MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  qusinv Structured version   Visualization version   GIF version

Theorem qusinv 18815
Description: Value of the group inverse operation in a quotient group. (Contributed by Mario Carneiro, 18-Sep-2015.)
Hypotheses
Ref Expression
qusgrp.h 𝐻 = (𝐺 /s (𝐺 ~QG 𝑆))
qusinv.v 𝑉 = (Base‘𝐺)
qusinv.i 𝐼 = (invg𝐺)
qusinv.n 𝑁 = (invg𝐻)
Assertion
Ref Expression
qusinv ((𝑆 ∈ (NrmSGrp‘𝐺) ∧ 𝑋𝑉) → (𝑁‘[𝑋](𝐺 ~QG 𝑆)) = [(𝐼𝑋)](𝐺 ~QG 𝑆))

Proof of Theorem qusinv
StepHypRef Expression
1 nsgsubg 18786 . . . . . 6 (𝑆 ∈ (NrmSGrp‘𝐺) → 𝑆 ∈ (SubGrp‘𝐺))
2 subgrcl 18760 . . . . . 6 (𝑆 ∈ (SubGrp‘𝐺) → 𝐺 ∈ Grp)
31, 2syl 17 . . . . 5 (𝑆 ∈ (NrmSGrp‘𝐺) → 𝐺 ∈ Grp)
4 qusinv.v . . . . . 6 𝑉 = (Base‘𝐺)
5 qusinv.i . . . . . 6 𝐼 = (invg𝐺)
64, 5grpinvcl 18627 . . . . 5 ((𝐺 ∈ Grp ∧ 𝑋𝑉) → (𝐼𝑋) ∈ 𝑉)
73, 6sylan 580 . . . 4 ((𝑆 ∈ (NrmSGrp‘𝐺) ∧ 𝑋𝑉) → (𝐼𝑋) ∈ 𝑉)
8 qusgrp.h . . . . 5 𝐻 = (𝐺 /s (𝐺 ~QG 𝑆))
9 eqid 2738 . . . . 5 (+g𝐺) = (+g𝐺)
10 eqid 2738 . . . . 5 (+g𝐻) = (+g𝐻)
118, 4, 9, 10qusadd 18813 . . . 4 ((𝑆 ∈ (NrmSGrp‘𝐺) ∧ 𝑋𝑉 ∧ (𝐼𝑋) ∈ 𝑉) → ([𝑋](𝐺 ~QG 𝑆)(+g𝐻)[(𝐼𝑋)](𝐺 ~QG 𝑆)) = [(𝑋(+g𝐺)(𝐼𝑋))](𝐺 ~QG 𝑆))
127, 11mpd3an3 1461 . . 3 ((𝑆 ∈ (NrmSGrp‘𝐺) ∧ 𝑋𝑉) → ([𝑋](𝐺 ~QG 𝑆)(+g𝐻)[(𝐼𝑋)](𝐺 ~QG 𝑆)) = [(𝑋(+g𝐺)(𝐼𝑋))](𝐺 ~QG 𝑆))
13 eqid 2738 . . . . . 6 (0g𝐺) = (0g𝐺)
144, 9, 13, 5grprinv 18629 . . . . 5 ((𝐺 ∈ Grp ∧ 𝑋𝑉) → (𝑋(+g𝐺)(𝐼𝑋)) = (0g𝐺))
153, 14sylan 580 . . . 4 ((𝑆 ∈ (NrmSGrp‘𝐺) ∧ 𝑋𝑉) → (𝑋(+g𝐺)(𝐼𝑋)) = (0g𝐺))
1615eceq1d 8537 . . 3 ((𝑆 ∈ (NrmSGrp‘𝐺) ∧ 𝑋𝑉) → [(𝑋(+g𝐺)(𝐼𝑋))](𝐺 ~QG 𝑆) = [(0g𝐺)](𝐺 ~QG 𝑆))
178, 13qus0 18814 . . . 4 (𝑆 ∈ (NrmSGrp‘𝐺) → [(0g𝐺)](𝐺 ~QG 𝑆) = (0g𝐻))
1817adantr 481 . . 3 ((𝑆 ∈ (NrmSGrp‘𝐺) ∧ 𝑋𝑉) → [(0g𝐺)](𝐺 ~QG 𝑆) = (0g𝐻))
1912, 16, 183eqtrd 2782 . 2 ((𝑆 ∈ (NrmSGrp‘𝐺) ∧ 𝑋𝑉) → ([𝑋](𝐺 ~QG 𝑆)(+g𝐻)[(𝐼𝑋)](𝐺 ~QG 𝑆)) = (0g𝐻))
208qusgrp 18811 . . . 4 (𝑆 ∈ (NrmSGrp‘𝐺) → 𝐻 ∈ Grp)
2120adantr 481 . . 3 ((𝑆 ∈ (NrmSGrp‘𝐺) ∧ 𝑋𝑉) → 𝐻 ∈ Grp)
22 eqid 2738 . . . 4 (Base‘𝐻) = (Base‘𝐻)
238, 4, 22quseccl 18812 . . 3 ((𝑆 ∈ (NrmSGrp‘𝐺) ∧ 𝑋𝑉) → [𝑋](𝐺 ~QG 𝑆) ∈ (Base‘𝐻))
248, 4, 22quseccl 18812 . . . 4 ((𝑆 ∈ (NrmSGrp‘𝐺) ∧ (𝐼𝑋) ∈ 𝑉) → [(𝐼𝑋)](𝐺 ~QG 𝑆) ∈ (Base‘𝐻))
257, 24syldan 591 . . 3 ((𝑆 ∈ (NrmSGrp‘𝐺) ∧ 𝑋𝑉) → [(𝐼𝑋)](𝐺 ~QG 𝑆) ∈ (Base‘𝐻))
26 eqid 2738 . . . 4 (0g𝐻) = (0g𝐻)
27 qusinv.n . . . 4 𝑁 = (invg𝐻)
2822, 10, 26, 27grpinvid1 18630 . . 3 ((𝐻 ∈ Grp ∧ [𝑋](𝐺 ~QG 𝑆) ∈ (Base‘𝐻) ∧ [(𝐼𝑋)](𝐺 ~QG 𝑆) ∈ (Base‘𝐻)) → ((𝑁‘[𝑋](𝐺 ~QG 𝑆)) = [(𝐼𝑋)](𝐺 ~QG 𝑆) ↔ ([𝑋](𝐺 ~QG 𝑆)(+g𝐻)[(𝐼𝑋)](𝐺 ~QG 𝑆)) = (0g𝐻)))
2921, 23, 25, 28syl3anc 1370 . 2 ((𝑆 ∈ (NrmSGrp‘𝐺) ∧ 𝑋𝑉) → ((𝑁‘[𝑋](𝐺 ~QG 𝑆)) = [(𝐼𝑋)](𝐺 ~QG 𝑆) ↔ ([𝑋](𝐺 ~QG 𝑆)(+g𝐻)[(𝐼𝑋)](𝐺 ~QG 𝑆)) = (0g𝐻)))
