MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  qusinv Structured version   Visualization version   GIF version

Theorem qusinv 18420
Description: Value of the group inverse operation in a quotient group. (Contributed by Mario Carneiro, 18-Sep-2015.)
Hypotheses
Ref Expression
qusgrp.h 𝐻 = (𝐺 /s (𝐺 ~QG 𝑆))
qusinv.v 𝑉 = (Base‘𝐺)
qusinv.i 𝐼 = (invg𝐺)
qusinv.n 𝑁 = (invg𝐻)
Assertion
Ref Expression
qusinv ((𝑆 ∈ (NrmSGrp‘𝐺) ∧ 𝑋𝑉) → (𝑁‘[𝑋](𝐺 ~QG 𝑆)) = [(𝐼𝑋)](𝐺 ~QG 𝑆))

Proof of Theorem qusinv
StepHypRef Expression
1 nsgsubg 18391 . . . . . 6 (𝑆 ∈ (NrmSGrp‘𝐺) → 𝑆 ∈ (SubGrp‘𝐺))
2 subgrcl 18365 . . . . . 6 (𝑆 ∈ (SubGrp‘𝐺) → 𝐺 ∈ Grp)
31, 2syl 17 . . . . 5 (𝑆 ∈ (NrmSGrp‘𝐺) → 𝐺 ∈ Grp)
4 qusinv.v . . . . . 6 𝑉 = (Base‘𝐺)
5 qusinv.i . . . . . 6 𝐼 = (invg𝐺)
64, 5grpinvcl 18232 . . . . 5 ((𝐺 ∈ Grp ∧ 𝑋𝑉) → (𝐼𝑋) ∈ 𝑉)
73, 6sylan 583 . . . 4 ((𝑆 ∈ (NrmSGrp‘𝐺) ∧ 𝑋𝑉) → (𝐼𝑋) ∈ 𝑉)
8 qusgrp.h . . . . 5 𝐻 = (𝐺 /s (𝐺 ~QG 𝑆))
9 eqid 2758 . . . . 5 (+g𝐺) = (+g𝐺)
10 eqid 2758 . . . . 5 (+g𝐻) = (+g𝐻)
118, 4, 9, 10qusadd 18418 . . . 4 ((𝑆 ∈ (NrmSGrp‘𝐺) ∧ 𝑋𝑉 ∧ (𝐼𝑋) ∈ 𝑉) → ([𝑋](𝐺 ~QG 𝑆)(+g𝐻)[(𝐼𝑋)](𝐺 ~QG 𝑆)) = [(𝑋(+g𝐺)(𝐼𝑋))](𝐺 ~QG 𝑆))
127, 11mpd3an3 1459 . . 3 ((𝑆 ∈ (NrmSGrp‘𝐺) ∧ 𝑋𝑉) → ([𝑋](𝐺 ~QG 𝑆)(+g𝐻)[(𝐼𝑋)](𝐺 ~QG 𝑆)) = [(𝑋(+g𝐺)(𝐼𝑋))](𝐺 ~QG 𝑆))
13 eqid 2758 . . . . . 6 (0g𝐺) = (0g𝐺)
144, 9, 13, 5grprinv 18234 . . . . 5 ((𝐺 ∈ Grp ∧ 𝑋𝑉) → (𝑋(+g𝐺)(𝐼𝑋)) = (0g𝐺))
153, 14sylan 583 . . . 4 ((𝑆 ∈ (NrmSGrp‘𝐺) ∧ 𝑋𝑉) → (𝑋(+g𝐺)(𝐼𝑋)) = (0g𝐺))
1615eceq1d 8344 . . 3 ((𝑆 ∈ (NrmSGrp‘𝐺) ∧ 𝑋𝑉) → [(𝑋(+g𝐺)(𝐼𝑋))](𝐺 ~QG 𝑆) = [(0g𝐺)](𝐺 ~QG 𝑆))
178, 13qus0 18419 . . . 4 (𝑆 ∈ (NrmSGrp‘𝐺) → [(0g𝐺)](𝐺 ~QG 𝑆) = (0g𝐻))
1817adantr 484 . . 3 ((𝑆 ∈ (NrmSGrp‘𝐺) ∧ 𝑋𝑉) → [(0g𝐺)](𝐺 ~QG 𝑆) = (0g𝐻))
1912, 16, 183eqtrd 2797 . 2 ((𝑆 ∈ (NrmSGrp‘𝐺) ∧ 𝑋𝑉) → ([𝑋](𝐺 ~QG 𝑆)(+g𝐻)[(𝐼𝑋)](𝐺 ~QG 𝑆)) = (0g𝐻))
208qusgrp 18416 . . . 4 (𝑆 ∈ (NrmSGrp‘𝐺) → 𝐻 ∈ Grp)
2120adantr 484 . . 3 ((𝑆 ∈ (NrmSGrp‘𝐺) ∧ 𝑋𝑉) → 𝐻 ∈ Grp)
22 eqid 2758 . . . 4 (Base‘𝐻) = (Base‘𝐻)
238, 4, 22quseccl 18417 . . 3 ((𝑆 ∈ (NrmSGrp‘𝐺) ∧ 𝑋𝑉) → [𝑋](𝐺 ~QG 𝑆) ∈ (Base‘𝐻))
248, 4, 22quseccl 18417 . . . 4 ((𝑆 ∈ (NrmSGrp‘𝐺) ∧ (𝐼𝑋) ∈ 𝑉) → [(𝐼𝑋)](𝐺 ~QG 𝑆) ∈ (Base‘𝐻))
257, 24syldan 594 . . 3 ((𝑆 ∈ (NrmSGrp‘𝐺) ∧ 𝑋𝑉) → [(𝐼𝑋)](𝐺 ~QG 𝑆) ∈ (Base‘𝐻))
26 eqid 2758 . . . 4 (0g𝐻) = (0g𝐻)
27 qusinv.n . . . 4 𝑁 = (invg𝐻)
2822, 10, 26, 27grpinvid1 18235 . . 3 ((𝐻 ∈ Grp ∧ [𝑋](𝐺 ~QG 𝑆) ∈ (Base‘𝐻) ∧ [(𝐼𝑋)](𝐺 ~QG 𝑆) ∈ (Base‘𝐻)) → ((𝑁‘[𝑋](𝐺 ~QG 𝑆)) = [(𝐼𝑋)](𝐺 ~QG 𝑆) ↔ ([𝑋](𝐺 ~QG 𝑆)(+g𝐻)[(𝐼𝑋)](𝐺 ~QG 𝑆)) = (0g𝐻)))
2921, 23, 25, 28syl3anc 1368 . 2 ((𝑆 ∈ (NrmSGrp‘𝐺) ∧ 𝑋𝑉) → ((𝑁‘[𝑋](𝐺 ~QG 𝑆)) = [(𝐼𝑋)](𝐺 ~QG 𝑆) ↔ ([𝑋](𝐺 ~QG 𝑆)(+g𝐻)[(𝐼𝑋)](𝐺 ~QG 𝑆)) = (0g𝐻)))
