| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > qusinv | Structured version Visualization version GIF version | ||
| Description: Value of the group inverse operation in a quotient group. (Contributed by Mario Carneiro, 18-Sep-2015.) |
| Ref | Expression |
|---|---|
| qusgrp.h | ⊢ 𝐻 = (𝐺 /s (𝐺 ~QG 𝑆)) |
| qusinv.v | ⊢ 𝑉 = (Base‘𝐺) |
| qusinv.i | ⊢ 𝐼 = (invg‘𝐺) |
| qusinv.n | ⊢ 𝑁 = (invg‘𝐻) |
| Ref | Expression |
|---|---|
| qusinv | ⊢ ((𝑆 ∈ (NrmSGrp‘𝐺) ∧ 𝑋 ∈ 𝑉) → (𝑁‘[𝑋](𝐺 ~QG 𝑆)) = [(𝐼‘𝑋)](𝐺 ~QG 𝑆)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nsgsubg 19090 | . . . . . 6 ⊢ (𝑆 ∈ (NrmSGrp‘𝐺) → 𝑆 ∈ (SubGrp‘𝐺)) | |
| 2 | subgrcl 19063 | . . . . . 6 ⊢ (𝑆 ∈ (SubGrp‘𝐺) → 𝐺 ∈ Grp) | |
| 3 | 1, 2 | syl 17 | . . . . 5 ⊢ (𝑆 ∈ (NrmSGrp‘𝐺) → 𝐺 ∈ Grp) |
| 4 | qusinv.v | . . . . . 6 ⊢ 𝑉 = (Base‘𝐺) | |
| 5 | qusinv.i | . . . . . 6 ⊢ 𝐼 = (invg‘𝐺) | |
| 6 | 4, 5 | grpinvcl 18919 | . . . . 5 ⊢ ((𝐺 ∈ Grp ∧ 𝑋 ∈ 𝑉) → (𝐼‘𝑋) ∈ 𝑉) |
| 7 | 3, 6 | sylan 580 | . . . 4 ⊢ ((𝑆 ∈ (NrmSGrp‘𝐺) ∧ 𝑋 ∈ 𝑉) → (𝐼‘𝑋) ∈ 𝑉) |
| 8 | qusgrp.h | . . . . 5 ⊢ 𝐻 = (𝐺 /s (𝐺 ~QG 𝑆)) | |
| 9 | eqid 2729 | . . . . 5 ⊢ (+g‘𝐺) = (+g‘𝐺) | |
| 10 | eqid 2729 | . . . . 5 ⊢ (+g‘𝐻) = (+g‘𝐻) | |
| 11 | 8, 4, 9, 10 | qusadd 19120 | . . . 4 ⊢ ((𝑆 ∈ (NrmSGrp‘𝐺) ∧ 𝑋 ∈ 𝑉 ∧ (𝐼‘𝑋) ∈ 𝑉) → ([𝑋](𝐺 ~QG 𝑆)(+g‘𝐻)[(𝐼‘𝑋)](𝐺 ~QG 𝑆)) = [(𝑋(+g‘𝐺)(𝐼‘𝑋))](𝐺 ~QG 𝑆)) |
| 12 | 7, 11 | mpd3an3 1464 | . . 3 ⊢ ((𝑆 ∈ (NrmSGrp‘𝐺) ∧ 𝑋 ∈ 𝑉) → ([𝑋](𝐺 ~QG 𝑆)(+g‘𝐻)[(𝐼‘𝑋)](𝐺 ~QG 𝑆)) = [(𝑋(+g‘𝐺)(𝐼‘𝑋))](𝐺 ~QG 𝑆)) |
| 13 | eqid 2729 | . . . . . 6 ⊢ (0g‘𝐺) = (0g‘𝐺) | |
| 14 | 4, 9, 13, 5 | grprinv 18922 | . . . . 5 ⊢ ((𝐺 ∈ Grp ∧ 𝑋 ∈ 𝑉) → (𝑋(+g‘𝐺)(𝐼‘𝑋)) = (0g‘𝐺)) |
| 15 | 3, 14 | sylan 580 | . . . 4 ⊢ ((𝑆 ∈ (NrmSGrp‘𝐺) ∧ 𝑋 ∈ 𝑉) → (𝑋(+g‘𝐺)(𝐼‘𝑋)) = (0g‘𝐺)) |
| 16 | 15 | eceq1d 8711 | . . 3 ⊢ ((𝑆 ∈ (NrmSGrp‘𝐺) ∧ 𝑋 ∈ 𝑉) → [(𝑋(+g‘𝐺)(𝐼‘𝑋))](𝐺 ~QG 𝑆) = [(0g‘𝐺)](𝐺 ~QG 𝑆)) |
