MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pzriprnglem12 Structured version   Visualization version   GIF version

Theorem pzriprnglem12 21265
Description: Lemma 12 for pzriprng 21270: 𝑄 has a ring unity. (Contributed by AV, 23-Mar-2025.)
Hypotheses
Ref Expression
pzriprng.r 𝑅 = (ℤring ×sring)
pzriprng.i 𝐼 = (ℤ × {0})
pzriprng.j 𝐽 = (𝑅s 𝐼)
pzriprng.1 1 = (1r𝐽)
pzriprng.g = (𝑅 ~QG 𝐼)
pzriprng.q 𝑄 = (𝑅 /s )
Assertion
Ref Expression
pzriprnglem12 (𝑋 ∈ (Base‘𝑄) → (((ℤ × {1})(.r𝑄)𝑋) = 𝑋 ∧ (𝑋(.r𝑄)(ℤ × {1})) = 𝑋))

Proof of Theorem pzriprnglem12
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 pzriprng.r . . . . 5 𝑅 = (ℤring ×sring)
2 pzriprng.i . . . . 5 𝐼 = (ℤ × {0})
3 pzriprng.j . . . . 5 𝐽 = (𝑅s 𝐼)
4 pzriprng.1 . . . . 5 1 = (1r𝐽)
5 pzriprng.g . . . . 5 = (𝑅 ~QG 𝐼)
6 pzriprng.q . . . . 5 𝑄 = (𝑅 /s )
71, 2, 3, 4, 5, 6pzriprnglem11 21264 . . . 4 (Base‘𝑄) = 𝑦 ∈ ℤ {(ℤ × {𝑦})}
87eleq2i 2824 . . 3 (𝑋 ∈ (Base‘𝑄) ↔ 𝑋 𝑦 ∈ ℤ {(ℤ × {𝑦})})
9 eliun 5001 . . 3 (𝑋 𝑦 ∈ ℤ {(ℤ × {𝑦})} ↔ ∃𝑦 ∈ ℤ 𝑋 ∈ {(ℤ × {𝑦})})
108, 9bitri 275 . 2 (𝑋 ∈ (Base‘𝑄) ↔ ∃𝑦 ∈ ℤ 𝑋 ∈ {(ℤ × {𝑦})})
11 elsni 4645 . . . 4 (𝑋 ∈ {(ℤ × {𝑦})} → 𝑋 = (ℤ × {𝑦}))
12 1z 12599 . . . . . . . 8 1 ∈ ℤ
131, 2, 3, 4, 5pzriprnglem10 21263 . . . . . . . 8 ((1 ∈ ℤ ∧ 𝑦 ∈ ℤ) → [⟨1, 𝑦⟩] = (ℤ × {𝑦}))
1412, 13mpan 687 . . . . . . 7 (𝑦 ∈ ℤ → [⟨1, 𝑦⟩] = (ℤ × {𝑦}))
1514eqcomd 2737 . . . . . 6 (𝑦 ∈ ℤ → (ℤ × {𝑦}) = [⟨1, 𝑦⟩] )
1615eqeq2d 2742 . . . . 5 (𝑦 ∈ ℤ → (𝑋 = (ℤ × {𝑦}) ↔ 𝑋 = [⟨1, 𝑦⟩] ))
171pzriprnglem1 21254 . . . . . . . . . 10 𝑅 ∈ Rng
1817a1i 11 . . . . . . . . 9 (𝑦 ∈ ℤ → 𝑅 ∈ Rng)
191, 2, 3pzriprnglem8 21261 . . . . . . . . . 10 𝐼 ∈ (2Ideal‘𝑅)
2019a1i 11 . . . . . . . . 9 (𝑦 ∈ ℤ → 𝐼 ∈ (2Ideal‘𝑅))
211, 2pzriprnglem4 21257 . . . . . . . . . 10 𝐼 ∈ (SubGrp‘𝑅)
2221a1i 11 . . . . . . . . 9 (𝑦 ∈ ℤ → 𝐼 ∈ (SubGrp‘𝑅))
2312a1i 11 . . . . . . . . . 10 (𝑦 ∈ ℤ → 1 ∈ ℤ)
2423, 23opelxpd 5715 . . . . . . . . 9 (𝑦 ∈ ℤ → ⟨1, 1⟩ ∈ (ℤ × ℤ))
