MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pzriprnglem12 Structured version   Visualization version   GIF version

Theorem pzriprnglem12 21409
Description: Lemma 12 for pzriprng 21414: 𝑄 has a ring unity. (Contributed by AV, 23-Mar-2025.)
Hypotheses
Ref Expression
pzriprng.r 𝑅 = (ℤring ×sring)
pzriprng.i 𝐼 = (ℤ × {0})
pzriprng.j 𝐽 = (𝑅s 𝐼)
pzriprng.1 1 = (1r𝐽)
pzriprng.g = (𝑅 ~QG 𝐼)
pzriprng.q 𝑄 = (𝑅 /s )
Assertion
Ref Expression
pzriprnglem12 (𝑋 ∈ (Base‘𝑄) → (((ℤ × {1})(.r𝑄)𝑋) = 𝑋 ∧ (𝑋(.r𝑄)(ℤ × {1})) = 𝑋))

Proof of Theorem pzriprnglem12
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 pzriprng.r . . . . 5 𝑅 = (ℤring ×sring)
2 pzriprng.i . . . . 5 𝐼 = (ℤ × {0})
3 pzriprng.j . . . . 5 𝐽 = (𝑅s 𝐼)
4 pzriprng.1 . . . . 5 1 = (1r𝐽)
5 pzriprng.g . . . . 5 = (𝑅 ~QG 𝐼)
6 pzriprng.q . . . . 5 𝑄 = (𝑅 /s )
71, 2, 3, 4, 5, 6pzriprnglem11 21408 . . . 4 (Base‘𝑄) = 𝑦 ∈ ℤ {(ℤ × {𝑦})}
87eleq2i 2821 . . 3 (𝑋 ∈ (Base‘𝑄) ↔ 𝑋 𝑦 ∈ ℤ {(ℤ × {𝑦})})
9 eliun 4962 . . 3 (𝑋 𝑦 ∈ ℤ {(ℤ × {𝑦})} ↔ ∃𝑦 ∈ ℤ 𝑋 ∈ {(ℤ × {𝑦})})
108, 9bitri 275 . 2 (𝑋 ∈ (Base‘𝑄) ↔ ∃𝑦 ∈ ℤ 𝑋 ∈ {(ℤ × {𝑦})})
11 elsni 4609 . . . 4 (𝑋 ∈ {(ℤ × {𝑦})} → 𝑋 = (ℤ × {𝑦}))
12 1z 12570 . . . . . . . 8 1 ∈ ℤ
131, 2, 3, 4, 5pzriprnglem10 21407 . . . . . . . 8 ((1 ∈ ℤ ∧ 𝑦 ∈ ℤ) → [⟨1, 𝑦⟩] = (ℤ × {𝑦}))
1412, 13mpan 690 . . . . . . 7 (𝑦 ∈ ℤ → [⟨1, 𝑦⟩] = (ℤ × {𝑦}))
1514eqcomd 2736 . . . . . 6 (𝑦 ∈ ℤ → (ℤ × {𝑦}) = [⟨1, 𝑦⟩] )
1615eqeq2d 2741 . . . . 5 (𝑦 ∈ ℤ → (𝑋 = (ℤ × {𝑦}) ↔ 𝑋 = [⟨1, 𝑦⟩] ))
171pzriprnglem1 21398 . . . . . . . . . 10 𝑅 ∈ Rng
1817a1i 11 . . . . . . . . 9 (𝑦 ∈ ℤ → 𝑅 ∈ Rng)
191, 2, 3pzriprnglem8 21405 . . . . . . . . . 10 𝐼 ∈ (2Ideal‘𝑅)
2019a1i 11 . . . . . . . . 9 (𝑦 ∈ ℤ → 𝐼 ∈ (2Ideal‘𝑅))
211, 2pzriprnglem4 21401 . . . . . . . . . 10 𝐼 ∈ (SubGrp‘𝑅)
2221a1i 11 . . . . . . . . 9 (𝑦 ∈ ℤ → 𝐼 ∈ (SubGrp‘𝑅))
2312a1i 11 . . . . . . . . . 10 (𝑦 ∈ ℤ → 1 ∈ ℤ)