| 17 | 8, 13 | qus0 19121 | . . . 4 ⊢ (𝑆 ∈ (NrmSGrp‘𝐺) → [(0g‘𝐺)](𝐺 ~QG 𝑆) = (0g‘𝐻)) |
| 18 | 17 | adantr 480 | . . 3 ⊢ ((𝑆 ∈ (NrmSGrp‘𝐺) ∧ 𝑋 ∈ 𝑉) → [(0g‘𝐺)](𝐺 ~QG 𝑆) = (0g‘𝐻)) |
| 19 | 12, 16, 18 | 3eqtrd 2768 | . 2 ⊢ ((𝑆 ∈ (NrmSGrp‘𝐺) ∧ 𝑋 ∈ 𝑉) → ([𝑋](𝐺 ~QG 𝑆)(+g‘𝐻)[(𝐼‘𝑋)](𝐺 ~QG 𝑆)) = (0g‘𝐻)) |
| 20 | 8 | qusgrp 19118 | . . . 4 ⊢ (𝑆 ∈ (NrmSGrp‘𝐺) → 𝐻 ∈ Grp) |
| 21 | 20 | adantr 480 | . . 3 ⊢ ((𝑆 ∈ (NrmSGrp‘𝐺) ∧ 𝑋 ∈ 𝑉) → 𝐻 ∈ Grp) |
| 22 | eqid 2729 | . . . 4 ⊢ (Base‘𝐻) = (Base‘𝐻) | |
| 23 | 8, 4, 22 | quseccl 19119 | . . 3 ⊢ ((𝑆 ∈ (NrmSGrp‘𝐺) ∧ 𝑋 ∈ 𝑉) → [𝑋](𝐺 ~QG 𝑆) ∈ (Base‘𝐻)) |
| 24 | 8, 4, 22 | quseccl 19119 | . . . 4 ⊢ ((𝑆 ∈ (NrmSGrp‘𝐺) ∧ (𝐼‘𝑋) ∈ 𝑉) → [(𝐼‘𝑋)](𝐺 ~QG 𝑆) ∈ (Base‘𝐻)) |
| 25 | 7, 24 | syldan 591 | . . 3 ⊢ ((𝑆 ∈ (NrmSGrp‘𝐺) ∧ 𝑋 ∈ 𝑉) → [(𝐼‘𝑋)](𝐺 ~QG 𝑆) ∈ (Base‘𝐻)) |
| 26 | eqid 2729 | . . . 4 ⊢ (0g‘𝐻) = (0g‘𝐻) | |
| 27 | qusinv.n | . . . 4 ⊢ 𝑁 = (invg‘𝐻) | |
| 28 | 22, 10, 26, 27 | grpinvid1 18923 | . . 3 ⊢ ((𝐻 ∈ Grp ∧ [𝑋](𝐺 ~QG 𝑆) ∈ (Base‘𝐻) ∧ [(𝐼‘𝑋)](𝐺 ~QG 𝑆) ∈ (Base‘𝐻)) → ((𝑁‘[𝑋](𝐺 ~QG 𝑆)) = [(𝐼‘𝑋)](𝐺 ~QG 𝑆) ↔ ([𝑋](𝐺 ~QG 𝑆)(+g‘𝐻)[(𝐼‘𝑋)](𝐺 ~QG 𝑆)) = (0g‘𝐻))) |
| 29 | 21, 23, 25, 28 | syl3anc 1373 | . 2 ⊢ ((𝑆 ∈ (NrmSGrp‘𝐺) ∧ 𝑋 ∈ 𝑉) → ((𝑁‘[𝑋](𝐺 ~QG 𝑆)) = [(𝐼‘𝑋)](𝐺 ~QG 𝑆) ↔ ([𝑋](𝐺 ~QG 𝑆)(+g‘𝐻)[(𝐼‘𝑋)](𝐺 ~QG 𝑆)) = (0g‘𝐻))) |
| 30 | 19, 29 | mpbird 257 | 1 ⊢ ((𝑆 ∈ (NrmSGrp‘𝐺) ∧ 𝑋 ∈ 𝑉) → (𝑁‘[𝑋](𝐺 ~QG 𝑆)) = [(𝐼‘𝑋)](𝐺 ~QG 𝑆)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ‘cfv 6511 (class class class)co 7387 [cec 8669 Basecbs 17179 +gcplusg 17220 0gc0g 17402 /s cqus 17468 Grpcgrp 18865 invgcminusg 18866 SubGrpcsubg 19052 NrmSGrpcnsg 19053 ~QG cqg 19054 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5234 ax-sep 5251 ax-nul 5261 ax-pow 5320 ax-pr 5387 ax-un 7711 ax-cnex 11124 ax-resscn 11125 ax-1cn 11126 ax-icn 11127 ax-addcl 11128 ax-addrcl 11129 ax-mulcl 11130 ax-mulrcl 11131 ax-mulcom 