25 id 22 . . . . . . . . . 10 (𝑦 ∈ ℤ → 𝑦 ∈ ℤ)
2623, 25opelxpd 5715 . . . . . . . . 9 (𝑦 ∈ ℤ → ⟨1, 𝑦⟩ ∈ (ℤ × ℤ))
271pzriprnglem2 21255 . . . . . . . . . . 11 (Base‘𝑅) = (ℤ × ℤ)
2827eqcomi 2740 . . . . . . . . . 10 (ℤ × ℤ) = (Base‘𝑅)
29 eqid 2731 . . . . . . . . . 10 (.r𝑅) = (.r𝑅)
30 eqid 2731 . . . . . . . . . 10 (.r𝑄) = (.r𝑄)
315, 6, 28, 29, 30qusmulrng 21032 . . . . . . . . 9 (((𝑅 ∈ Rng ∧ 𝐼 ∈ (2Ideal‘𝑅) ∧ 𝐼 ∈ (SubGrp‘𝑅)) ∧ (⟨1, 1⟩ ∈ (ℤ × ℤ) ∧ ⟨1, 𝑦⟩ ∈ (ℤ × ℤ))) → ([⟨1, 1⟩] (.r𝑄)[⟨1, 𝑦⟩] ) = [(⟨1, 1⟩(.r𝑅)⟨1, 𝑦⟩)] )
3218, 20, 22, 24, 26, 31syl32anc 1377 . . . . . . . 8 (𝑦 ∈ ℤ → ([⟨1, 1⟩] (.r𝑄)[⟨1, 𝑦⟩] ) = [(⟨1, 1⟩(.r𝑅)⟨1, 𝑦⟩)] )
33 zringbas 21228 . . . . . . . . . . 11 ℤ = (Base‘ℤring)
34 zringring 21224 . . . . . . . . . . . 12 ring ∈ Ring
3534a1i 11 . . . . . . . . . . 11 (𝑦 ∈ ℤ → ℤring ∈ Ring)
3623, 23zmulcld 12679 . . . . . . . . . . 11 (𝑦 ∈ ℤ → (1 · 1) ∈ ℤ)
3723, 25zmulcld 12679 . . . . . . . . . . 11 (𝑦 ∈ ℤ → (1 · 𝑦) ∈ ℤ)
38 zringmulr 21232 . . . . . . . . . . 11 · = (.r‘ℤring)
391, 33, 33, 35, 35, 23, 23, 23, 25, 36, 37, 38, 38, 29xpsmul 17528 . . . . . . . . . 10 (𝑦 ∈ ℤ → (⟨1, 1⟩(.r𝑅)⟨1, 𝑦⟩) = ⟨(1 · 1), (1 · 𝑦)⟩)
40 1cnd 11216 . . . . . . . . . . . 12 (𝑦 ∈ ℤ → 1 ∈ ℂ)
4140mulridd 11238 . . . . . . . . . . 11 (𝑦 ∈ ℤ → (1 · 1) = 1)
42 zcn 12570 . . . . . . . . . . . 12 (𝑦 ∈ ℤ → 𝑦 ∈ ℂ)
4342mullidd 11239 . . . . . . . . . . 11 (𝑦 ∈ ℤ → (1 · 𝑦) = 𝑦)
4441, 43opeq12d 4881 . . . . . . . . . 10 (𝑦 ∈ ℤ → ⟨(1 · 1), (1 · 𝑦)⟩ = ⟨1, 𝑦⟩)
4539, 44eqtrd 2771 . . . . . . . . 9 (𝑦 ∈ ℤ → (⟨1, 1⟩(.r𝑅)⟨1, 𝑦⟩) = ⟨1, 𝑦⟩)
4645eceq1d 8748 . . . . . . . 8 (𝑦 ∈ ℤ → [(⟨1, 1⟩(.r𝑅)⟨1, 𝑦⟩)] = [⟨1, 𝑦⟩] )
4732, 46eqtrd 2771 . . . . . . 7 (𝑦 ∈ ℤ → ([⟨1, 1⟩] (.r𝑄)[⟨1, 𝑦⟩] ) = [⟨1, 𝑦⟩] )
485, 6, 28, 29, 30qusmulrng 21032 . . . . . . . . 9 (((𝑅 ∈ Rng ∧ 𝐼 ∈ (2Ideal‘𝑅) ∧ 𝐼 ∈ (SubGrp‘𝑅)) ∧ (⟨1, 𝑦⟩ ∈ (ℤ × ℤ) ∧ ⟨1, 1⟩ ∈ (ℤ × ℤ))) → ([⟨1, 𝑦⟩] (.r𝑄)[⟨1, 1⟩] ) = [(⟨1, 𝑦⟩(.r𝑅)⟨1, 1⟩)] )