2423, 23opelxpd 5680 . . . . . . . . 9 (𝑦 ∈ ℤ → ⟨1, 1⟩ ∈ (ℤ × ℤ))
25 id 22 . . . . . . . . . 10 (𝑦 ∈ ℤ → 𝑦 ∈ ℤ)
2623, 25opelxpd 5680 . . . . . . . . 9 (𝑦 ∈ ℤ → ⟨1, 𝑦⟩ ∈ (ℤ × ℤ))
271pzriprnglem2 21399 . . . . . . . . . . 11 (Base‘𝑅) = (ℤ × ℤ)
2827eqcomi 2739 . . . . . . . . . 10 (ℤ × ℤ) = (Base‘𝑅)
29 eqid 2730 . . . . . . . . . 10 (.r𝑅) = (.r𝑅)
30 eqid 2730 . . . . . . . . . 10 (.r𝑄) = (.r𝑄)
315, 6, 28, 29, 30qusmulrng 21199 . . . . . . . . 9 (((𝑅 ∈ Rng ∧ 𝐼 ∈ (2Ideal‘𝑅) ∧ 𝐼 ∈ (SubGrp‘𝑅)) ∧ (⟨1, 1⟩ ∈ (ℤ × ℤ) ∧ ⟨1, 𝑦⟩ ∈ (ℤ × ℤ))) → ([⟨1, 1⟩] (.r𝑄)[⟨1, 𝑦⟩] ) = [(⟨1, 1⟩(.r𝑅)⟨1, 𝑦⟩)] )
3218, 20, 22, 24, 26, 31syl32anc 1380 . . . . . . . 8 (𝑦 ∈ ℤ → ([⟨1, 1⟩] (.r𝑄)[⟨1, 𝑦⟩] ) = [(⟨1, 1⟩(.r𝑅)⟨1, 𝑦⟩)] )
33 zringbas 21370 . . . . . . . . . . 11 ℤ = (Base‘ℤring)
34 zringring 21366 . . . . . . . . . . . 12 ring ∈ Ring
3534a1i 11 . . . . . . . . . . 11 (𝑦 ∈ ℤ → ℤring ∈ Ring)
3623, 23zmulcld 12651 . . . . . . . . . . 11 (𝑦 ∈ ℤ → (1 · 1) ∈ ℤ)
3723, 25zmulcld 12651 . . . . . . . . . . 11 (𝑦 ∈ ℤ → (1 · 𝑦) ∈ ℤ)
38 zringmulr 21374 . . . . . . . . . . 11 · = (.r‘ℤring)
391, 33, 33, 35, 35, 23, 23, 23, 25, 36, 37, 38, 38, 29xpsmul 17545 . . . . . . . . . 10 (𝑦 ∈ ℤ → (⟨1, 1⟩(.r𝑅)⟨1, 𝑦⟩) = ⟨(1 · 1), (1 · 𝑦)⟩)
40 1cnd 11176 . . . . . . . . . . . 12 (𝑦 ∈ ℤ → 1 ∈ ℂ)
4140mulridd 11198 . . . . . . . . . . 11 (𝑦 ∈ ℤ → (1 · 1) = 1)
42 zcn 12541 . . . . . . . . . . . 12 (𝑦 ∈ ℤ → 𝑦 ∈ ℂ)
4342mullidd 11199 . . . . . . . . . . 11 (𝑦 ∈ ℤ → (1 · 𝑦) = 𝑦)
4441, 43opeq12d 4848 . . . . . . . . . 10 (𝑦 ∈ ℤ → ⟨(1 · 1), (1 · 𝑦)⟩ = ⟨1, 𝑦⟩)
4539, 44eqtrd 2765 . . . . . . . . 9 (𝑦 ∈ ℤ → (⟨1, 1⟩(.r𝑅)⟨1, 𝑦⟩) = ⟨1, 𝑦⟩)
4645eceq1d 8714 . . . . . . . 8 (𝑦 ∈ ℤ → [(⟨1, 1⟩(.r𝑅)⟨1, 𝑦⟩)] = [⟨1, 𝑦⟩] )
4732, 46eqtrd 2765 . . . . . . 7 (𝑦 ∈ ℤ → ([⟨1, 1⟩] (.r𝑄)[⟨1, 𝑦⟩] ) = [⟨1, 𝑦⟩] )