11132 ax-addass 11133 ax-mulass 11134 ax-distr 11135 ax-i2m1 11136 ax-1ne0 11137 ax-1rid 11138 ax-rnegex 11139 ax-rrecex 11140 ax-cnre 11141 ax-pre-lttri 11142 ax-pre-lttrn 11143 ax-pre-ltadd 11144 ax-pre-mulgt0 11145 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rmo 3354 df-reu 3355 df-rab 3406 df-v 3449 df-sbc 3754 df-csb 3863 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-pss 3934 df-nul 4297 df-if 4489 df-pw 4565 df-sn 4590 df-pr 4592 df-tp 4594 df-op 4596 df-uni 4872 df-iun 4957 df-br 5108 df-opab 5170 df-mpt 5189 df-tr 5215 df-id 5533 df-eprel 5538 df-po 5546 df-so 5547 df-fr 5591 df-we 5593 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-res 5650 df-ima 5651 df-pred 6274 df-ord 6335 df-on 6336 df-lim 6337 df-suc 6338 df-iota 6464 df-fun 6513 df-fn 6514 df-f 6515 df-f1 6516 df-fo 6517 df-f1o 6518 df-fv 6519 df-riota 7344 df-ov 7390 df-oprab 7391 df-mpo 7392 df-om 7843 df-1st 7968 df-2nd 7969 df-frecs 8260 df-wrecs 8291 df-recs 8340 df-rdg 8378 df-1o 8434 df-er 8671 df-ec 8673 df-qs 8677 df-en 8919 df-dom 8920 df-sdom 8921 df-fin 8922 df-sup 9393 df-inf 9394 df-pnf 11210 df-mnf 11211 df-xr 11212 df-ltxr 11213 df-le 11214 df-sub 11407 df-neg 11408 df-nn 12187 df-2 12249 df-3 12250 df-4 12251 df-5 12252 df-6 12253 df-7 12254 df-8 12255 df-9 12256 df-n0 12443 df-z 12530 df-dec 12650 df-uz 12794 df-fz 13469 df-struct 17117 df-sets 17134 df-slot 17152 df-ndx 17164 df-base 17180 df-ress 17201 df-plusg 17233 df-mulr 17234 df-sca 17236 df-vsca 17237 df-ip 17238 df-tset 17239 df-ple 17240 df-ds 17242 df-0g 17404 df-imas 17471 df-qus 17472 df-mgm 18567 df-sgrp 18646 df-mnd 18662 df-grp 18868 df-minusg 18869 df-subg 19055 df-nsg 19056 df-eqg 19057 |
| This theorem is referenced by: qussub 19123 nsgmgclem 33382 nsgqusf1olem1 33384 |
| Copyright terms: Public domain | W3C validator |