4918, 20, 22, 26, 24, 48syl32anc 1377 . . . . . . . 8 (𝑦 ∈ ℤ → ([⟨1, 𝑦⟩] (.r𝑄)[⟨1, 1⟩] ) = [(⟨1, 𝑦⟩(.r𝑅)⟨1, 1⟩)] )
5025, 23zmulcld 12679 . . . . . . . . . . 11 (𝑦 ∈ ℤ → (𝑦 · 1) ∈ ℤ)
511, 33, 33, 35, 35, 23, 25, 23, 23, 36, 50, 38, 38, 29xpsmul 17528 . . . . . . . . . 10 (𝑦 ∈ ℤ → (⟨1, 𝑦⟩(.r𝑅)⟨1, 1⟩) = ⟨(1 · 1), (𝑦 · 1)⟩)
5242mulridd 11238 . . . . . . . . . . 11 (𝑦 ∈ ℤ → (𝑦 · 1) = 𝑦)
5341, 52opeq12d 4881 . . . . . . . . . 10 (𝑦 ∈ ℤ → ⟨(1 · 1), (𝑦 · 1)⟩ = ⟨1, 𝑦⟩)
5451, 53eqtrd 2771 . . . . . . . . 9 (𝑦 ∈ ℤ → (⟨1, 𝑦⟩(.r𝑅)⟨1, 1⟩) = ⟨1, 𝑦⟩)
5554eceq1d 8748 . . . . . . . 8 (𝑦 ∈ ℤ → [(⟨1, 𝑦⟩(.r𝑅)⟨1, 1⟩)] = [⟨1, 𝑦⟩] )
5649, 55eqtrd 2771 . . . . . . 7 (𝑦 ∈ ℤ → ([⟨1, 𝑦⟩] (.r𝑄)[⟨1, 1⟩] ) = [⟨1, 𝑦⟩] )
5747, 56jca 511 . . . . . 6 (𝑦 ∈ ℤ → (([⟨1, 1⟩] (.r𝑄)[⟨1, 𝑦⟩] ) = [⟨1, 𝑦⟩] ∧ ([⟨1, 𝑦⟩] (.r𝑄)[⟨1, 1⟩] ) = [⟨1, 𝑦⟩] ))
581, 2, 3, 4, 5pzriprnglem10 21263 . . . . . . . . . . . 12 ((1 ∈ ℤ ∧ 1 ∈ ℤ) → [⟨1, 1⟩] = (ℤ × {1}))
5912, 12, 58mp2an 689 . . . . . . . . . . 11 [⟨1, 1⟩] = (ℤ × {1})
6059eqcomi 2740 . . . . . . . . . 10 (ℤ × {1}) = [⟨1, 1⟩]
6160a1i 11 . . . . . . . . 9 (𝑋 = [⟨1, 𝑦⟩] → (ℤ × {1}) = [⟨1, 1⟩] )
62 id 22 . . . . . . . . 9 (𝑋 = [⟨1, 𝑦⟩] 𝑋 = [⟨1, 𝑦⟩] )
6361, 62oveq12d 7430 . . . . . . . 8 (𝑋 = [⟨1, 𝑦⟩] → ((ℤ × {1})(.r𝑄)𝑋) = ([⟨1, 1⟩] (.r𝑄)[⟨1, 𝑦⟩] ))
6463, 62eqeq12d 2747 . . . . . . 7 (𝑋 = [⟨1, 𝑦⟩] → (((ℤ × {1})(.r𝑄)𝑋) = 𝑋 ↔ ([⟨1, 1⟩] (.r𝑄)[⟨1, 𝑦⟩] ) = [⟨1, 𝑦⟩] ))
6562, 61oveq12d 7430 . . . . . . . 8 (𝑋 = [⟨1, 𝑦⟩] → (𝑋(.r𝑄)(ℤ × {1})) = ([⟨1, 𝑦⟩] (.r𝑄)[⟨1, 1⟩] ))
6665, 62eqeq12d 2747 . . . . . . 7 (𝑋 = [⟨1, 𝑦⟩] → ((𝑋(.r𝑄)(ℤ × {1})) = 𝑋 ↔ ([⟨1, 𝑦⟩] (.r𝑄)[⟨1, 1⟩] ) = [⟨1, 𝑦⟩] ))
6764, 66anbi12d 630 . . . . . 6 (𝑋 = [⟨1, 𝑦⟩] → ((((ℤ × {1})(.r𝑄)𝑋) = 𝑋 ∧ (𝑋(.r𝑄)(ℤ × {1})) = 𝑋) ↔ (([⟨1, 1⟩] (.r𝑄)[⟨1, 𝑦⟩] ) = [⟨1, 𝑦⟩] ∧ ([⟨1, 𝑦⟩] (.r𝑄)[⟨1, 1⟩] ) = [⟨1, 𝑦⟩] )))
6857, 67syl5ibrcom 246 . . . . 5 (𝑦 ∈ ℤ → (𝑋 = [⟨1, 𝑦⟩] → (((ℤ × {1})(.r𝑄)𝑋) = 𝑋 ∧ (𝑋(.r𝑄)(ℤ × {1})) = 𝑋)))
