MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  qusinv Structured version   Visualization version   GIF version

Theorem qusinv 18730
Description: Value of the group inverse operation in a quotient group. (Contributed by Mario Carneiro, 18-Sep-2015.)
Hypotheses
Ref Expression
qusgrp.h 𝐻 = (𝐺 /s (𝐺 ~QG 𝑆))
qusinv.v 𝑉 = (Base‘𝐺)
qusinv.i 𝐼 = (invg𝐺)
qusinv.n 𝑁 = (invg𝐻)
Assertion
Ref Expression
qusinv ((𝑆 ∈ (NrmSGrp‘𝐺) ∧ 𝑋𝑉) → (𝑁‘[𝑋](𝐺 ~QG 𝑆)) = [(𝐼𝑋)](𝐺 ~QG 𝑆))

Proof of Theorem qusinv
StepHypRef Expression
1 nsgsubg 18701 . . . . . 6 (𝑆 ∈ (NrmSGrp‘𝐺) → 𝑆 ∈ (SubGrp‘𝐺))
2 subgrcl 18675 . . . . . 6 (𝑆 ∈ (SubGrp‘𝐺) → 𝐺 ∈ Grp)
31, 2syl 17 . . . . 5 (𝑆 ∈ (NrmSGrp‘𝐺) → 𝐺 ∈ Grp)
4 qusinv.v . . . . . 6 𝑉 = (Base‘𝐺)
5 qusinv.i . . . . . 6 𝐼 = (invg𝐺)
64, 5grpinvcl 18542 . . . . 5 ((𝐺 ∈ Grp ∧ 𝑋𝑉) → (𝐼𝑋) ∈ 𝑉)
73, 6sylan 579 . . . 4 ((𝑆 ∈ (NrmSGrp‘𝐺) ∧ 𝑋𝑉) → (𝐼𝑋) ∈ 𝑉)
8 qusgrp.h . . . . 5 𝐻 = (𝐺 /s (𝐺 ~QG 𝑆))
9 eqid 2738 . . . . 5 (+g𝐺) = (+g𝐺)
10 eqid 2738 . . . . 5 (+g𝐻) = (+g𝐻)
118, 4, 9, 10qusadd 18728 . . . 4 ((𝑆 ∈ (NrmSGrp‘𝐺) ∧ 𝑋𝑉 ∧ (𝐼𝑋) ∈ 𝑉) → ([𝑋](𝐺 ~QG 𝑆)(+g𝐻)[(𝐼𝑋)](𝐺 ~QG 𝑆)) = [(𝑋(+g𝐺)(𝐼𝑋))](𝐺 ~QG 𝑆))
127, 11mpd3an3 1460 . . 3 ((𝑆 ∈ (NrmSGrp‘𝐺) ∧ 𝑋𝑉) → ([𝑋](𝐺 ~QG 𝑆)(+g𝐻)[(𝐼𝑋)](𝐺 ~QG 𝑆)) = [(𝑋(+g𝐺)(𝐼𝑋))](𝐺 ~QG 𝑆))
13 eqid 2738 . . . . . 6 (0g𝐺) = (0g𝐺)
144, 9, 13, 5grprinv 18544 . . . . 5 ((𝐺 ∈ Grp ∧ 𝑋𝑉) → (𝑋(+g𝐺)(𝐼𝑋)) = (0g𝐺))
153, 14sylan 579 . . . 4 ((𝑆 ∈ (NrmSGrp‘𝐺) ∧ 𝑋𝑉) → (𝑋(+g𝐺)(𝐼𝑋)) = (0g𝐺))
1615eceq1d 8495 . . 3 ((𝑆 ∈ (NrmSGrp‘𝐺) ∧ 𝑋𝑉) → [(𝑋(+g𝐺)(𝐼𝑋))](𝐺 ~QG 𝑆) = [(0g𝐺)](𝐺 ~QG 𝑆))
178, 13qus0 18729 . . . 4 (𝑆 ∈ (NrmSGrp‘𝐺) → [(0g𝐺)](𝐺 ~QG 𝑆) = (0g𝐻))
1817adantr 480 . . 3 ((𝑆 ∈ (NrmSGrp‘𝐺) ∧ 𝑋𝑉) → [(0g𝐺)](𝐺 ~QG 𝑆) = (0g𝐻))
1912, 16, 183eqtrd 2782 . 2 ((𝑆 ∈ (NrmSGrp‘𝐺) ∧ 𝑋𝑉) → ([𝑋](𝐺 ~QG 𝑆)(+g𝐻)[(𝐼𝑋)](𝐺 ~QG 𝑆)) = (0g𝐻))
208qusgrp 18726 . . . 4 (𝑆 ∈ (NrmSGrp‘𝐺) → 𝐻 ∈ Grp)
2120adantr 480 . . 3 ((𝑆 ∈ (NrmSGrp‘𝐺) ∧ 𝑋𝑉) → 𝐻 ∈ Grp)
22 eqid 2738 . . . 4 (Base‘𝐻) = (Base‘𝐻)
238, 4, 22quseccl 18727 . . 3 ((𝑆 ∈ (NrmSGrp‘𝐺) ∧ 𝑋𝑉) → [𝑋](𝐺 ~QG 𝑆) ∈ (Base‘𝐻))
248, 4, 22quseccl 18727 . . . 4 ((𝑆 ∈ (NrmSGrp‘𝐺) ∧ (𝐼𝑋) ∈ 𝑉) → [(𝐼𝑋)](𝐺 ~QG 𝑆) ∈ (Base‘𝐻))
257, 24syldan 590 . . 3 ((𝑆 ∈ (NrmSGrp‘𝐺) ∧ 𝑋𝑉) → [(𝐼𝑋)](𝐺 ~QG 𝑆) ∈ (Base‘𝐻))
26 eqid 2738 . . . 4 (0g𝐻) = (0g𝐻)
27 qusinv.n . . . 4 𝑁 = (invg𝐻)
2822, 10, 26, 27grpinvid1 18545 . . 3 ((𝐻 ∈ Grp ∧ [𝑋](𝐺 ~QG 𝑆) ∈ (Base‘𝐻) ∧ [(𝐼𝑋)](𝐺 ~QG 𝑆) ∈ (Base‘𝐻)) → ((𝑁‘[𝑋](𝐺 ~QG 𝑆)) = [(𝐼𝑋)](𝐺 ~QG 𝑆) ↔ ([𝑋](𝐺 ~QG 𝑆)(+g𝐻)[(𝐼𝑋)](𝐺 ~QG 𝑆)) = (0g𝐻)))
2921, 23, 25, 28syl3anc 1369 . 2 ((𝑆 ∈ (NrmSGrp‘𝐺) ∧ 𝑋𝑉) → ((𝑁‘[𝑋](𝐺 ~QG 𝑆)) = [(𝐼𝑋)](𝐺 ~QG 𝑆) ↔ ([𝑋](𝐺 ~QG 𝑆)(+g𝐻)[(𝐼𝑋)](𝐺 ~QG 𝑆)) = (0g𝐻)))