3019, 29mpbird 260 1 ((𝑆 ∈ (NrmSGrp‘𝐺) ∧ 𝑋𝑉) → (𝑁‘[𝑋](𝐺 ~QG 𝑆)) = [(𝐼𝑋)](𝐺 ~QG 𝑆))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 209  wa 399   = wceq 1538  wcel 2111  cfv 6340  (class class class)co 7156  [cec 8303  Basecbs 16555  +gcplusg 16637  0gc0g 16785   /s cqus 16850  Grpcgrp 18183  invgcminusg 18184  SubGrpcsubg 18354  NrmSGrpcnsg 18355   ~QG cqg 18356
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2729  ax-rep 5160  ax-sep 5173  ax-nul 5180  ax-pow 5238  ax-pr 5302  ax-un 7465  ax-cnex 10644  ax-resscn 10645  ax-1cn 10646  ax-icn 10647  ax-addcl 10648  ax-addrcl 10649  ax-mulcl 10650  ax-mulrcl 10651  ax-mulcom 10652  ax-addass 10653  ax-mulass 10654  ax-distr 10655  ax-i2m1 10656  ax-1ne0 10657  ax-1rid 10658  ax-rnegex 10659  ax-rrecex 10660  ax-cnre 10661  ax-pre-lttri 10662  ax-pre-lttrn 10663  ax-pre-ltadd 10664  ax-pre-mulgt0 10665
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-fal 1551  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2557  df-eu 2588  df-clab 2736  df-cleq 2750  df-clel 2830  df-nfc 2901  df-ne 2952  df-nel 3056  df-ral 3075  df-rex 3076  df-reu 3077  df-rmo 3078  df-rab 3079  df-v 3411  df-sbc 3699  df-csb 3808  df-dif 3863  df-un 3865  df-in 3867  df-ss 3877  df-pss 3879  df-nul 4228  df-if 4424  df-pw 4499  df-sn 4526  df-pr 4528  df-tp 4530  df-op 4532  df-uni 4802  df-iun 4888  df-br 5037  df-opab 5099  df-mpt 5117  df-tr 5143  df-id 5434  df-eprel 5439  df-po 5447  df-so 5448  df-fr 5487  df-we 5489  df-xp 5534  df-rel 5535  df-cnv 5536  df-co 5537  df-dm 5538  df-rn 5539  df-res 5540  df-ima 5541  df-pred 6131  df-ord 6177  df-on 6178  df-lim 6179  df-suc 6180  df-iota 6299  df-fun 6342  df-fn 6343  df-f 6344  df-f1 6345  df-fo 6346  df-f1o 6347  df-fv 6348  df-riota 7114  df-ov 7159  df-oprab 7160  df-mpo 7161  df-om 7586  df-1st 7699  df-2nd 7700  df-wrecs 7963  df-recs 8024  df-rdg 8062  df-1o 8118  df-er 8305  df-ec 8307  df-qs 8311  df-en 8541  df-dom 8542  df-sdom 8543  df-fin 8544  df-sup 8952  df-inf 8953  df-pnf 10728  df-mnf 10729  df-xr 10730  df-ltxr 10731  df-le 10732  df-sub 10923  df-neg 10924  df-nn 11688  df-2 11750  df-3 11751  df-4 11752  df-5 11753  df-6 11754  df-7 11755  df-8 11756  df-9 11757  df-n0 11948  df-z 12034  df-dec 12151  df-uz 12296  df-fz 12953  df-struct 16557  df-ndx 16558  df-slot 16559  df-base 16561  df-sets 16562  df-ress 16563  df-plusg 16650  df-mulr 16651  df-sca 16653  df-vsca 16654  df-ip 16655  df-tset 16656  df-ple 16657  df-ds 16659  df-0g 16787  df-imas 16853  df-qus 16854  df-mgm 17932  df-sgrp 17981  df-mnd 17992  df-grp 18186  df-minusg 18187  df-subg 18357  df-nsg 18358  df-eqg 18359
This theorem is referenced by:  qussub  18421  nsgmgclem  31130  nsgqusf1olem1  31132
  Copyright terms: Public domain W3C validator