6916, 68sylbid 239 . . . 4 (𝑦 ∈ ℤ → (𝑋 = (ℤ × {𝑦}) → (((ℤ × {1})(.r𝑄)𝑋) = 𝑋 ∧ (𝑋(.r𝑄)(ℤ × {1})) = 𝑋)))
7011, 69syl5 34 . . 3 (𝑦 ∈ ℤ → (𝑋 ∈ {(ℤ × {𝑦})} → (((ℤ × {1})(.r𝑄)𝑋) = 𝑋 ∧ (𝑋(.r𝑄)(ℤ × {1})) = 𝑋)))
7170rexlimiv 3147 . 2 (∃𝑦 ∈ ℤ 𝑋 ∈ {(ℤ × {𝑦})} → (((ℤ × {1})(.r𝑄)𝑋) = 𝑋 ∧ (𝑋(.r𝑄)(ℤ × {1})) = 𝑋))
7210, 71sylbi 216 1 (𝑋 ∈ (Base‘𝑄) → (((ℤ × {1})(.r𝑄)𝑋) = 𝑋 ∧ (𝑋(.r𝑄)(ℤ × {1})) = 𝑋))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2105  wrex 3069  {csn 4628  cop 4634   ciun 4997   × cxp 5674  cfv 6543  (class class class)co 7412  [cec 8707  0cc0 11116  1c1 11117   · cmul 11121  cz 12565  Basecbs 17151  s cress 17180  .rcmulr 17205   /s cqus 17458   ×s cxps 17459  SubGrpcsubg 19040   ~QG cqg 19042  Rngcrng 20050  1rcur 20079  Ringcrg 20131  2Idealc2idl 21009  ringczring 21221
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1912  ax-6 1970  ax-7 2010  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2153  ax-12 2170  ax-ext 2702  ax-rep 5285  ax-sep 5299  ax-nul 5306  ax-pow 5363  ax-pr 5427  ax-un 7729  ax-cnex 11172  ax-resscn 11173  ax-1cn 11174  ax-icn 11175  ax-addcl 11176  ax-addrcl 11177  ax-mulcl 11178  ax-mulrcl 11179  ax-mulcom 11180  ax-addass 11181  ax-mulass 11182  ax-distr 11183  ax-i2m1 11184  ax-1ne0 11185  ax-1rid 11186  ax-rnegex 11187  ax-rrecex 11188  ax-cnre 11189  ax-pre-lttri 11190  ax-pre-lttrn 11191  ax-pre-ltadd 11192  ax-pre-mulgt0 11193  ax-addf 11195  ax-mulf 11196
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1781  df-nf 1785  df-sb 2067  df-mo 2533  df-eu 2562  df-clab 2709  df-cleq 2723  df-clel 2809  df-nfc 2884  df-ne 2940  df-nel 3046  df-ral 3061  df-rex 3070  df-rmo 3375  df-reu 3376  df-rab 3432  df-v 3475  df-sbc 3778  df-csb 3894  df-dif 3951  df-un 3953  df-in 3955  df-ss 3965  df-pss 3967  df-nul 4323  df-if 4529  df-pw 4604  df-sn 4629  