485, 6, 28, 29, 30qusmulrng 21199 . . . . . . . . 9 (((𝑅 ∈ Rng ∧ 𝐼 ∈ (2Ideal‘𝑅) ∧ 𝐼 ∈ (SubGrp‘𝑅)) ∧ (⟨1, 𝑦⟩ ∈ (ℤ × ℤ) ∧ ⟨1, 1⟩ ∈ (ℤ × ℤ))) → ([⟨1, 𝑦⟩] (.r𝑄)[⟨1, 1⟩] ) = [(⟨1, 𝑦⟩(.r𝑅)⟨1, 1⟩)] )
4918, 20, 22, 26, 24, 48syl32anc 1380 . . . . . . . 8 (𝑦 ∈ ℤ → ([⟨1, 𝑦⟩] (.r𝑄)[⟨1, 1⟩] ) = [(⟨1, 𝑦⟩(.r𝑅)⟨1, 1⟩)] )
5025, 23zmulcld 12651 . . . . . . . . . . 11 (𝑦 ∈ ℤ → (𝑦 · 1) ∈ ℤ)
511, 33, 33, 35, 35, 23, 25, 23, 23, 36, 50, 38, 38, 29xpsmul 17545 . . . . . . . . . 10 (𝑦 ∈ ℤ → (⟨1, 𝑦⟩(.r𝑅)⟨1, 1⟩) = ⟨(1 · 1), (𝑦 · 1)⟩)
5242mulridd 11198 . . . . . . . . . . 11 (𝑦 ∈ ℤ → (𝑦 · 1) = 𝑦)
5341, 52opeq12d 4848 . . . . . . . . . 10 (𝑦 ∈ ℤ → ⟨(1 · 1), (𝑦 · 1)⟩ = ⟨1, 𝑦⟩)
5451, 53eqtrd 2765 . . . . . . . . 9 (𝑦 ∈ ℤ → (⟨1, 𝑦⟩(.r𝑅)⟨1, 1⟩) = ⟨1, 𝑦⟩)
5554eceq1d 8714 . . . . . . . 8 (𝑦 ∈ ℤ → [(⟨1, 𝑦⟩(.r𝑅)⟨1, 1⟩)] = [⟨1, 𝑦⟩] )
5649, 55eqtrd 2765 . . . . . . 7 (𝑦 ∈ ℤ → ([⟨1, 𝑦⟩] (.r𝑄)[⟨1, 1⟩] ) = [⟨1, 𝑦⟩] )
5747, 56jca 511 . . . . . 6 (𝑦 ∈ ℤ → (([⟨1, 1⟩] (.r𝑄)[⟨1, 𝑦⟩] ) = [⟨1, 𝑦⟩] ∧ ([⟨1, 𝑦⟩] (.r𝑄)[⟨1, 1⟩] ) = [⟨1, 𝑦⟩] ))
581, 2, 3, 4, 5pzriprnglem10 21407 . . . . . . . . . . . 12 ((1 ∈ ℤ ∧ 1 ∈ ℤ) → [⟨1, 1⟩] = (ℤ × {1}))
5912, 12, 58mp2an 692 . . . . . . . . . . 11 [⟨1, 1⟩] = (ℤ × {1})
6059eqcomi 2739 . . . . . . . . . 10 (ℤ × {1}) = [⟨1, 1⟩]
6160a1i 11 . . . . . . . . 9 (𝑋 = [⟨1, 𝑦⟩] → (ℤ × {1}) = [⟨1, 1⟩] )
62 id 22 . . . . . . . . 9 (𝑋 = [⟨1, 𝑦⟩] 𝑋 = [⟨1, 𝑦⟩] )
6361, 62oveq12d 7408 . . . . . . . 8 (𝑋 = [⟨1, 𝑦⟩] → ((ℤ × {1})(.r𝑄)𝑋) = ([⟨1, 1⟩] (.r𝑄)[⟨1, 𝑦⟩] ))
6463, 62eqeq12d 2746 . . . . . . 7 (𝑋 = [⟨1, 𝑦⟩] → (((ℤ × {1})(.r𝑄)𝑋) = 𝑋 ↔ ([⟨1, 1⟩] (.r𝑄)[⟨1, 𝑦⟩] ) = [⟨1, 𝑦⟩] ))
6562, 61oveq12d 7408 . . . . . . . 8 (𝑋 = [⟨1, 𝑦⟩] → (𝑋(.r𝑄)(ℤ × {1})) = ([⟨1, 𝑦⟩] (.r𝑄)[⟨1, 1⟩] ))
6665, 62eqeq12d 2746 . . . . . . 7 (𝑋 = [⟨1, 𝑦⟩] → ((𝑋(.r𝑄)(ℤ × {1})) = 𝑋 ↔ ([⟨1, 𝑦⟩] (.r𝑄)[⟨1, 1⟩] ) = [⟨1, 𝑦⟩] ))
