opelxpd 5716 |
. . . . . . . . 9
β’ (π¦ β β€ β β¨1,
π¦β© β (β€
Γ β€)) |
27 | 1 | pzriprnglem2 46806 |
. . . . . . . . . . 11
β’
(Baseβπ
) =
(β€ Γ β€) |
28 | 27 | eqcomi 2742 |
. . . . . . . . . 10
β’ (β€
Γ β€) = (Baseβπ
) |
29 | | eqid 2733 |
. . . . . . . . . 10
β’
(.rβπ
) = (.rβπ
) |
30 | | eqid 2733 |
. . . . . . . . . 10
β’
(.rβπ) = (.rβπ) |
31 | 5, 6, 28, 29, 30 | qusmulrng 46770 |
. . . . . . . . 9
β’ (((π
β Rng β§ πΌ β (2Idealβπ
) β§ πΌ β (SubGrpβπ
)) β§ (β¨1, 1β© β (β€
Γ β€) β§ β¨1, π¦β© β (β€ Γ β€)))
β ([β¨1, 1β©] βΌ
(.rβπ)[β¨1, π¦β©] βΌ ) = [(β¨1,
1β©(.rβπ
)β¨1, π¦β©)] βΌ ) |
32 | 18, 20, 22, 24, 26, 31 | syl32anc 1379 |
. . . . . . . 8
β’ (π¦ β β€ β
([β¨1, 1β©] βΌ
(.rβπ)[β¨1, π¦β©] βΌ ) = [(β¨1,
1β©(.rβπ
)β¨1, π¦β©)] βΌ ) |
33 | | zringbas 21023 |
. . . . . . . . . . 11
β’ β€ =
(Baseββ€ring) |
34 | | zringring 21020 |
. . . . . . . . . . . 12
β’
β€ring β Ring |
35 | 34 | a1i 11 |
. . . . . . . . . . 11
β’ (π¦ β β€ β
β€ring β Ring) |
36 | 23, 23 | zmulcld 12672 |
. . . . . . . . . . 11
β’ (π¦ β β€ β (1
Β· 1) β β€) |
37 | 23, 25 | zmulcld 12672 |
. . . . . . . . . . 11
β’ (π¦ β β€ β (1
Β· π¦) β
β€) |
38 | | zringmulr 21027 |
. . . . . . . . . . 11
β’ Β·
= (.rββ€ring) |
39 | 1, 33, 33, 35, 35, 23, 23, 23, 25, 36, 37, 38, 38, 29 | xpsmul 17521 |
. . . . . . . . . 10
β’ (π¦ β β€ β (β¨1,
1β©(.rβπ
)β¨1, π¦β©) = β¨(1 Β· 1), (1 Β·
π¦)β©) |
40 | | 1cnd 11209 |
. . . . . . . . . . . 12
β’ (π¦ β β€ β 1 β
β) |
41 | 40 | mulridd 11231 |
. . . . . . . . . . 11
β’ (π¦ β β€ β (1
Β· 1) = 1) |
42 | | zcn 12563 |
. . . . . . . . . . . 12
β’ (π¦ β β€ β π¦ β
β) |
43 | 42 | mullidd 11232 |
. . . . . . . . . . 11
β’ (π¦ β β€ β (1
Β· π¦) = π¦) |
44 | 41, 43 | opeq12d 4882 |
. . . . . . . . . 10
β’ (π¦ β β€ β β¨(1
Β· 1), (1 Β· π¦)β© = β¨1, π¦β©) |
45 | 39, 44 | eqtrd 2773 |
. . . . . . . . 9
β’ (π¦ β β€ β (β¨1,
1β©(.rβπ
)β¨1, π¦β©) = β¨1, π¦β©) |
46 | 45 | eceq1d 8742 |
. . . . . . . 8
β’ (π¦ β β€ β
[(β¨1, 1β©(.rβπ
)β¨1, π¦β©)] βΌ = [β¨1, π¦β©] βΌ ) |
47 | 32, 46 | eqtrd 2773 |
. . . . . . 7
β’ (π¦ β β€ β
([β¨1, 1β©] βΌ
(.rβπ)[β¨1, π¦β©] βΌ ) = [β¨1, π¦β©] βΌ ) |
48 | 5, 6, 28, 29, 30 | qusmulrng 46770 |
. . . . . . . . 9
β’ (((π
β Rng β§ πΌ β (2Idealβπ
) β§ πΌ β (SubGrpβπ
)) β§ (β¨1, π¦β© β (β€ Γ β€) β§
β¨1, 1β© β (β€ Γ β€))) β ([β¨1, π¦β©] βΌ
(.rβπ)[β¨1, 1β©] βΌ ) = [(β¨1,
π¦β©(.rβπ
)β¨1, 1β©)] βΌ ) |
49 | 18, 20, 22, 26, 24, 48 | syl32anc 1379 |
. . . . . . . 8
β’ (π¦ β β€ β
([β¨1, π¦β©] βΌ
(.rβπ)[β¨1, 1β©] βΌ ) = [(β¨1,
π¦β©(.rβπ
)β¨1, 1β©)] βΌ ) |
50 | 25, 23 | zmulcld 12672 |
. . . . . . . . . . 11
β’ (π¦ β β€ β (π¦ Β· 1) β
β€) |
51 | 1, 33, 33, 35, 35, 23, 25, 23, 23, 36, 50, 38, 38, 29 | xpsmul 17521 |