3019, 29mpbird 256 1 ((𝑆 ∈ (NrmSGrp‘𝐺) ∧ 𝑋𝑉) → (𝑁‘[𝑋](𝐺 ~QG 𝑆)) = [(𝐼𝑋)](𝐺 ~QG 𝑆))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396   = wceq 1539  wcel 2106  cfv 6433  (class class class)co 7275  [cec 8496  Basecbs 16912  +gcplusg 16962  0gc0g 17150   /s cqus 17216  Grpcgrp 18577  invgcminusg 18578  SubGrpcsubg 18749  NrmSGrpcnsg 18750   ~QG cqg 18751
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-rep 5209  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7588  ax-cnex 10927  ax-resscn 10928  ax-1cn 10929  ax-icn 10930  ax-addcl 10931  ax-addrcl 10932  ax-mulcl 10933  ax-mulrcl 10934  ax-mulcom 10935  ax-addass 10936  ax-mulass 10937  ax-distr 10938  ax-i2m1 10939  ax-1ne0 10940  ax-1rid 10941  ax-rnegex 10942  ax-rrecex 10943  ax-cnre 10944  ax-pre-lttri 10945  ax-pre-lttrn 10946  ax-pre-ltadd 10947  ax-pre-mulgt0 10948
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3069  df-rex 3070  df-rmo 3071  df-reu 3072  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-pss 3906  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-tp 4566  df-op 4568  df-uni 4840  df-iun 4926  df-br 5075  df-opab 5137  df-mpt 5158  df-tr 5192  df-id 5489  df-eprel 5495  df-po 5503  df-so 5504  df-fr 5544  df-we 5546  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-pred 6202  df-ord 6269  df-on 6270  df-lim 6271  df-suc 6272  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-fo 6439  df-f1o 6440  df-fv 6441  df-riota 7232  df-ov 7278  df-oprab 7279  df-mpo 7280  df-om 7713  df-1st 7831  df-2nd 7832  df-frecs 8097  df-wrecs 8128  df-recs 8202  df-rdg 8241  df-1o 8297  df-er 8498  df-ec 8500  df-qs 8504  df-en 8734  df-dom 8735  df-sdom 8736  df-fin 8737  df-sup 9201  df-inf 9202  df-pnf 11011  df-mnf 11012  df-xr 11013  df-ltxr 11014  df-le 11015  df-sub 11207  df-neg 11208  df-nn 11974  df-2 12036  df-3 12037  df-4 12038  df-5 12039  df-6 12040  df-7 12041  df-8 12042  df-9 12043  df-n0 12234  df-z 12320  df-dec 12438  df-uz 12583  df-fz 13240  df-struct 16848  df-sets 16865  df-slot 16883  df-ndx 16895  df-base 16913  df-ress 16942  df-plusg 16975  df-mulr 16976  df-sca 16978  df-vsca 16979  df-ip 16980  df-tset 16981  df-ple 16982  df-ds 16984  df-0g 17152  df-imas 17219  df-qus 17220  df-mgm 18326  df-sgrp 18375  df-mnd 18386  df-grp 18580  df-minusg 18581  df-subg 18752  df-nsg 18753  df-eqg 18754
This theorem is referenced by:  qussub  18816  nsgmgclem  31596  nsgqusf1olem1  31598
  Copyright terms: Public domain W3C validator