6764, 66anbi12d 632 . . . . . 6 (𝑋 = [⟨1, 𝑦⟩] → ((((ℤ × {1})(.r𝑄)𝑋) = 𝑋 ∧ (𝑋(.r𝑄)(ℤ × {1})) = 𝑋) ↔ (([⟨1, 1⟩] (.r𝑄)[⟨1, 𝑦⟩] ) = [⟨1, 𝑦⟩] ∧ ([⟨1, 𝑦⟩] (.r𝑄)[⟨1, 1⟩] ) = [⟨1, 𝑦⟩] )))
6857, 67syl5ibrcom 247 . . . . 5 (𝑦 ∈ ℤ → (𝑋 = [⟨1, 𝑦⟩] → (((ℤ × {1})(.r𝑄)𝑋) = 𝑋 ∧ (𝑋(.r𝑄)(ℤ × {1})) = 𝑋)))
6916, 68sylbid 240 . . . 4 (𝑦 ∈ ℤ → (𝑋 = (ℤ × {𝑦}) → (((ℤ × {1})(.r𝑄)𝑋) = 𝑋 ∧ (𝑋(.r𝑄)(ℤ × {1})) = 𝑋)))
7011, 69syl5 34 . . 3 (𝑦 ∈ ℤ → (𝑋 ∈ {(ℤ × {𝑦})} → (((ℤ × {1})(.r𝑄)𝑋) = 𝑋 ∧ (𝑋(.r𝑄)(ℤ × {1})) = 𝑋)))
7170rexlimiv 3128 . 2 (∃𝑦 ∈ ℤ 𝑋 ∈ {(ℤ × {𝑦})} → (((ℤ × {1})(.r𝑄)𝑋) = 𝑋 ∧ (𝑋(.r𝑄)(ℤ × {1})) = 𝑋))
7210, 71sylbi 217 1 (𝑋 ∈ (Base‘𝑄) → (((ℤ × {1})(.r𝑄)𝑋) = 𝑋 ∧ (𝑋(.r𝑄)(ℤ × {1})) = 𝑋))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2109  wrex 3054  {csn 4592  cop 4598   ciun 4958   × cxp 5639  cfv 6514  (class class class)co 7390  [cec 8672  0cc0 11075  1c1 11076   · cmul 11080  cz 12536  Basecbs 17186  s cress 17207  .rcmulr 17228   /s cqus 17475   ×s cxps 17476  SubGrpcsubg 19059   ~QG cqg 19061  Rngcrng 20068  1rcur 20097  Ringcrg 20149  2Idealc2idl 21166  ringczring 21363
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-rep 5237  ax-sep 5254  ax-nul 5264  ax-pow 5323  ax-pr 5390  ax-un 7714  ax-cnex 11131  ax-resscn 11132  ax-1cn 11133  ax-icn 11134  ax-addcl 11135  ax-addrcl 11136  ax-mulcl 11137  ax-mulrcl 11138  ax-mulcom 11139  ax-addass 11140  ax-mulass 11141  ax-distr 11142  ax-i2m1 11143  ax-1ne0 11144  ax-1rid 11145  ax-rnegex 11146  ax-rrecex 11147  ax-cnre 11148  ax-pre-lttri 11149  ax-pre-lttrn 11150  ax-pre-ltadd 11151  ax-pre-mulgt0 11152  ax-addf 11154  ax-mulf 11155
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-nel 3031  df-ral 3046  df-rex 3055  df-rmo 3356  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3757  df-csb 3866  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-pss 3937  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-tp 