df-pr 4631  df-tp 4633  df-op 4635  df-uni 4909  df-iun 4999  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5574  df-eprel 5580  df-po 5588  df-so 5589  df-fr 5631  df-we 5633  df-xp 5682  df-rel 5683  df-cnv 5684  df-co 5685  df-dm 5686  df-rn 5687  df-res 5688  df-ima 5689  df-pred 6300  df-ord 6367  df-on 6368  df-lim 6369  df-suc 6370  df-iota 6495  df-fun 6545  df-fn 6546  df-f 6547  df-f1 6548  df-fo 6549  df-f1o 6550  df-fv 6551  df-riota 7368  df-ov 7415  df-oprab 7416  df-mpo 7417  df-om 7860  df-1st 7979  df-2nd 7980  df-tpos 8217  df-frecs 8272  df-wrecs 8303  df-recs 8377  df-rdg 8416  df-1o 8472  df-2o 8473  df-er 8709  df-ec 8711  df-qs 8715  df-map 8828  df-ixp 8898  df-en 8946  df-dom 8947  df-sdom 8948  df-fin 8949  df-sup 9443  df-inf 9444  df-pnf 11257  df-mnf 11258  df-xr 11259  df-ltxr 11260  df-le 11261  df-sub 11453  df-neg 11454  df-nn 12220  df-2 12282  df-3 12283  df-4 12284  df-5 12285  df-6 12286  df-7 12287  df-8 12288  df-9 12289  df-n0 12480  df-z 12566  df-dec 12685  df-uz 12830  df-fz 13492  df-struct 17087  df-sets 17104  df-slot 17122  df-ndx 17134  df-base 17152  df-ress 17181  df-plusg 17217  df-mulr 17218  df-starv 17219  df-sca 17220  df-vsca 17221  df-ip 17222  df-tset 17223  df-ple 17224  df-ds 17226  df-unif 17227  df-hom 17228  df-cco 17229  df-0g 17394  df-prds 17400  df-imas 17461  df-qus 17462  df-xps 17463  df-mgm 18568  df-sgrp 18647  df-mnd 18663  df-grp 18861  df-minusg 18862  df-sbg 18863  df-subg 19043  df-eqg 19045  df-cmn 19695  df-abl 19696  df-mgp 20033  df-rng 20051  df-ur 20080  df-ring 20133  df-cring 20134  df-oppr 20229  df-subrng 20438  df-subrg 20463  df-lss 20691  df-sra 20934  df-rgmod 20935  df-lidl 20936  df-2idl 21010  df-cnfld 21149  df-zring 21222
This theorem is referenced by:  pzriprnglem13  21266  pzriprnglem14  21267
  Copyright terms: Public domain W3C validator