. . . . . . . . . 10
β’ (π¦ β β€ β (β¨1,
π¦β©(.rβπ
)β¨1, 1β©) = β¨(1 Β· 1),
(π¦ Β·
1)β©) |
52 | 42 | mulridd 11231 |
. . . . . . . . . . 11
β’ (π¦ β β€ β (π¦ Β· 1) = π¦) |
53 | 41, 52 | opeq12d 4882 |
. . . . . . . . . 10
β’ (π¦ β β€ β β¨(1
Β· 1), (π¦ Β·
1)β© = β¨1, π¦β©) |
54 | 51, 53 | eqtrd 2773 |
. . . . . . . . 9
β’ (π¦ β β€ β (β¨1,
π¦β©(.rβπ
)β¨1, 1β©) = β¨1, π¦β©) |
55 | 54 | eceq1d 8742 |
. . . . . . . 8
β’ (π¦ β β€ β
[(β¨1, π¦β©(.rβπ
)β¨1, 1β©)] βΌ = [β¨1, π¦β©] βΌ ) |
56 | 49, 55 | eqtrd 2773 |
. . . . . . 7
β’ (π¦ β β€ β
([β¨1, π¦β©] βΌ
(.rβπ)[β¨1, 1β©] βΌ ) = [β¨1, π¦β©] βΌ ) |
57 | 47, 56 | jca 513 |
. . . . . 6
β’ (π¦ β β€ β
(([β¨1, 1β©] βΌ
(.rβπ)[β¨1, π¦β©] βΌ ) = [β¨1, π¦β©] βΌ β§ ([β¨1,
π¦β©] βΌ
(.rβπ)[β¨1, 1β©] βΌ ) = [β¨1, π¦β©] βΌ )) |
58 | 1, 2, 3, 4, 5 | pzriprnglem10 46814 |
. . . . . . . . . . . 12
β’ ((1
β β€ β§ 1 β β€) β [β¨1, 1β©] βΌ =
(β€ Γ {1})) |
59 | 12, 12, 58 | mp2an 691 |
. . . . . . . . . . 11
β’ [β¨1,
1β©] βΌ = (β€ Γ
{1}) |
60 | 59 | eqcomi 2742 |
. . . . . . . . . 10
β’ (β€
Γ {1}) = [β¨1, 1β©] βΌ |
61 | 60 | a1i 11 |
. . . . . . . . 9
β’ (π = [β¨1, π¦β©] βΌ β (β€
Γ {1}) = [β¨1, 1β©] βΌ ) |
62 | | id 22 |
. . . . . . . . 9
β’ (π = [β¨1, π¦β©] βΌ β π = [β¨1, π¦β©] βΌ ) |
63 | 61, 62 | oveq12d 7427 |
. . . . . . . 8
β’ (π = [β¨1, π¦β©] βΌ β ((β€
Γ {1})(.rβπ)π) = ([β¨1, 1β©] βΌ
(.rβπ)[β¨1, π¦β©] βΌ )) |
64 | 63, 62 | eqeq12d 2749 |
. . . . . . 7
β’ (π = [β¨1, π¦β©] βΌ β (((β€
Γ {1})(.rβπ)π) = π β ([β¨1, 1β©] βΌ
(.rβπ)[β¨1, π¦β©] βΌ ) = [β¨1, π¦β©] βΌ )) |
65 | 62, 61 | oveq12d 7427 |
. . . . . . . 8
β’ (π = [β¨1, π¦β©] βΌ β (π(.rβπ)(β€ Γ {1})) =
([β¨1, π¦β©] βΌ
(.rβπ)[β¨1, 1β©] βΌ )) |
66 | 65, 62 | eqeq12d 2749 |
. . . . . . 7
β’ (π = [β¨1, π¦β©] βΌ β ((π(.rβπ)(β€ Γ {1})) = π β ([β¨1, π¦β©] βΌ
(.rβπ)[β¨1, 1β©] βΌ ) = [β¨1, π¦β©] βΌ )) |
67 | 64, 66 | anbi12d 632 |
. . . . . 6
β’ (π = [β¨1, π¦β©] βΌ β ((((β€
Γ {1})(.rβπ)π) = π β§ (π(.rβπ)(β€ Γ {1})) = π) β (([β¨1, 1β©] βΌ
(.rβπ)[β¨1, π¦β©] βΌ ) = [β¨1, π¦β©] βΌ β§ ([β¨1,
π¦β©] βΌ
(.rβπ)[β¨1, 1β©] βΌ ) = [β¨1, π¦β©] βΌ
))) |
68 | 57, 67 | syl5ibrcom 246 |
. . . . 5
β’ (π¦ β β€ β (π = [β¨1, π¦β©] βΌ β (((β€
Γ {1})(.rβπ)π) = π β§ (π(.rβπ)(β€ Γ {1})) = π))) |
69 | 16, 68 | sylbid 239 |
. . . 4
β’ (π¦ β β€ β (π = (β€ Γ {π¦}) β (((β€ Γ
{1})(.rβπ)π) = π β§ (π(.rβπ)(β€ Γ {1})) = π))) |
70 | 11, 69 | syl5 34 |
. . 3
β’ (π¦ β β€ β (π β {(β€ Γ {π¦})} β (((β€ Γ
{1})(.rβπ)π) = π β§ (π(.rβπ)(β€ Γ {1})) = π))) |
71 | 70 | rexlimiv 3149 |
. 2
β’
(βπ¦ β
β€ π β {(β€
Γ {π¦})} β
(((β€ Γ {1})(.rβπ)π) = π β§ (π(.rβπ)(β€ Γ {1})) = π)) |
72 | 10, 71 | sylbi 216 |
1
β’ (π β (Baseβπ) β (((β€ Γ
{1})(.rβπ)π) = π β§ (π(.rβπ)(β€ Γ {1})) = π)) |