3019, 29mpbird 256 1 ((𝑆 ∈ (NrmSGrp‘𝐺) ∧ 𝑋𝑉) → (𝑁‘[𝑋](𝐺 ~QG 𝑆)) = [(𝐼𝑋)](𝐺 ~QG 𝑆))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 395   = wceq 1539  wcel 2108  cfv 6418  (class class class)co 7255  [cec 8454  Basecbs 16840  +gcplusg 16888  0gc0g 17067   /s cqus 17133  Grpcgrp 18492  invgcminusg 18493  SubGrpcsubg 18664  NrmSGrpcnsg 18665   ~QG cqg 18666
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-rep 5205  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566  ax-cnex 10858  ax-resscn 10859  ax-1cn 10860  ax-icn 10861  ax-addcl 10862  ax-addrcl 10863  ax-mulcl 10864  ax-mulrcl 10865  ax-mulcom 10866  ax-addass 10867  ax-mulass 10868  ax-distr 10869  ax-i2m1 10870  ax-1ne0 10871  ax-1rid 10872  ax-rnegex 10873  ax-rrecex 10874  ax-cnre 10875  ax-pre-lttri 10876  ax-pre-lttrn 10877  ax-pre-ltadd 10878  ax-pre-mulgt0 10879
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-nel 3049  df-ral 3068  df-rex 3069  df-reu 3070  df-rmo 3071  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-pss 3902  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-tp 4563  df-op 4565  df-uni 4837  df-iun 4923  df-br 5071  df-opab 5133  df-mpt 5154  df-tr 5188  df-id 5480  df-eprel 5486  df-po 5494  df-so 5495  df-fr 5535  df-we 5537  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-pred 6191  df-ord 6254  df-on 6255  df-lim 6256  df-suc 6257  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-riota 7212  df-ov 7258  df-oprab 7259  df-mpo 7260  df-om 7688  df-1st 7804  df-2nd 7805  df-frecs 8068  df-wrecs 8099  df-recs 8173  df-rdg 8212  df-1o 8267  df-er 8456  df-ec 8458  df-qs 8462  df-en 8692  df-dom 8693  df-sdom 8694  df-fin 8695  df-sup 9131  df-inf 9132  df-pnf 10942  df-mnf 10943  df-xr 10944  df-ltxr 10945  df-le 10946  df-sub 11137  df-neg 11138  df-nn 11904  df-2 11966  df-3 11967  df-4 11968  df-5 11969  df-6 11970  df-7 11971  df-8 11972  df-9 11973  df-n0 12164  df-z 12250  df-dec 12367  df-uz 12512  df-fz 13169  df-struct 16776  df-sets 16793  df-slot 16811  df-ndx 16823  df-base 16841  df-ress 16868  df-plusg 16901  df-mulr 16902  df-sca 16904  df-vsca 16905  df-ip 16906  df-tset 16907  df-ple 16908  df-ds 16910  df-0g 17069  df-imas 17136  df-qus 17137  df-mgm 18241  df-sgrp 18290  df-mnd 18301  df-grp 18495  df-minusg 18496  df-subg 18667  df-nsg 18668  df-eqg 18669
This theorem is referenced by:  qussub  18731  nsgmgclem  31498  nsgqusf1olem1  31500
  Copyright terms: Public domain W3C validator