4597  df-op 4599  df-uni 4875  df-iun 4960  df-br 5111  df-opab 5173  df-mpt 5192  df-tr 5218  df-id 5536  df-eprel 5541  df-po 5549  df-so 5550  df-fr 5594  df-we 5596  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-pred 6277  df-ord 6338  df-on 6339  df-lim 6340  df-suc 6341  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-f1 6519  df-fo 6520  df-f1o 6521  df-fv 6522  df-riota 7347  df-ov 7393  df-oprab 7394  df-mpo 7395  df-om 7846  df-1st 7971  df-2nd 7972  df-tpos 8208  df-frecs 8263  df-wrecs 8294  df-recs 8343  df-rdg 8381  df-1o 8437  df-2o 8438  df-er 8674  df-ec 8676  df-qs 8680  df-map 8804  df-ixp 8874  df-en 8922  df-dom 8923  df-sdom 8924  df-fin 8925  df-sup 9400  df-inf 9401  df-pnf 11217  df-mnf 11218  df-xr 11219  df-ltxr 11220  df-le 11221  df-sub 11414  df-neg 11415  df-nn 12194  df-2 12256  df-3 12257  df-4 12258  df-5 12259  df-6 12260  df-7 12261  df-8 12262  df-9 12263  df-n0 12450  df-z 12537  df-dec 12657  df-uz 12801  df-fz 13476  df-struct 17124  df-sets 17141  df-slot 17159  df-ndx 17171  df-base 17187  df-ress 17208  df-plusg 17240  df-mulr 17241  df-starv 17242  df-sca 17243  df-vsca 17244  df-ip 17245  df-tset 17246  df-ple 17247  df-ds 17249  df-unif 17250  df-hom 17251  df-cco 17252  df-0g 17411  df-prds 17417  df-imas 17478  df-qus 17479  df-xps 17480  df-mgm 18574  df-sgrp 18653  df-mnd 18669  df-grp 18875  df-minusg 18876  df-sbg 18877  df-subg 19062  df-eqg 19064  df-cmn 19719  df-abl 19720  df-mgp 20057  df-rng 20069  df-ur 20098  df-ring 20151  df-cring 20152  df-oppr 20253  df-subrng 20462  df-subrg 20486  df-lss 20845  df-sra 21087  df-rgmod 21088  df-lidl 21125  df-2idl 21167  df-cnfld 21272  df-zring 21364
This theorem is referenced by:  pzriprnglem13  21410  pzriprnglem14  21411
  Copyright terms: Public domain W3C validator